
Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  554 

 

 

QR – Issue                    QR – Article 

SOI:  1.1/TAS     DOI: 10.15863/TAS 

International Scientific Journal 

Theoretical & Applied Science 
 

p-ISSN: 2308-4944 (print)       e-ISSN: 2409-0085 (online) 
 

Year: 2019          Issue: 11      Volume: 79 

 

Published:  30.11.2019        http://T-Science.org  
 

 

Ravshan Indiaminov 

Samarkand branch of Tashkent University of Information Technologies 

doctor of physical and mathematical sciences, professor   

Samarkand, Uzbekistan 

r_indiaminov@mail.ru  

 

Sokhibjon Rustamov 

Navoi state mining institute 

assistant of the department of higher mathematics and computer technology  

Samarkand, Uzbekistan  

samrux@umail.uz  

 

 

AXISYMMETRIC MAGNETOELASTIC SHELLS DEFORMATION 

WITH ACCOUNT FOR ANISOTROPY OF CONDUCTIVE PROPERTIES 

 

Abstract: The effect of account for external magnetic field when determining the stress-strain state of current-
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Introduction 

In the mechanics of conjugate fields, an 

important place is occupied by the study of a 

continuous medium motion taking into account 

electromagnetic effects. Studies in the mechanics of 

coupled fields in deformable bodies have fundamental 

and applied nature, which makes them especially 

relevant. These issues were studied in 

[1,2,3,5,7,8,11,17,18,21,22,23, 24,25]. In modern 

technology, structural materials are used that are 

anisotropic in the undeformed state, and the 

anisotropy of the properties of such materials arises as 

a result of application of various technological 

processes. The nature of the shell material anisotropy 

is not determined entirely by its behavior as an elastic 

body and the anisotropy of the material can manifest 

itself in relation to its other physical properties, for 

example magnetic and dielectric permeability and 

electrical conductivity. Some of the most important 

anisotropic materials have a crystalline structure. The 

most characteristic feature of crystals physical 

properties is their anisotropy and symmetry. Due to 

the periodicity, regularity, and symmetry of internal 

structure, a number of properties are discovered in 

crystals that are impossible to find in isotropic bodies. 

The anisotropic physical properties of crystals are 

extremely sensitive to external influences. Therefore, 

selecting and combining these effects, we may create 

the materials with unique, unusual properties that are 

used in modern technology.  

Problems interaction between electro-magnetic 

field and deformed bodies are frequent in advanced 

technology. 

I. MATERIAL RELATIONS. BASIC 

EQUATIONS. By an electromagnetic field we mean 

a combination of four vectors: - electric field 

strength; - magnetic field strength;  - electric 

induction;  - magnetic induction. These vectors are 

assumed to be continuous ones together with their first 
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derivatives, functions of coordinates and time at all 

non-singular points. Discontinuities in field vectors or 

their derivatives can occur on surfaces at a sharp 

change in physical properties of the medium (density, 

conductivity, and others). Sources of electromagnetic 

field are electric charges, characterized by charge 

density , and the currents, which are given by the 

current density vector . In differential form, the 

laws of electromagnetism are written as 

, , , 

 .         (1) 

In material media, under external 

electromagnetic field, polarization and magnetization 

processes occur. The nature of the functional 

relationships between the vectors 𝐸⃗ and 𝐷⃗⃗ , as well as 

the vectors 𝐻⃗⃗ and 𝐵⃗ , should be determined only by 

physical properties of the medium itself in the 

immediate vicinity of this point [1,4,6,11,19,20,24]. If 

an elastic body is in vacuum, then for vacuum the 

determining relations should be fulfilled 

, .   (2) 

Here are the electric and magnetic 

constants. In vacuum, equations (1) are satisfied under 

the assumption that . In system SI, the 

numerical values of  and  are equal to:  

𝜀0 = 8,854 ⋅ 10−12 ≈
1

𝜋
⋅ 10−9𝐹/𝑚 , ,  

𝜇0 = 4𝜋 ⋅ 10−7 = 1,257 ⋅ 10−6𝐻/𝑚 .  
Here 𝑐2 = 1/𝜀0𝜇0,  is the speed of light in 

vacuum. 

For an isotropic medium  is parallel to  

and not to .  

Usually for isotropic elastic bodies, the 

relationship between these vectors is linear: 

     ; ,              (3) 

where  and ;  - are the 

dimensionless coefficients of relative dielectric and 

magnetic permeability of the medium. In anisotropic 

media, the properties in different directions are 

different, and 𝐷 ⃗⃗  ⃗may depend not only on 𝐸⃗ . For 

example, in piezoelectricity, the vector of electric 

induction is a function of the vector of electric field 

strength 𝐸⃗  and the tensor of mechanical deformation. 

Media with magnetic properties are called 

magnets. When introduced into an external magnetic 

field, all bodies are magnetized to one degree or 

another, that is, they create their own magnetic field, 

which is superimposed on the external field. By their 

magnetic properties, the magnets are divided into 

three main groups: ferromagnets, diamagnets and 

paramagnets. 

The paramagnetism of metals is due to the 

magnetic moments of conduction electrons and crystal 

lattice ions. In alkali and alkaline earth metals, the 

magnetic moments of ions are zero, and 

paramagnetism is associated only with conduction 

electrons. In diamagnetic and paramagnetic media, the 

relationship between and   is represented by 

formula (3), with a high degree of accuracy . 

Strictly speaking, in stating the relation between 𝐷⃗⃗ =

𝐷⃗⃗ (𝐸⃗ ) and  it is necessary to use the 

analysis of atomic structure of matter, since only 

microscopic theory can make it possible to calculate 

the average field inside the body, and the local values 

of this field in the vicinity of individual atoms. 

Microscopic theory makes it possible to answer the 

question of how an atom will be deformed under the 

influence of a local field, and the total effect of atomic 

deformation is described using parameters   and   

(their tensor or vector analogues). In order to make the 

system of Maxwell equations (1) closed, it is 

necessary to add to two equations (3) the third one - 

the ratio between the density of electric current and 

electric field. From experimental data it is known that 

both for solids and for weakly ionized solutions 

                                 ,                                  (4) 

where  is the specific electrical conductivity of the 

medium. Equation (4) is usually called Ohm's Law in 

differential form.  

The proportionality coefficient between vectors 

𝑗  and 𝐸 ⃗⃗  ⃗in equation (4) - specific conductivity𝜎 - is an 

important characteristic of the medium. In isotropic 

media in the absence of an external constant magnetic 

field, 𝜎 is the scalar quantity. Its value depends on 

temperature: with increasing temperature, specific 

conductivity decreases. Media can vary greatly in 

terms of conductivity, so their behavior in 

electromagnetic fields can also be completely 

different.  

In many anisotropic media, the parameter 𝜎 is a 

tensor of the second rank [4,11,20,24]: 

=
ji

 (

𝜎11 𝜎12  𝜎13

𝜎21 𝜎22  𝜎23

𝜎31 𝜎32 𝜎33

) 

In this case, the conduction current density and 

electric field strength in the general case do not 

coincide in direction. The greater the value of 𝜎, the 

greater the conduction current density in the medium 

at the same electric field strength.  

At low temperatures, many materials become 

ideal conductors in which .  

In this case, the current in the closed ring can 

retain its value indefinitely. To change the current, an 

electric field must be applied. Consider a body that 

moves in an external magnetic field at velocity .  

In accordance with Newton’s first Law, a 

material point maintains a state of rest or uniform 
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rectilinear motion until action from other bodies takes 

it out of this state.  

The reference frame, with respect to which a 

material point free from external influences is at rest 

or moves uniformly and rectilinearly, is called the 

inertial reference frame.  

It is known that the Maxwell equations are 

invariant under the Lorentz transforms. The formulas 

of the Lorentz transforms for vectors  and 

 of electromagnetic field during the transition 

from a stationary inertial reference system  to 

another inertial reference system  moving relative 

to uniformly and rectilinearly, along, for example, 

the positive direction of the  axis with velocity 

, have the following form in SI: 

, , 

, 

, , 

,              (5)           

, , 

, ,  

, . 

Here  is the velocity of excitation propagation 

in matter. The inverse transform from  to  is 

obtained from given above replacement of all non-

shaded quantities by shaded ones and all shaded 

quantities by non-shaded ones, and replacing 

everywhere the values of  by . As seen from the 

Lorentz transforms for the electromagnetic field, 

similar electromagnetic fields behave differently in 

inertial reference frames moving relative to each 

other. 

In particular, if in the frame of reference  

there is only an electric field , and 

, then in the frame of reference  both electric and 

magnetic fields will be observed, the vectors  and 

  of which are mutually perpendicular: 

, , ,    (6)                  

, , . 

On the contrary, if there is no electric field in the 

frame of reference , but only a magnetic field

, then in  again magnetic and electric 

fields will be observed, the vectors  and  of 

which are mutually perpendicular: 

, , , 

, , .  

It follows from the Lorentz transforms that the 

scalar products of vectors  and , and  and 

 are invariant with respect to the selection of 

inertial frame of reference :   and  

. 

Equations are also invariant:  

 

and . 

Introduce a moving inertial reference frame in 

which the body is stationary. Then, in the moving 

reference frame, the Maxwell equations (1) with 

respect to the shaded quantities are executed 

, , 

,        (7) 

and material relations 

   , , .          (8) 

In equations (7), the strokes can be omitted 

owing to the invariance of the Lorentz transforms, but 

it must be borne in mind that the material relations (8) 

in the moving coordinate system are transformed in 

accordance with (5). Next, consider the medium 

motion at low velocities . In this case, the 

relations are executed 

,  

, ,   (9) 

, .  

If to substitute (9) in (8) and neglect the 

quantities of order, the relations are obtained 

in the form 
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, 

 ,        (10) 

, 

representing material relations between field vectors 

in a moving coordinate system through field values in 

a fixed system.  

For many problems of magnetoelasticity, it can 

be assumed that in the medium , . If 

the medium is a dia- or paramagnet, then . 

This suggests that for the considered materials 

the relative magnetic and dielectric permittivity 

coefficients  and  can be considered equal to 

unity in a wide range of changes in magnetic 

induction. In this case, relations (10) have the form 

; ; .   (11) 

The material relationships of the 

electrodynamics of anisotropic conductive media can 

be written as 

,jjii ED = 𝐵𝑖 = 𝜇𝑖𝑗𝐻𝑗 , 

𝐽𝑖 = 𝜎𝑖𝑗𝐸𝑗 ,  (𝑖, 𝑗 = 1,2,3)                 (12) 

Expressions (7) and (11) present a system of 

equations of electromagnetism for a moving 

homogeneous isotropic medium, and expressions (7) 

and (12) present a system of equations of 

electromagnetism for a moving anisotropic medium 

[1,4,7,11,20,24]. These equations hold for points in 

the vicinity of which physical properties of the 

medium change continuously. 

 

II. PROBLEM FORMULATION. 

Consider the nonlinear behavior of an 

orthotropic current-carrying conical shell of variable 

thickness ℎ = 5 ⋅ 10−4(1 − 0.5
𝑠

𝑠𝑁
) m. It is believed 

that the beryllium shell is influenced by mechanical 

force𝑃𝜁 = 5 ⋅ 103 𝑠𝑖𝑛   𝜔 𝑡  𝑁 𝑚2⁄ , of an external 

electric current 𝐽𝜃𝐶𝑇 = 5 ⋅ 105 𝑠𝑖𝑛 𝜔 𝑡  𝐴 𝑚2⁄  ,and an 

external magnetic field 𝐵𝑆0 = 0.1𝑇𝑙. 
The electromagnetic properties of the material 

are characterized by tensors of electrical 

conductivity𝜎𝑖𝑗, magnetic permeability𝜇𝑖𝑗, and 

dielectric constant𝜀𝑖𝑗 

An external electric current in an unperturbed 

state is uniformly distributed over the shell, i.e. the 

density of external current does not depend on the 

coordinates. 

In this case, combined load consisting of the 

ponderomotive Lorentz force and mechanical force 

acts on the shell.  

Suppose that the geometric and mechanical 

characteristics of the body are such that a version of 

geometrically nonlinear theory of thin shells in the 

quadratic approximation is applicable to describe the 

deformation process. 

Assume that the electromagnetic hypotheses are 

fulfilled with respect to the electric field 𝐸⃗ and 

magnetic field 𝐻⃗⃗  [1,3].  

These assumptions are some electrodynamic 

analogues of the hypothesis of undeformable normals 

and, together with the latter, make the hypotheses of 

magnetoelasticity of thin bodies. 

Acceptance of these hypotheses allows reducing 

the problem of a three-dimensional body deformation 

to the problem of a coordinate surface deformation 

chosen arbitrarily.  

The complete system of nonlinear differential 

equations of magnetoelasticity in the Cauchy form is 

taken as in [8,10,11,13,15,16,17].  

 

III. METHODOLOGY OF THE SOLUTION 

The technique for solving the magnetoelasticity 

problem of a truncated orthotropic spherical shell of 

variable thickness in an axisymmetric statement is 

based on the consistent use of the quasilinarization 

method and the discrete orthogonalization method 

[2,3,4, 8,10,11,13,19].  

To separate the variables by the time coordinate, 

the implicit Newmark scheme of integration of the 

magnetoelasticity equations is used [19].  

The next step in solving the nonlinear boundary 

value problem of magnetoelasticity is based on the 

application of the quasilinearization method, with the 

help of which the nonlinear boundary value problem 

is reduced to solving a sequence of linear boundary 

value problems at each time step.  

Next, each of the linear boundary value problems 

of the sequence on the corresponding time interval is 

numerically solved using the stable method of discrete 

orthogonalization. 

 

IV. ANALYSIS OF THE RESULTS 

An orthotropic shell behavior is studied 

depending on the change in the external normal 

component of magnetic induction𝐵𝜁0. The problem 

for an orthotropic cone made of beryllium of variable 

thickness ℎ = 5 ⋅ 10−4(1 − 0.5𝑠/𝑠𝑁) m is calculated 

under normal component of magnetic induction𝐵𝜁0, 

which changes as follows (8 options): 

𝐵𝜁0 =

(−0.3, −1.0, −2.0, −3.0, −4.0, −5.0, −6.0, −7.0 )
Boundary conditions:  

𝑢 = 0,  𝑤 = 0,  𝑀𝑆 = 0,  
𝐵𝜁 = 𝐵𝜁0 𝑠𝑖𝑛 𝜔  𝑡  (hinged) at 𝑠 = 𝑠0  = 0, 

𝑤 = 0,  𝜃𝑆 = 0, 𝑁𝑆 = 0,  
𝐵𝜁 = 0 (sliding)  at   𝑠 = 𝑠𝑁 = 0.5м . 

The parameters of the shell and the material are: 

𝑠0 = 0,𝑠𝑁 = 0,5𝑚, ℎ = 5 ⋅ 10−4(1 − 0.5𝑠/𝑠𝑁) 

m, ;cos0 srr += 𝑟0 = 0.5𝑚,𝜌 = 2300 𝑘𝑔/𝑚3, 

,sec16.314 1−= 𝐵𝑠
+ = 𝐵𝑠

− = 0.1𝑇, 𝜙 = 𝜋
30⁄ , 𝜇 =

( )=  +  −   0 0D E V H

( )=  −  −   0 0B H V E

( )=  +  + eJ E V B V
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1.256 ⋅ 10−6𝐻/𝑚,𝐵𝑆0 = 0.1𝑇, 𝜈𝑆 = 0.03
,09.0=

𝐽𝜃𝑐𝑚 = −5 ⋅ 105 𝑠𝑖𝑛 𝜔𝑡 𝐴/𝑚2, 
𝜎1 = 0.279 ⋅ 108(𝛺 × 𝑚)−1,𝜎2 = 0.321 ⋅

108(𝛺 × 𝑚)−1, 

𝜎3 = 1.136 ⋅ 108(𝛺 × 𝑚)−1, 𝑒𝑆 = 28.8 ⋅

1010𝑁/𝑚2,  ,/1053.33 210 mNe = 𝑃𝜁 = 5 ⋅

103 𝑠𝑖𝑛   𝜔𝑡 𝑁/𝑚2. 

The solution is found in the time interval 𝜏 =
0 ÷ 10−2𝑠𝑒𝑐 for the integration time step is chosen to 

be 𝛥𝑡 = 1 ⋅ 10−3𝑠𝑒𝑐. Maximum values obtained at 

time step𝑡 = 5 ⋅ 10−3𝑠𝑒𝑐. Note that in the case under 

consideration, the anisotropy of electrical resistivity 

of beryllium is 
𝜂3

𝜂1
⁄ = 4.07.  

Figure 1 shows the change in internal magnetic 

induction of a shell depending on the change in 

external magnetic induction at 𝑡 = 5 ⋅ 10−3𝑠 and 𝑠 =
0.45 𝑚 for all variations of 𝐵𝜁𝑂 . As follows from the 

figure, the internal magnetic induction of a shell 

substantially depends on the external magnetic 

induction. In the considered range of changes in 

external magnetic induction, the internal magnetic 

induction reaches its maximum value at 𝐵𝜁𝑂 = −4.0. 

 

 

 

 

Fig. 1. Change in internal magnetic induction of a shell depending on the change in external magnetic 

induction at 𝒕 = 𝟓 ⋅ 𝟏𝟎−𝟑𝒔 and 𝒔 = 𝟎. 𝟒𝟓 𝒎  for all variations of 𝑩𝜻𝟎. 

 

It was revealed that with an increase in external 

magnetic induction, the stresses on the outer surface 

of a shell vary depending on the change in the 

ponderomotive Lorentz force direction and the 

interaction with mechanical load. In the considered 

case, the stress on the outer surface of a shell reaches 

its maximum value at 𝐵𝜁𝑂 = −4.0. As the value of 

external magnetic induction increases, the stress along 

the inner surface of a shell increases too. 

 

V. CONCLUSION  

The coupled problem of magnetoelasticity for a 

flexible anisotropic shell is discussed in the paper 

taking into account the anisotropy of conductive 

properties. The results of numerical example are 

presented.  

The analysis of the stress state of a flexible shell 

under time-varying mechanical force and time-

varying external electric current is fulfilled taking into 

account mechanical and electromagnetic orthotropy. 

The effect of external magnetic induction on the stress 

state of an orthotropic shell in a geometrically 

nonlinear statement is analyzed. It was found that with 

an increase in external magnetic field induction, the 

induction of internal magnetic field increases too. 
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