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Introduction 

The study sewn construction in the form of rods 

and shells is considered in [1, 2]. Calculation sewn 

construction is often based on field and laboratory 

experiments [3]. 

In this paper we consider the cylindrical 

protective structures [4, 12]. Under dynamic stress in 

the wall of the cylindrical protective structure 

havingtransverse vibrations of bending. Explosive load 

applied to the axis of symmetry of the cylindrical body. 

The problem is reduced to the study of the bending of 

the transverse oscillations relative to the element 

sheath. 

 

II. Statement of the problem.  

Fig. 1 shows an element with the current in it 

internally. The figure shows the bending moments 

along the generator shell 𝑀𝑥, annular 𝑀0, normal ring 

of force 𝑁0 and transverse forces 𝑄𝑥, and the directions 

of the axes of coordinates and transverse forces 𝑄𝑥 , and 

the directions of the axes of coordinates and the 

corresponding displacement. The equilibrium equation 

shell element is the sum of the projections of all efforts 

on the axis 𝑍. It can be written in the form 

𝑚𝑎𝑑𝜙𝑑𝑥
𝜕2𝑤

𝜕𝑥2
+

𝜕𝑄𝑥

𝜕𝑥
𝑑𝑥𝑎𝑑𝜙 + 2𝑁𝜙𝑑𝑥 𝑠𝑖𝑛

𝑑𝜙

2
= 𝑝(𝑥, 𝑡)𝑎𝑑𝜙𝑑𝑥 

Given, that 
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𝑠𝑖𝑛
𝑑𝜙

2
≅

𝑑𝜙

2
, 

 

have 

𝜕𝑄𝑥

𝜕𝑥
=

𝜕2𝑀𝑥

𝜕𝑥2
 

We denote by 𝜎, ℎ, 𝜌 и р circumferential 

compressive stress, respectively, wall thickness, 

density, and external pressure; then the equation of the 

transverse vibrations can be written as: 

𝑚
𝜕2𝑤

𝜕𝑡2 +
𝜕2𝑀𝑥

𝜕𝑥2 +
1

𝑎
𝑁𝜙 = 𝑝(𝑥, 𝑡)              (1.1) 

Where 𝑁𝑥0 = 𝑁0𝑥; the torqueses 𝑀𝑥0 = 𝑀0𝑥 in 

both sections are zero.  

By the same reason, annular an effort 𝑀0 and 𝑁0 

must be the same along the entire perimeter shell; 𝑤 - 

transverse movements; 𝑀𝑥- bending moment along the 

generator shell; 𝑁0- normal ring force, 𝑚 - mass per 

unit length; 𝑝(𝑥, 𝑡)- external load, which is attached 

inside the cylindrical body; 𝜈 - the Poisson coefficient 

𝑁𝑥 =
𝐸ℎ

1−𝜇2 (𝜀𝑥 + 𝜈𝜀𝜙) = 0,                    (1.2) 

𝑁𝜙 =
𝐸ℎ

1−𝜇2 (𝜀𝜙 + 𝜈𝜀𝑥)                            (1.3) 

From (1.2) we obtain 𝜀𝑥 = −𝜇𝜀𝜙; substituting 

this into (1.3) and taking into account that  

 𝜀𝜙 = −
𝑤

𝑟0
 

have 

𝑁𝜙 = −
𝐸ℎ

𝑟0
𝑤                          (1.4) 

Because of symmetry conditions can be seen that 

the curvature of the circumference of the enclosure 

should be constant. Then it follows from the theory of 

plates, that: 

 

.
2

2

x

w
DM x




=

𝑀𝜙 = 𝜈 ⋅ 𝑀𝑥                (1.5) 

Substituting the expressions (1.4) and (1.5) into 

equation (1.1), we obtain the equation of forced 

vibrations of a closed cylindrical shell [4,5,6,7,8]. 

𝑤𝐼𝑉 + 4𝛽4𝑤 + 𝜆2𝑤″ = 𝑝(𝑥1𝑡)/𝐷              (1.6) 

Where         

𝛽4 =
𝐸ℎ

4𝑅2𝐷
=

3(1 − 𝜈2)

𝐸2ℎ
2 ; 𝐷 =

𝐸ℎ
3

12(1 − 𝜈2)
; 𝜆2 =

𝜈ℎ

𝑔𝐷
 

𝑤1𝑣 = 𝜕4𝑤/𝜕𝑥4; 𝑤″ = 𝜕2𝑤/𝜕𝑡2. 
𝐷 - Cylindrical rigidity; 𝑣 - the Poisson 

coefficient; 𝑅 - radius of the middle surface; ℎ - 

thickness of the shell wall; 𝑔 = 980
𝑠𝑚

𝑠𝑒𝑘2 - acceleration 

of gravity; 𝑤 - radial movement the shell wall. 

 

 

 
Fig.1. Settlement scheme elementary area of a closed cylindrical shell with transverse vibrations. 

 

Equation (1.6) differs from equation shell 

deformation under static loading [1] member𝜆2𝑤″, 

introduced to account for the inertial forces mass shell 

wall at a dynamic pressure is applied. This equation, as 

well as the equations studied [2], does not account for 

the effect of the rotational inertia of the cross sections 

and shear forces. Consider a finite shell length 𝐿 

(Figure 2). Influence consolidate all shell will take into 

account the appropriate boundary conditions. 

As the origin of time t will take the start of the 

deformation. Thus, the problem of deformation of the 

cylindrical shell of the explosion is reduced to finding 

the solution of equation (6) satisfying the zero initial 

conditions and the corresponding boundary conditions. 

The solution of this problem is reduced to the 

determination𝑤(𝑥, 𝑡), since the forces and stresses 

after determining 𝑤(𝑥, 𝑡) are located. 
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Fig. 2. Settlement scheme of a cylindrical shell. 

 

With all the variety of loads, resulting in the 

explosion, the nature of deformation of the shell 

provided with stiffening rings can be found by solving 

for a single load instantly attached at a distance 𝑥 = 𝐿0 

(Fig. 2.a). 

Let us find the solution, i.e., define the movement 

of the shell wall at the instantaneous application of a 

load of the form                           

𝑃(𝑥, 𝑡) = {
1, при х = 𝐿0

0, при х ≠ 𝐿0.
                         (1.7) 

The solution of equation (1.7) at the right side of 

(1.8) in the form of a number of  

𝑤 = ∑ 𝐵𝑘
∞
𝑘=1 (𝑡)𝑊𝑘(𝛽𝑘𝑥),                       (1.8) 

Where 𝑤(𝛽𝑘 , 𝑥) - fundamental functions 

satisfying the equation 

  𝑊𝑘
𝐼𝑉(𝛽𝑘,, 𝑥) − 𝛽𝑘

4𝑊𝑘(𝛽𝑘𝑥) = 0               (1.9) 

and appropriate boundary conditions; 𝛽к(𝑡) - unknown 

coefficients to be determined. As is known, the 

function 𝑈𝑘 for the boundary conditions 𝑊𝑘 = 𝑊𝑘
𝐼 = 0  

at  𝑥 = 0  and  𝑥 = 𝐿 have the following form; 

 

𝑊𝑘 = 𝑠𝑖𝑛 𝛽𝑘 𝑥 − 𝑠ℎ𝛽𝑘𝑥

−
𝑠𝑖𝑛 𝛽𝑘 𝐿 − 𝑠ℎ𝛽𝑘𝐿

𝑐о𝑠𝛽𝑘𝐿ғ𝑐ℎ𝛽𝑘𝐿
(𝑐𝑜𝑠 𝛽𝑘 𝑥

− 𝐶ℎ𝛽𝑘х), 

Where 𝛽к- the roots of the transcendental 

equation. 

𝐶ℎ𝛽𝑘𝐿 𝑐𝑜𝑠 𝛽𝑘 𝐿 = 1                        (1.10) 

Several numerical values of the solutions of 

equations (1.10): 

𝛽1𝐿 = 4,73; 𝛽2𝐿 = 7,8542; 𝛽3𝐿 = 10,9956 

At𝑘 > 3,  

𝛽к𝐿 =
2к + 1

2
𝜋. 

For the boundary conditions 𝑊𝑘 = 𝑊𝑘
𝐼𝐼 = 0 at  

𝑥 = 0  and  𝑥 = 𝐿 

,sin x
L

k
Wk


=

𝛽𝑘 =
𝑘𝜋

𝐿
,   𝑘 = 1,2,3, . .. 

We expand the unit load (1.1) in a series of 

fundamental functions𝑊𝑘. To do this, we will consider 

it as the ultimate load (Fig. 2) 

Р(х) = ∑∞
к=1 Ак𝑊к(𝛽кх),Ак = ҳ

𝑊к(𝛽ке0)

∫
е

0 𝑊к
2𝑑х

.         (1.11) 

To find the unknown coefficients 𝐴𝑘  series (1.8), 

in the form we are looking for solution of the problem, 

put the number as well as the expression (1.11) in 

equation (1.1). As a result of this substitution, taking 

into account the equality (1.11) we obtain the following 

differential equation for𝐵𝑘 

В̈к +
𝛽к

4+4𝛽4

𝜆2 Вк −
Ак

𝜆2𝐷
= 0        (1.12) 

 

 

 
Fig.3. Settlement scheme. Cylindrical protective structure. 
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A solution of these equations for zero initial conditions 

the following  

Вк =
Сп(1 − 𝑐𝑜𝑠 𝑞𝑘 𝑡)

(𝛽к
4 + 4𝛽4)𝐷

, 

Where    qк= √
𝛽к

4+4𝛽4Ҳ

𝜆2 . 

Thus, the solution of equation (1.1) we have the 

following form: 

𝑊 = ∑∞
𝑘=1

𝑊к(𝛽к)(1−𝑠𝑖𝑛 𝑞𝑘)

𝐷 ∫
𝐿

0 𝑊𝑘
2𝑑𝑥(𝛽𝑘

4+4𝛽4)
𝑊𝑘(𝛽𝑘𝑥). (1.13) 

Wake assumes that 𝑡 = 𝑇𝐵  load removed. Solution for 

𝑡 > 𝑇𝐵 we find the principle of superposition, 

suggesting that at the time 𝑡1 applied to the system unit 

load directed in the opposite direction. In this case the 

decision is determined by the formula 

𝑊 = 2 ∑∞
𝑘=1

𝑊𝑘(𝛽𝑘𝐿0) 𝑠𝑖𝑛
𝑞𝑘𝑡1

2
𝑠𝑖𝑛 𝑞𝑘(𝑡−

𝑇

2
)

𝐷(𝛽𝑘
4+4𝛽4) ∫

𝑒
0 𝑊𝑘

2𝑑𝑥
𝑈𝑘(𝛽𝑘𝑥) 

(1.14) 

The last formula can be obtained movement caused by 

the instantaneous unit impulse, i.e. when 𝑡1 → 0𝑃𝑇 =
1 

𝑊𝑚(𝑒0, 𝑥, 𝑡) = ∑

∞

𝑘=1

𝑊𝑘(𝛽𝑘𝐿0)𝑞𝑘 𝑠𝑖𝑛 𝑞𝑘 𝜓𝑘(𝛽𝑘𝑥)

𝐷(𝛽𝑘
4 + 4𝛽4) ∫

𝑒

0
𝑊𝑘

2𝑑𝑥
. 

Now consider the load  𝑃(𝑡) as a set of pulses. The 

action of the force 𝐹(𝑡) at time 𝑇 for a short time 

interval 𝑑𝑡 can be considered as a pulse 𝑅(𝑡)𝑑𝑇. 

Moving the shell wall at time 𝑡(𝑡 > 𝑇), caused by this 

pulse is equal to 

𝑑𝑊

= ∑

∞

𝑘=1

𝑊𝑘(𝛽𝑘𝑒0)𝑞𝑘 𝑠𝑖𝑛 𝑞𝑘 (𝑡 − 𝑇)𝑝(𝑇)𝑑𝑇𝑊𝑘(𝛽𝑘𝑥)

𝐷(𝛽𝑘
4 + 4𝛽4) ∫

𝑒

0
𝑈𝑘

2𝑑𝑥
. 

𝑊 = ∑∞
𝑘=1

𝑊𝑘(𝛽𝑘𝑎)𝑊𝑘𝑞𝑘 ∫
𝑒

0 𝑝(𝑇) 𝑠𝑖𝑛 𝑞𝑘(𝑡−𝑇)𝑑𝑡

𝐷(𝛽𝑘
4+4𝛽4) ∫

𝑒
0 𝑊𝑘

2𝑑𝑥
. (1.15) 

Thus, we obtain a formula for finding the moving wall 

of the sheath when the load is applied at the point 𝑋 =
𝑙0, varies according to an arbitrary law 𝑃(𝑡). Formula 

(13), (14) and (15) can be used for constructing 

solutions in all cases, with the explosion of the shell of 

loading. 

 Let us consider some particular cases: 

1. Pressure𝑃(𝑡) = 𝑃 = 𝑐𝑜𝑛𝑠𝑡. Pressure is applied 

instantaneously, and act on the membrane for a time 𝑡1. 

At the time 𝑡1pressure instantaneously is removed. We 

find the solution for the given case load applied to the 

sheath having boundary conditions 𝑊 = 𝑊′ = 0 at  

𝑥 = 0 and 𝑥 = 𝑙. 
For time interval 0 ÷ 𝑡1, using (1.13) we obtain 

 

𝑊 = ∑

∞

𝑘=1

∫
е

0
Р(𝐿0)𝑊𝑘(𝛽𝑘𝐿0)е0(1 − 𝑐𝑜𝑠 𝑞𝑘 𝑡)𝑊𝑘(𝛽𝑘𝑥)

𝐷(𝛽𝑘
4 + 4𝛽4) ∫

𝑒

0
𝑊𝑘

2𝑑𝑥
 

 

( )








=

=
=

......,4,20

,....5,3,1
4

)( 000

0 кat

кat
P

deLWLР kkk

е



∫
е

0
𝑊𝑘

2𝑑𝑥 =
𝑠ℎ𝛽𝑘𝑡−𝑠𝑖𝑛 𝛽𝑘𝐿

𝑠ℎ𝛽𝑘𝐿+𝑠𝑖𝑛 𝛽𝑘𝐿
𝐿 

and hence, 

𝑊 =
4𝑃

𝐷
∑

𝑘=1,3,5,..

(1 − 𝑠𝑖𝑛 𝑄𝑘 𝑡)

𝛽𝑘𝐿𝛽1

𝜂𝑘𝑊𝑘(𝛽𝑘𝑥) 

At 𝑡 < 𝑇. Introduced here the notation 

𝛽1 = 𝛽к
4; 𝜂к =

𝑠ℎ𝛽𝑘𝐿 + 𝑠𝑖𝑛 𝛽𝑘 𝐿

𝑠ℎ𝛽𝑘𝐿 − 𝑠𝑖𝑛 𝛽𝑘 𝐿
. 

Accordingly at 𝑡 > 𝑡1, Using (1.14) we obtain 

𝑊 = 𝑃1 ∑

∞

𝐾=1,3,5..

𝑄(𝑡)𝜂𝐾𝑊𝐾(𝑥)

𝛽𝐾𝐿𝛽1

, 

Where        𝑄(𝑡) = 𝑠𝑖𝑛(𝑞𝑘𝑇/2) 𝑠𝑖𝑛 𝑞𝑘 (𝑡 −
𝑇

2
) 

2. The pressure  

𝑃(𝑥) = 0,084𝑥 + 0,72𝑥2 + 0,7𝑥3 is applied to the 

shell and is valid within the time time interval 𝑇. For 

0 ÷ 𝑇  using (14) we obtain 

𝑊 = ∑

∞

𝐾=1

𝑄2(𝑡)𝑊𝐾(𝛽𝐾𝑥)

𝐷𝛽1 ∫
𝑒

0
𝑊𝐾

2𝑑𝑥
 

Where. 

 

𝑄2(𝑡) = (0,084 ∫ 𝑥𝑊𝐾(𝛽𝐾𝐿0)
𝐿

0

+ 0,72 ∫ 𝑥2𝑊𝐾(𝛽𝐾𝐿0)
𝐿

0

+ 0,67 ∫ 𝑥3𝑊𝐾(𝛽𝐾𝐿0)
𝐿

0

) 

3. The pressure 𝑃(𝑥) = ∑𝑁1
𝑛=0 𝑃𝑛 𝑠𝑖𝑛

𝑛𝜋

𝐿
𝑥 applied 

instantaneously and is valid for the time 0 ÷ 𝑇.  At time  

𝑇1 pressure instantaneously withdrawn. We find the 

solution for the given case load, taking boundary 

conditions 𝑊 = 𝑊′′ = 0   at  𝑥 = 0 and 𝑥 = 𝐿. For the 

data the boundary conditions at 𝑁 = 1:  

𝑊 =
2𝑃0 𝑠𝑖𝑛 √(

𝜋

𝐿
)

4
+4𝛽4 𝑇

2𝜆
𝑠𝑖𝑛

√(
𝜋
𝐿)

2
+4𝛽4(𝑡−

𝑇
2)

𝜆
𝑠𝑖𝑛

𝜋

𝐿
𝑥

𝐷[(
𝜋

𝐿
)

4
+4𝛽4]

  

III. The numerical results and their analysis are 

given below. 

When calculating take the following initial data: 
𝑅0

ℎ1
= 20;𝜈 = 0,25, 𝐸 = 2,1 ⋅ 105 𝑘𝑔

𝑠𝑚2. 

Some solutions of particular problems identified 

natural frequencies, which are listed in Table 1. The 

results of calculations are compared with the results 

presented in [4,10,11]. The discrepancy between the 

results of up to 20%. Calculation of cylindrical shell on 

the effect of dynamic load. 
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1 − 𝑁0– Annular of force  𝜏 = 0,05 and 0,1 

2–𝑀0 - moments   𝜏 = 0,05 and 0,1 

Fig. 4. Cross-chain and bending stresses in the shell. 

 

Table 1. The eigenvalues. 

 

№ Thepaper [4] our 

theresults 

Thediffe

rence 

1.0 0,97394 0,97103 0,29 

 1,47003 1,46996 0,007 

 1,83890 1,83792 0,0068 

2.0 2,89321 2,89436 0,00111 

 3,14526 3,14627 0,00101 

 3,76525 3,76423 0,00102 

 

Consider a cylindrical shell (Fig. 3) clamped 

around the edges made of reinforced concrete and 

having the following dimensions and physical 

constants: 𝐷 = 4𝑚, the height ℎ = 4𝑚; elastic 

modulus  𝐸 = 2,1 ⋅ 105 𝑘𝑔

𝑠𝑚2 , 𝑣 = 0,25; volumetric 

weight of the material of the dome  𝛾 = 2,1 ⋅ 103 𝑘𝑔

𝑠𝑚2. 

On the inner cylinder acts uniformly distributed load, 

time-varying linearly (Fig. 2). Figure 4 shows the chain 

and bending stresses in the shell when exposed to 

pulsed loads as 𝑃(𝑥, 𝜙, 𝑡) = 𝜎𝑒−𝑡/𝜏э ( 𝐷 = 4𝑚 - 

amplitude load). 

 

 

 
Figure 5. Change the greatest moment in time. 

 

From Figure 5 it is clear that the time reaches its 

maximum value at the initial time, and then gradually 

decreases. 

4. Dynamic stress-strain state of an infinitely long 

cylindrical shell when exposed to explosive load. 

Moving wall infinitely long cylindrical shell with 

instant annexed thereto unit load found by solving for 

the ultimate shell passing to the limit 𝑙 → ∞. Form this 

case, the solution (2.14) takes the form 
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𝑾 =
𝟏

𝝅
∫

∞

𝟎

𝒄𝒐𝒔 у х𝟏

(у𝟒 + 𝟒𝜷𝟒)𝑫
(𝟏 − 𝒄𝒐𝒔

𝟏

𝒙
√у𝟒 + 𝟒𝜷𝟒𝒕) 

This expression coincides with the expression 

obtained [5] with the cosine - Fourier transformation 

 

Table 2. Estimated efforts in the wall. 

 

Х./

H 

X W, мм 𝑋″ МХ, кн. 

м/м 

0 0 0 -11, 011 -1030,68 

0,1 1,773 0,063 -7,294 -682,76 

0,2 6,136 0,216 -3,661 -342,69 

0,3 11,856 0,419 -0,296 -27,71 

0,4 17,706 0,625 2,582 241,69 

0,5 22,635 0,779 4,727 442,47 

0,6 25,88 0,914 5,934 555,45 

0,7 27,029 0,964 6,072 568,37 

0,8 26,024 0,919 5,083 475,79 

 

Х./

H 
М,кн.

м/м 

N,кн/м 𝑋‴ Qx,кн/м 

0 171,78 0 6,192 0 

0,1 113,79 318,8 6,15 575,67 

0,2 57,11 1093,1 5,885 550,87 

0,3 4,62 2120,4 5,267 493,02 

0,4 40,28 30162,9 4,24 396,89 

0,5 73,75 4043,5 2,835 265,37 

0,6 92,58 4625,5 1,138 106,52 

0,7 94,73 4827,9 -0,705 -65,99 

0,8 79,3 4650,8 -2,555 -239,16 

0,9 47,24 4149,8 -4,27 -399,69 

1 0 3456,5 -5,75 -538,23 

 

 

If the applied load instantaneously after time 𝑻 

will be charged, the decision in this case, was found by 

a superposition, will have the following form 𝑊 =
1

𝜋
∫

∞

0

𝑐𝑜𝑠 у х1 𝑠𝑖𝑛
1

2𝜆
√у4 + 4𝛽2𝑇у

1
(𝑡)

𝐷1

 

 
Fig. 6. Schedule to determine the values of the dynamic coefficients At  𝒕 < 𝑻 where 

 

𝑌1(𝑡) = 𝑠𝑖𝑛
1

𝜆
√у4 + 4𝛽2 (𝑡 −

𝑇

2
) 

𝑫𝟏 = 𝑫(𝒚𝟒 + 𝟒𝜷𝟒) 
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Fig. 7. Stresses in cylindrical body with a pulse Speed and load. 

 

Figure 5 and 6 shows the stress in the cylindrical 

body by the action of impulse and step load. 

Subsequent waves effects are less and less energy, so 

for practical purposes is sufficient to apply no more 

than two - three waves. Calculated efforts shell wall are 

given in Table 5. 

 

 
 

1 − 𝜆1𝛩1 = 2,5; 2 − 𝜆1𝛩 = 10 

Fig. 8 Change displacement versus time. 

 

In view of the required accuracy of the results of 

calculations are presented in Figure 3.8, with 

𝒗 = 𝟎, 𝟐𝟓; 𝑬 = 𝟐, 𝟏 ⋅ 𝟏𝟎𝟓
𝒌𝒈

𝒔𝒎𝟐

𝒉

𝑹
= 𝟎, 𝟏 

𝑹 = 𝟏; 𝟐; 𝟑. 𝑵 = 𝟏𝟎−𝟒; 𝟏, 𝟐, 𝟑. . . 𝟓 

At 𝑁 = 5 and 𝑁 = 6 value 𝑤 differs from the 

previous fifth decimal place. Change 𝑤 depending on 

𝑡 shown in Figure 8 

It can be seen that with increasing time (t> 0,03 

sec) movement reaches its maximum value, and then 

approaches zero. There sultsare presented in Figure 8. 

 

 

 

V. Conclusions. 

1. An algorithm and a program is to address the 

problem of the impact of shock waves on the 

cylindrical shell. Numerical results and to analyze their 

error. This technique is not very important in terms of 

structural strength. In the axially symmetric case, the 

effects of reflection are extended mainly 

2. The results show that the effect of the reflected 

waves is significant at relatively small scales charge. 

The largest county deformation concentrated in the 

central zone of the cylinder, near the line of the 

meeting, and the highest - longitudinal related to edge 

effects - in the vicinity of the ends. Predominant among 

the are district deformation. 
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