| ISRA $($ India) | $=4.971$ | SIS (USA) | $=0.912$ | ICV (Poland) |
| :--- | :--- | :--- | :--- | :--- |$=6.630$

S. Zhunisbekov
Taraz State University Doctor of technical Sciences, Professor, Academician of NIA RK

Alexandr Shevtsov
Taraz State University
candidate of technical sciences, member of PILA (USA), department of «Mathematics», deputy director on Science of faculty of Information technologies, automation and telecommunications,
Shev_AlexXXXX@mail.ru

SOME VALUES OF THE ZETA FUNCTION

Abstract: This paper investigates some values of the Zeta function along the critical line.
Key words: Zeta function, real numbers, Euler.
Language: English
Citation: Zhunisbekov, S., \& Shevtsov, A. (2019). Some values of the Zeta function. ISJ Theoretical \& Applied Science, 11 (79), 692-698.

Soi: http://s-o-i.org/1.1/TAS-11-79-142 Doi: crossef https://dx.doi.org/10.15863/TAS.2019.11.79.142
Scopus ASCC: 2604.

Introduction

Harmonic series are a special case of a more General type of function called the Zeta function $\zeta(\mathrm{s})$.

The real Zeta function is given for two real numbers r and n [1-2]:

$$
\zeta(n)=\sum_{r=1}^{\infty} \frac{1}{r^{n}}=1+\frac{1}{2^{n}}+\frac{1}{3^{n}}+\frac{1}{4^{n}}+\frac{1}{5^{n}}+\ldots+\frac{1}{(r-1)^{n}}+\frac{1}{r^{n}}+\ldots
$$

The Zeta-function

If we substitute $\mathrm{n}=1$, we get a harmonic series that diverges. However, for all values $n>1$, the series converges, that is, the sum with increasing r tends to a certain number, and does not go to infinity. [3]

Euler product formula

The first connection between Zeta functions and primes was established by Euler when he showed that for two natural (integer and greater than zero) numbers n and p , where is a Prime, the following holds true [4-6]:

$$
\sum_{n} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-p^{-s}}
$$

The Euler product for two numbers n and p , where both are greater than zero and p is Prime.

This expression first appeared in the article 1737 under the title Variae observationes circa series infinitas. It follows from the expression that the sum of the Zeta function is equal to the product of quantities, the inverse of one, minus the inverse of Prime numbers to the power of s. This relationship laid the Foundation of modern Prime number theory, in which since then the Zeta function ζ (s) has been used as a way of studying Prime numbers [1, 7-9].

Proof of Euler product formula
Euler starts with the General Zeta function

$$
\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\frac{1}{6^{s}}+\ldots
$$

| | $=4.971$ | SIS (USA) $=0.912$ | ICV (Poland) | $=6.630$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Impact Factor: | ISI (Dubai, UAE) $=0.829$ | PИHL (Russia) $=0.126$ | PIF (India) | $=1.940$ | |
| GIF (Australia) | $=0.564$ | ESJI (KZ) | $=8.716$ | IBI (India) | $=4.260$ |
| | $=1.500$ | SJIF (Morocco) $=\mathbf{5 . 6 6 7}$ | OAJI (USA) | $=0.350$ | |

The Zeta-function
First it multiplies both parts by the second term:

$$
\frac{1}{2^{s}} \times \zeta(s)=\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\frac{1}{8^{s}}+\frac{1}{10^{s}}+\ldots
$$

Zeta function multiplied by $\frac{1}{2^{s}}$
It then subtracts the resulting expression from the Zeta function:

$$
\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
$$

The Zeta function minus $\frac{1}{2^{s}}$, multiplied by the

It repeats this process, further multiplying both sides by the third term

$$
\frac{1}{3^{s}} \times \zeta(s)\left(1-\frac{1}{2^{s}}\right)=\frac{1}{3^{s}}+\frac{1}{9^{s}}+\frac{1}{15^{s}}+\frac{1}{21^{s}}+\ldots
$$

Zeta function minus $\frac{1}{2^{s}}$ multiplied by Zeta function multiplied by $\frac{1}{3^{s}}$

And then subtracts the resulting expression from the Zeta function

Zeta-function

$$
\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{17^{s}}+\frac{1}{19^{s}}+\ldots
$$

Zeta function minus $\frac{1}{2^{s}}$ multiplied by Zeta function minus $\frac{1}{3^{s}}$ multiplied by Zeta function

$$
\ldots\left(1-\frac{1}{13^{s}}\right)\left(1-\frac{1}{11^{s}}\right)\left(1-\frac{1}{7^{s}}\right)\left(1-\frac{1}{5^{s}}\right)\left(1-\frac{1}{3^{s}}\right)\left(1-\frac{1}{2^{s}}\right) \zeta(s)=1
$$

1 minus all the value reverse to the ordinary numbers multiplied by the Zeta-function

If this process is familiar to you, it is because Euler essentially created a sieve very similar to the
sieve of Eratosthenes. It filters out non-Prime numbers from the Zeta function.

Then divide the expression into all its terms, which are the inverse of primes, and we get:

$$
\zeta(s)=\left(\frac{1}{1-\frac{1}{2^{s}}}\right) \times\left(\frac{1}{1-\frac{1}{3^{s}}}\right) \times\left(\frac{1}{1-\frac{1}{5^{s}}}\right) \times\left(\frac{1}{1-\frac{1}{7^{s}}}\right) \times\left(\frac{1}{1-\frac{1}{11^{s}}}\right) \times \ldots
$$

Functional relationship of the Zeta function with primes for the first primes $2,3,5,7$ and 11 .

Simplifying the expression, we showed the following:

$$
\sum_{n} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-p^{-s}}
$$

The Euler product formula is an equality showing the relationship between primes and the Zeta function

Substitute $\mathrm{s}=1$, and find an infinite harmonic series, re-proving the infinity of primes.

Conclusion

These algorithms make it possible to display the Zeta function function along the critical line (Pic. 28). The findings data can be investigated in further studies.

	ISRA (India)	$=4.971$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=0.829$	PИHL (Russia) $=\mathbf{0 . 1 2 6}$	PIF (India)	$=1.940$		
GIF (Australia)	$=0.564$	ESJI (KZ)	$=8.716$	IBI (India)	$=4.260$	
	$=1.500$	SJIF (Morocco) $=\mathbf{5 . 6 6 7}$	OAJI (USA)	$=0.350$		

Picture 1. Zeta function graph

Picture 2. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=0 \ldots 10$.

Picture 3. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=-10 \ldots 0$

	ISRA (India)	$=4.971$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=\mathbf{0 . 8 2 9}$	PИHL (Russia) $=\mathbf{0 . 1 2 6}$	PIF (India)	$=\mathbf{1 . 9 4 0}$		
	GIF (Australia)	$=0.564$	ESJI (KZ)	$=8.716$	IBI (India)	$=\mathbf{4 . 2 6 0}$
	JIF	$=1.500$	SJIF (Morocco) $=\mathbf{5 . 6 6 7}$	OAJI (USA)	$=\mathbf{0 . 3 5 0}$	

Picture 4. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=0 \ldots 100$

Picture 5. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=-100 \ldots 0$.

	ISRA (India)	$=4.971$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
Impact Factor:	ISI (Dubai, UAE) $=0.829$	PИHЦ (Russia) $=\mathbf{0 . 1 2 6}$	PIF (India)	$=1.940$		
	GIF (Australia)	$=0.564$	ESJI (KZ)	$=8.716$	IBI (India)	$=4.260$
	JIF	$=1.500$	SJIF (Morocco) $=\mathbf{5 . 6 6 7}$	OAJI (USA)	$=0.350$	

Picture 6. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=0 \ldots 200$

Picture 7. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=-200 \ldots 0$.

| ISRA $($ India) | $=4.971$ | SIS (USA) | $=0.912$ | ICV (Poland) |
| :--- | :--- | :--- | :--- | :--- |$=6.630$

Picture 8. Plot of $\zeta\left(\frac{1}{2}+t \cdot i\right)$ at $t=-100 . .100$.

References:

1. Artin, E. (1924). "Math. Z.". Bd 19, S. 153-246;
2. Weil, A. (1948). Sur les courbes algebriques et les varietes qui s'en deduisent. P.
3. Weil, A. (1949). "Bull. Amer. Math. Soc.". v. 55, № 5, pp. 497 - 508.
4. Deligne, P. (1974). "Publ. Math. IHES". t. 43, pp. 273-307.
5. (1968). Dix exposes sur la cohomologie des schemes, Arast.-P..
6. Dwork, B. (1963). Proceedings of the International Congress of Mathematicians. Djursholm, pp. 247-59.
7. Zhake, E., \& Lengpends, R. (1973). Avtomorfnye formy na GL (2), per. s angl., Moscow.
8. Manin, Yu. I. (1971). "Uspekhi matem. nauk". t. 26, v. 6, pp. 7-71.
9. (1973). Modular functions of one variable. V..
10. Serr, Zh.-P. (1965). "Uspekhi matem. nauk". t. 20, № 6, pp. 19-26.
11. Serr Zh.-P. (1971). "Matematika". t. 15, № 1, pp. 3-13.
12. Svinnerton-Dayer, P. (1969). "Matematika". t. 13, № 5, pp. 3-25.
13. Teyt, D. (1965). "Uspekhi matem. nauk". t.20,. № 6, p. 27-40.
14. Shafarevich, I. R. (1969). Dzeta-funktsiya, Moscow.
15. Shimura, G. (1973). Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsiy. per. s angl., Moscow.
16. Xonda, T. (1969). "Matematika". t. 13, № 6, pp. 3-17.
17. (1970). Itogi, nauki. Algebra. Topologiya. Geometriya. Moscow, pp.111-151.
18. Gordon, X. (2004). The Riemann Zeta-function _(s) : generalities P. Sebah.
19. Ossicini, A. (2013). An alternative form of the functional equation for Riemann's zeta function/Ossicini, arXiv:0709.4173.
20. Ossicini, A. (2013). An alternative form of the functional equation for Riemann's zeta function, II/ A. Ossicini, arXiv:1206.4494v16.

Impact Factor:	ISRA (India)	$=4.971$	SIS (USA)	$=0.912$	ICV (Poland)	$=6.630$
	ISI (Dubai, UAE	$=0.829$	РИНЦ (Russia	$=0.126$	PIF (India)	$=1.940$
	GIF (Australia)	$=0.564$	ESJI (KZ)	$=8.716$	IBI (India)	$=4.260$
	JIF	$=1.500$	SJIF (Morocco	= 5.667	OAJI (USA)	= 0.350

21. Rademacher, H. (1973). Topics in analytic number theory. (p.322). İ. : Springer Verlag New York Heidelberg Berlin.
22. Stenlund, H. (2011). Recursion Relations and Functional Equations for the Riemann Zeta Function. Moscow: Visilab Signal Technologies Oy, Finland, arXiv:1107.3479v3.
