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ABSTRACT 
Population growth has contributed to increasing poultry production, entailing a high waste 

loading, mainly poultry litter. One of the alternatives to treat such residues is anaerobic 

digestion, in which digester startup and generated-digestate quality are related to the material 

to be digested and to operation conditions, wherein inoculum use is one of the factors. This 

study therefore aimed to investigate how digestates, such as inocula, influence poultry litter 

(PL) anaerobic digestion, as well the reduction of solids and chemical oxygen demand (COD). 

For this, two inocula (bovine and swine digestates) were tested in the digestion process. The 

inocula were added at loads of 0.67, 1.00 and 1.67 gVS.L-1day-1. A split-plot design was 

developed and data underwent analysis of variance with means compared by the Tukey's test at 

5% significance. Concerning bovine and swine inocula, it was concluded that both are indicated 

in the process. However, swine inoculum is better indicated because it had a better removal of 

total solids (TS), volatile solids (VS) and COD. 

Keywords: biodegradability, bovine inoculum, poultry waste, swine inoculum. 

Remoção de sólidos e da demanda química de oxigênio na biodigestão 

anaerobia da cama de aviário com diferentes inóculos 

RESUMO 
O crescimento populacional contribuiu para o aumento da produção avícola, o que implica 

na geração de resíduo de cama de aviário. Uma das alternativas para tratar esses resíduos é a 

digestão anaeróbia, na qual a partida do digestor e a qualidade do digestato gerado estão 

relacionadas ao material a ser digerido e às condições de operação, nas quais o uso do inóculo 

é um dos fatores. Portanto, este estudo teve como objetivo investigar como os inóculos 

influenciam na digestão anaeróbia da cama de aves, bem como na redução de sólidos e da 

demanda química de oxigênio (DQO). Para isso, foram testados dois inóculos (bovinos e 

suínos) no processo de digestão, com cargas de alimentação diárias de 0.67; 1.00 e                                  
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1.67 gSV L-1 dia-1. Para a análise estatística foi considerado o delineamento em parcelas 

subdivididas e os dados foram submetidos à análise de variância com as médias comparadas 

pelo teste de Tukey com 5% de significância. Em relação aos inóculos de bovinos e suínos, 

concluiu-se que ambos são indicados ao processo. No entanto, o inóculo suíno é mais indicado 

porque teve uma melhor remoção de sólidos totais (TS) e DQO. 

Palavras-chave: biodegradabilidade, inóculo bovino, inóculo suíno, resíduo de aviário. 

1. INTRODUCTION 

The United States of America, Brazil, and China were responsible for the greatest 

production of poultry meat worldwide in 2017. Among them, Brazil reached a production of 

13.3 million tons, with the largest values achieved by the states of Paraná, Santa Catarina and 

Rio Grande do Sul (ABPA, 2018). 

Within this background, the broiler industry is responsible for a large consumption of 

natural resources and, consequently, waste generation, including chicken litter, within an 

average value of 1,262 kg/(bird year). This value depends on substrate type, season, number of 

flocks, cycle length and bird density (Rinaldi et al., 2012; Migliavacca and Yanagihara, 2017). 

Improper disposal of waste may engender large-scale contaminations of land, water, and 

air (Scherhaufer et al., 2018). Because of this, environmental problems have intensified recently 

, raising the need for alternatives to minimize impacts and to add value to generated wastes. As 

the poultry industry has expanded, in addition to producing large quantities of meat, waste 

production has also increased proportionately (Silveira et al., 2014). 

Anaerobic treatment of agricultural waste is not only an alternative for energy recovery 

but also for pollution mitigation (Alice et al., 2014). This technique is well established for 

renewable energy production and includes waste treatment as an additional benefit. 

Although anaerobic digestion has proven to be a good tool for degrading several pollutants 

and organic wastes, it is a complex process and requires monitoring of pH, alkalinity, 

temperature, volatile fatty acids, organic load, hydraulic retention times, biogas composition, 

etc. (Mao et al., 2015; Amaral et al., 2014). 

Sanchez Rubal et al. (2012) determined the influence of temperature, stirring, sludge 

concentration, and solid retention time (SRT) on biodegradable organic matter acquisition 

during primary fermentation, clarifying each operational parameter effect on hydrolysis. 

In addition to biogas production, Orrico Junior et al. (2010) evaluated potential production 

and quality of biofertilizers derived from anaerobic digestion of pre-composted poultry litter 

and carcasses. These authors reported sharp reductions in VS contents, on average 44.05%, 

showing that the process is effective in degrading resistant compounds, such as bird litter.  

Recent studies have prospected growth medium for microalgae using effluents from 

poultry litter anaerobic digestion (Singh et al., 2011). Moreover, digestates, widely used as 

biofertilizers, can also be employed as inoculum in anaerobic digestion, playing a balancing 

role on microorganism populations at the beginning of this process (Shah et al., 2014). 

Onofre et al. (2015) have tested the biofertilizer from previous poultry litter anaerobic 

processes as inoculum, in order to minimize the start of the treatment.  

Cattle, poultry, and swine biofertilizers may serve as inocula, mainly for difficult to digest 

materials, because of the high contents of cellulose and lignin, as seen in poultry litter. Costa et 

al. (2012) investigated such issues and observed that biological co-treatment and 

thermochemical pretreatments improved poultry litter hydrolysis but led to an accumulation of 

metabolites, inhibiting methanogenesis.  

The inoculum source can affect the amount of biogas produced in anaerobic digestion as 

well as influence the process speed (Swiatczak et al., 2017). Furthermore, several dynamic and 

microbial factors contribute to the efficiency of organic waste treatment.  
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It is worthy to note that different inocula lead to different biogas production, with 

significant effect of the inoculum on the Biochemical Methane Potential (BMP) (Vrieze et al., 

2015). Another paper (Rico et al., 2017) shows the influences of inocula on the anaerobic 

digestion of pig slurry in UASB reactor.  

Therefore, this technology must be optimized to reach maximum benefits (Gyenge et al., 

2014). Understanding the microbial community and its role in the process is critical to the 

process control (Shen and Zhu, 2016). 

Given this background, this study tested two types of inocula, bovine and swine, in the 

anaerobic digestion of poultry litter, quantifying reductions of solids and COD. 

2. MATERIAL AND METHODS 

2.1. Substrate and Inocula 

The substrate consisted of poultry litter gathered from a farm in the city of Quatro Pontes 

- PR, Brazil. Table 1 shows the characterization of the material with values of hydrogenation 

potential (pH), total solids (TS), fixed solids (FS), volatile solids (VS), moisture, N and 

chemical oxygen demand (COD). Prior to biodigestion, residue underwent a pre-treating 

process with 8 mm mesh sieving to increase its contact surface and facilitate anaerobic 

digestion.  

Table 1. Poultry litter and inocula physicochemical characterization. 

Material pH TS (%) FS (%) VS (%) 
Moisture 

(%) 
N (%) COD (mg.L-1) 

Poultry litter 
7.90 

(±0.00) 
85.00 (±1.10) 

36.00 

(±1.00) 

79.00 

(±1.00) 
12.30 (±0.3) 

1.8 

(±0.1) 

7306.36 

(±50.0) 

Inocula 

Bovine 

7.34 

(±0.01) 
5.44 (±0.05) 2.65 (±0.03) 2.79 (±0.02) - - - 

Inocula 

Swine 

7.65 

(±0.00) 
2.46 (±0.02) 1.78 (±0.03) 0.68 (±0.05) - - - 

As inoculum (IN), two types of fresh material were used: bovine (B) and swine (S), both 

collected from field biodigesters and kept at room temperature for characterization. The 

previous table shows the physicochemical characterization of both inocula. 

2.2. Poultry litter digestion  

The trial was carried out at the Laboratory of Bioreactors of the Research Group on Water 

Resources and Environmental Sanitation of the Western Paraná State University. 

Two biodigesters built in polyvinyl chloride (0.60 x 0.10 m) were operated. The equipment 

had an inlet port and a digestate outlet arranged horizontally, with 4 L useful volume, as shown 

in Figure 1. 

 
Figure 1. Experimental module. 
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The two biodigesters were inoculated with 30% of their useful volume and 70% with a 

mixture of water and chicken litter at a ratio of 50 grams of litter for each mixture liter. Twenty-

four hours after inoculation, removal of oxygen traces was completed and daily feeding was 

started, in a semi-continuous flow model, applying loads of 0.67 (L1), 1.00 (L2) and 1.67 (L3) 

gVS.L-1.day-1, at a concentration of 2% volatile solids. These loads were defined according to 

previous work (Alcantara et al., 2016). 

The operating times for each load were 74, 69, and 66 days, respectively, including 

stabilization time, monitored by the ratios VA/TA (Volatile Acidity/Total Alkalinity) and 

IA/PA (Intermediate Alkalinity/Partial Alkalinity). The temperature was room temperature, 

daily monitored.  

The volume of biogas and methane produced was measured with a Mariotte device filled 

with sodium hydroxide (NaOH) solution to dissolve carbon dioxide (CO2) (Bertin et al., 2004; 

Buitrón and Carvajal, 2010; Scoma et al., 2013). However, these results are shown and 

discussed in another paper. 

2.3. Monitoring pH, Ammoniacal Nitrogen and Ratios VA/TA and IA/PA 

The pH was determined using a benchtop pH meter (Model 3MP) and ammonia nitrogen 

concentration was monitored following the 4500-NH3 titration method (APHA, 1998). 

The values for the ratios VA/TA and IA/PA were measured through titration, observing 

the threshold values reported by Méndes-Acosta et al. (2010) and Ripley et al. (1986).  

The total alkalinity in anaerobic systems is determined by titration of the sample to pH 

4.30, measuring the buffer capacity due to bicarbonate and volatile acids, defined by Ripley et 

al. (1986) as partial alkalinity (PA) and intermediate alkalinity (IA) respectively. 

Ripley et al. (1986) established that the ratio IA/PA with values greater than 0.30 indicates 

the occurrence of disturbances in the process of anaerobic digestion. 

According to Méndez-Acosta et al. (2010), the VA/TA ratio should be between 0.10 and 

0.35, to assure the stability of anaerobic digestion. 

2.4. Removal of solids, COD Removal and characterization of digestate and sludge 

Measurements of TS, FS, and VS were performed based on method 2540 of APHA (2005). 

In this case, COD quantification was made following method 5220D of APHA (2005). For 

soluble COD, samples were filtered, using the blank test prepared with distilled water.  

To determine the micro (Zn, Fe, Cu and Mn) and macronutrients (K, N, Mg, Na, Ca) of 

the digestate, a nitro-perchloric digestion (3:1) of the samples was performed and an aliquot 

was taken for reading with atomic absorption equipment. 

2.5. Statistics 

Statistical analyses were performed following a split-plot design, wherein inoculum factor 

was the main plot (with two levels: B and S). The secondary plot consisted of feeding load 

factor (with three levels: L1, L2, and L3). The analyses were performed using SISVAR software 

v. 5.3 (Ferreira, 2010). As response variables, both ratios VA/TA and IA/PA were considered, 

as well as removal rates of total solids, total volatile solids, total fixed solids, COD total and                     

COD soluble. 

Data presenting normality by the Kolmogorov-Smirnov's test and homoscedasticity by the 

Bartlett or Levene's test had the variances submitted to analysis of variance, at 5% significance. 

Tukey's test was used for mean comparison at a 5% significance level. 

3. RESULTS AND DISCUSSION  

3.1. Stability through pH, ammonia N, IA/PA ratio e VA/TA ratio 

With respect to pH, biodigesters remained stable for all treatments, with values near 
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neutrality, as shown in Figure 2A. The highest mean values of pH occurred at loads of 1.00 and 

1.67 gVS.L-1.day-1, for bovine and swine inocula, respectively.  

These results corroborate the findings of Onofre et al. (2015), who evaluated the pH of the 

biofertilizer from poultry litter and pointed out that the pH ranged from 6.6 to 8.0, and 

determined that the anaerobic digestion process was suited.   

Although no variations in pH were observed, the presence of ammonia was also monitored 

throughout the process, and the highest concentration of ammonia (280.51 mg L-1) occurred 

with a load of 1.67 gVS. L-1 day-1 swine inoculum. According to Chen et al. (2008), ammonia 

concentrations greater than 1000 mg.L-1 were harmful to the process. Since the presented value 

is below the concentration threshold reported in the literature, it was concluded that there was 

no effect of ammonia on anaerobic digestion. 

 
Figure 2. Monitoring of the pH, IA/PA ratio and the VA/TA ratio. 

It should be pointed out that the temporal scale shown in Figure 2A is different from the 

scales of the other figures because the pH monitoring was registered daily, a fact that did not 

occur with the monitoring of the ratios VA/TA and IA/PA, solids and COD removals (Figure 

2B and 2C). 

According to Chernicharo (2007), the monitoring of the partial or bicarbonate alkalinity is 

more useful than the pH monitoring due to scales characteristics: while the pH scale is 

logarithmic, the scale for alkalinity is linear.  It is fundamental to maintain a low concentration 

of volatile fatty acids and pH in the interval 6.6 to 7.4 (Lahav and Morgan, 2004). 
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The main buffer in anaerobic digesters is the ion bicarbonate, at pH from 5.3 to 7.3,   

expressed in mg of CaCO3 L
-1, varying with the waste type (Lahav and Morgan, 2004).   

According to Ripley et al. (1986), IA/PA values greater than 0.30 may indicate instability 

problems in digestion. Here, it was observed that IA/PA values for a load of 0.67 gVS.L-1.day-

1 exceeded 0.30; however, decreasing over time and remaining stable for the other applied 

loads. 

Figure 2B denotes that the highest mean values of IA/PA were observed for loads of 1.67 

and 0.67 gVS.L-1.day-1, respectively for bovine and swine inocula; however, these values are 

still below the recommendation of Ripley et al. (1986). 

Martín-Gonzalez et al. (2013) asserted a possible process stability for values different from 

0.3 due to variations in the characteristics of each effluent.  

Values for the ratio VA/TA were similar for both inocula, presenting slightly higher values 

in a load of 0.67 gVS.L-1.day-1, as seen in Figure 2C, ranging from 0.252 to 0.228 for bovine 

and swine inocula, respectively.  

Table 2 shows the statistical breakdown of VA/TA ratio means. It can be observed that, by 

fixing the load factor and evaluating its variation in all inoculum levels, a significant difference 

occurred between loads. The highest values occurred for the loads of 0.67 and 1.67 gVS.L-

1.day-1, considered statistically equal for bovine inoculum. By fixing the inoculum factor, there 

was no statistically significant difference between loading levels. 

Table 2. Statistical breakdown of the means of VA/TA ratio as function of inoculum 

and load. 

Inoculum 
VA/TA 

L1– 0.67 gVS.L-1.day-1 L2 – 1.00 gVS.L-1.day-1 L3 – 1.67 gVS.L-1.day-1 

Bovine 0.2523(±0.09) Aa 0.1186(±0.02) Ab 0.1865(±0.04) Aa 

Swine 0.2286(±0.08) Aa 0.1286(±0.02) Ac 0.1749(±0.04) Ab 

Means followed by the same uppercase letters within columns (inoculum) and lower 

case within lines (loads) do not differ from each other by the Tukey's test at 5% 

significance. 

The greatest stability time was observed for a load of 1.00 gVS.L-1.day-1; however, at 0.67 

gVS.L-1.day-1, the highest means were reached. Nevertheless, these values are within the 

optimum range for operating levels. The results corroborate those of Kuczman et al. (2011), 

who evaluated biogas production from cassava wastewater with increasing organic loads and 

feeding volumes. The microbial adaptation was analyzed by monitoring VA/TA ratio, which 

remained within a range between 0.14 and 0.30. 

It is important to note that the operational conditions of the process affect the response of 

the indicators (Li et al., 2014), indicating the unbalance between acid production and 

consumption and warning about a possible digestion failure. 

The temperature mean values were from 16°C to 25°C and values below 20°C occurred 

only for a load of 1.00 gVS. L-1 day-1, caused by climatic interference. From the mean and 

standard deviation, the variation in load was 2.1°C and, as reported by Deublein and Steinhauser 

(2011), methanogenic Archaea are able to change rapidly ideally but the temperature should 

not vary abruptly by ± 2°C. 

3.2. Removal of TS and VS 

The highest means of TS removal were related to the load 0.67 gVS.L-1.day-1, with swine 

inoculum (59.46%), as shown in Figure 3A. 

In addition, bovine inoculum promoted increase in TS removal as loads were raised, with 

the highest value at the load of 1.67 gVS.L-1.day-1 (57.36%). 
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Figure 3. Monitoring of total solid removal and of total 

volatile solid removal. 

Table 3 displays the statistical breakdown of the means for TS removal. It is shown that 

by fixing load factor there was a significant difference as inoculum level increased, with the 

removal by bovine inoculum statistically equal for 0.67 and 1.00 gVS.L-1.day-1. The greatest 

value was observed for 1.67 gVS.L-1.day-1 (57.36%). Yet for swine inoculum, loads of 0.67 and 

1.00 gVS.L-1.day-1 were statistically similar to each other. On the other hand, loads of 0.67 and 

1.67 gVS.L-1.day-1 differed from each other at 5% significance, with the largest removal 

observed for 0.67 gVS.L-1.day-1 (59.46%). 

By fixing the inoculum factor, and assessing it according to the loads, there was a 

significant difference between both inocula at 0.67 gVS.L-1.day-1, being the greatest TS removal 

for the swine one (59.46%). 

Table 3. Tukey’s test for means of TS removal at 5% significance. 

Inoculum 
TS removal (%) 

L1 – 0.67 gVS.L-1.day-1 L2 – 1.00 gVS.L-1.day-1 L3 – 1.67 gVS.L-1.day-1 

Bovine 44.66(±10.51) Aa 47.65(±6.02) Ba 57.36(±6.39) Bb 

Swine 59.46(±14.34) Bb 48.30(±4.41) Bba 52.57(±8.60) Ba 

Means followed by the same uppercase letters within columns (inoculum) and lower 

case within lines (loads) do not differ from each other by the Tukey's test at 5% 

significance. 

The highest VS removal values referred to a load of 1.67 gVS.L-1.day-1 using bovine 

inoculum, as shown in Figure 3B. Additionally, there was an increase in VS removal as loads 

increased, with bovine inoculum, being the greatest mean for a load of 1.67 gVS.L-1.day-1 

(78.21%). 

Table 4 displays the statistical breakdown of the means for VS removal. It is shown that 

by fixing load factor there was significant difference as inoculum level increased, with the 

greatest removal for bovine inoculum at a load of 1.67 gVS.L-1.day-1 (78.21%). Regarding 

swine inoculum, loads of 0.67 and 1.00 gVS.L-1.day-1 are statistically equal, as well as 0.67 and 

1.67 gVS.L-1.day-1. Conversely, loads of 1.00 and 1.67 gVS.L-1.day-1 differed at the 5% 

significance from each other, with the greatest removal for swine inoculum at a load of                      
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1.67 gVS.L-1.day-1 (71.71%). 

By fixing the inoculum factor and assessing it according to the loads, there was a 

significant difference between both inocula at 0.67 and 1.67 gVS.L-1.day-1. The greatest VS 

removal was found for swine inoculum at 0.67 gVS.L-1.day-1 (67.85%), and for bovine one at 

1.67 gVS.L-1.day-1 (78.21%). 

Table 4. Tukey’s test for means of VS removal at 5% significance. 

Inoculum 
VS removal (%) 

L1 – 0.67 gVS.L-1.day-1 L2 – 1.00 gVS.L-1.day-1 L3 – 1.67 gVS.L-1.day-1 

Bovine 50.45(±13.25) Bc 65.07(±10.07) Bb 78.21(±5.38) Aa 

Swine 67.85(±13.64) Aba 63.82(±9.53) Bb 71.71(±8.54) Ba 

Means followed by the same uppercase letters within columns (inoculum) and lower 

case within lines (loads) do not differ from each other by the Tukey's test at 5% 

significance. 

The highest removal means, 59.46% (0.67 gVS.L-1.day-1) and 78.21% (1.67 gVS.L-1.day-1), 

were found for TS and VS, respectively. These findings corroborate Orrico Júnior et al. (2010), 

who evaluated the technical feasibility of anaerobic digestion of pre-composted poultry litter 

and carcasses. These authors noted the anaerobic digestion efficiency in degrading resistant 

compounds, such as chicken litter. Despite the sharp reductions in VS, around 44.05%, this 

value was lower than that obtained here, evidencing microbial action in the inoculum. 

This way, the results encountered here are in agreement with those of Silva et al. (2013), 

who concluded that anaerobic digestion is an efficient procedure to treat organic residues. They 

also ascertained that biofertilizer addition not only favored system performance regarding pH, 

but also influenced biogas production and reduced total solids by 40.85%. 

3.3. Removal of COD (total and soluble) 

The major means of CODtotal removal were registered at loads of 0.67 and 1.00 gVS.L-1.day-1, 

using both swine and bovine inocula, respectively, as shown in Figure 4A.  

 
Figure 4. Monitoring of total chemical oxygen demand (CODtotal) 

removal and soluble chemical oxygen demand (CODsoluble) 

removal. 
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As seen in Figure 4B, the load of 1.00 gVS.L-1.day-1 provided the major means of 

CODsoluble removal. Since data regarding CODtotal removal showed no normality, results did not 

undergo variance analysis. 

Table 5 presents the statistical breakdown of means for CODsoluble as a function of 

inoculum and loads. When load factor is fixed, it is noteworthy seeing a significant difference 

of loads using bovine inoculum, with the emphasis placed at the load of 1.00 gVS.L-1.day-1, 

which provided the highest mean (61.31%). For swine inoculum, there was a significant 

difference among loads, with the highest removal reached by 1.00 gVS.L-1.day-1 (53.29%), 

being statistically equal at 5% significance for a load of 0.67 gVS.L-1.day-1 (48.91%). 

When fixing the inoculum factor and evaluating it in relation to the load levels, we could 

note a statistically significant difference between both inocula at 0.67 and 1.67 gVS.L-1.day-1.  

COD soluble was effectively removed by using a load of 0.67 gVS.L-1.day-1 (48.91%) for 

swine inoculum, and at 1.67 gVS.L-1.day-1 (46.32%) for bovine. 

 The results found in this study are superior to those reported by Blanco et al. (2014), who 

studied anaerobic digestion of dairy cattle manure with the addition of poultry litter. These 

authors reported a low COD removal efficiency, on average 36%, which resulted in a low 

stability for the biofertilizer. 

Table 5. Tukey’s test for means of COD soluble removal at 5% significance. 

Inoculum 
% COD soluble removal 

L1 – 0.67 gVS.L-1.day-1 L2 – 1.00 gVS.L-1.day-1 L3 – 1.67 gVS.L-1.day-1 

Bovine 37.23(±21.07) Bb 61.31(±12.66) Ba 46.32(±14.11) Ab 

Swine 48.91(±13.75) Ab 53.29(±8.64) Bb 28.48(±15.32) Ba 

Means followed by the same uppercase letters within columns (inoculum) and lower 

case within lines (loads) do not differ from each other by the Tukey's test at 5% 

significance. 

The results obtained corroborate Lynch et al. (2013), who presented a review detailing 

advances in the three main alternative disposal routes for poultry litter, which are composting, 

anaerobic digestion, and direct burning. These authors concluded that such technologies open 

up opportunities to marketing both energy and nutrients in poultry litter, mainly for anaerobic 

digestion, once operation conditions are monitored.  

It is known that the presence of inoculum influences the methanogenic activity and can 

present significant differences for different inoculum sources (Vrieze et al., 2015; Rico et al., 

2017). In this study, it is observed that different types of inoculum may also influence the 

removal of COD and solids. 

3.4. Characterization of digestate and sludge 

The quality of the digester and its potential for agronomic use depends on many factors. 

Because of this, each project have to include a specific analysis to determine available nutrient 

content (Nicoloso et al., 2019). 

 Regarding the values of micronutrients (Zn, Fe, Cu and Mn) in Table 6, note that the 

highest mean Zn values are for the 1.00 gVS.L-1.day-1 load. Fe values refer to the loads                 

1.67 gVS.L-1.day-1 and 0.67 gVS.L-1.day-1 for bovine and swine inoculum, respectively. 

The highest values of Cu refer to the load 1.67 gVS.L-1.day-1, and those of Mn to the load 

0.67 0.67 gVS.L-1.day-1 and 1.00 gVS.L-1.day-1, for bovine and swine inoculum respectively. 

It is observed that the highest mean values of K refer to the loads 0.67 gVS.L-1.day-1 and 

1.67 gVS.L-1.day-1 for bovine and swine inocula, respectively. There is a decrease in the 

concentration of this element with the use of bovine inoculum and increase with swine inoculum 

in relation to increased loads.
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Table 6. Characterization of digestate. 

Inoculum Feeding Loads Micronutrients (mg.L-1)  Mean SD CV (%) Macronutrients (mg.L-1)  Mean SD CV (%) 

Bovine 

L1 0.67  

Zn 

 

2.20 ±0.84 38.21  

K 

 

534.60 ±44.60 8.51 

L2 1.00  2.41 ±0.64 26.84  484.70 ±42.70 8.81 

L3 1.67  1.95 ±0.18 9.56  478.60 ±17.70 3.69 

Swine 

L1 0.67  2.35 ±0.31 13.19  429.80 ±27.80 6.46 

L2 1.00  2.04 ±0.16 7.88  486.24 ±15.50 3.19 

L3 1.67  3.36 ±1.07 31.93  528.82 ±10.86 2.05 

Bovine 

L1 0.67  

Fe 

 

4.63 ±0.38 8.27  

N 

 

350.00 ±24.60 7.02 

L2 1.00  3.09 ±1.12 36.23  359.33 ±3.52 0.98 

L3 1.67  5.04 ±0.16 3.27  344.87 ±5.70 1.65 

Swine 

L1 0.67  5.64 ±0.33 5.92  356.80 ±67.50 18.91 

L2 1.00  4.91 ±1.59 32.50  333.43 ±50.90 5.01 

L3 1.67  3.94 ±1.35 38.88  367.30 ±18.37 13.87 

Bovine 

L1 0.67  

Cu 

 

0.31 ±0.11 35.75  

Mg 

 

75.69 ±5.65 7.46 

L2 1.00  0.27 ±0.06 23.27  54.95 ±13.99 25.47 

L3 1.67  0.35 ±0.07 19.50  50.84 ±11.03 21.70 

Swine 

L1 0.67  0.47 ±0.11 24.74  103.50 ±12.70 9.24 

L2 1.00  0.42 ±0.04 10.93  62.88 ±3.19 5.08 

L3 1.67  0.52 ±0.08 15.37  63.78 ±6.97 10.93 

Bovine 

L1 0.67  

Mn 

 

1.38 ±0.21 15.65  

Na 

316.60 ±23.60 7.45 

L2 1.00  1.33 ±0.12 9.56  231.90 ±25.60 11.02 

L3 1.67  1.17 ±0.17 14.57  139.42 ±7.30 5.24 

Swine 

L1 0.67  1.36 ±0.04 3.31  259.82 ±17.23 6.63 

L2 1.00  1.38 ±1.05 3.67  217.90 ±21.70 9.98 

L3 1.67  1.31 ±0.09 7.00  157.75 ±9.57 6.07 

Bovine 

L1 0.67   - - -  

Ca 

 

387.20 ±40.60 10.49 

L2 1.00   - - -  366.92 ±14.85 4.05 

L3 1.67   - - -  305.10 ±60.00 19.66 

Swine 

L1 0.67   - - -  291.80 ±35.50 12.16 

L2 1.00   - - -  361.22 ±15.21 4.21 

L3 1.67   - - -  386.00 ±35.70 9.24 
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The highest average values of N refer to the loads of 1.00 gVS.L-1.day-1 (359.33 mg.L-1) 

and 1.67 gVS.L-1.day-1 (367.30 mg.L-1) for bovine and swine inocula, respectively. In addition, 

the values of  K and N are below the values found in effluent from poultry litter digestion by 

Singh et al. (2002): potassium (1632 mg.L-1) and nitrogen (1570 mg.L-1). 

The highest average values of Mg and Na refer to the load 0.67 gVS.L-1.day-1, in addition 

to a decrease in the concentration of these elements with the increased loads. The Ca values 

refer to the loads of 0.67 gVS.L-1.day-1 and 1.67 gVS.L-1.day-1 for the use of bovine and swine 

inoculum, respectively. An increase in calcium (Ca) concentration was also observed with 

increasing charges for swine inoculum.  

The results presented corroborate with Tessaro et al. (2015), which evaluated the digestion 

with poultry litter by varying the presence of digestate and water, and concluded that the 

digestate produced presented assimilable macro and micronutrients by vegetables such as 

nitrogen, phosphorus, potassium, calcium, magnesium, sodium, iron, boron, copper, zinc and 

manganese. However, it must be taken into consideration that nutrient loss and segregation 

processes may occur in the biodigester (Nicoloso et al., 2019). 

At the end of the experiment, biodigester sludge was quantified, but not presented 

differences in relation to the volume of sludge generated in the process (1.40 liters), being 

characterized in relation to nutrients, as presented in Table 7. 

Table 7. Characterization of sludge the biodigester. 

Nutrients (mg.L-1) Zn Fe Cu Mn K Mg Na Ca 

Sludge Bovine 41.98 140.60 12.40 51.70 457.89 328.24 140.49 2815.58 

Sludge Swine 43.54 134.11 13.80 13.80 526.69 316.92 151.32 3630.22 

The bovine and swine sludge presented very close concentration in relation to the nutrients 

observed and have a higher concentration of Mn, K and Ca. The use of poultry litter as a 

digestate is economically desirable, since it represents an internal resource of the rural property. 

It is a waste that contains a high concentration of nutrients; however, it should be considered 

that fertilizers with higher proportions of organic nutrients in the organic medium and high 

lignin and fiber contents have lower decomposition rate in the soil and therefore lower release 

and availability of nutrients to the plants (Tessaro et al., 2015; Nicoloso et al., 2019). 

4. CONCLUSIONS 

Comparing bovine and swine inocula, it was realized that both could be used in poultry 

litter digestion because of their stability, as shown by the ratios VA/TA and IA/PA, as well as 

by the pH values close to neutrality. 

Relatively to the TS and VS removals efficiencies, the greatest mean values (59.46 and 

78.21%, respectively) occurred with the swine inoculum, at the 0.67 gVS.L-1.day-1 load and 

with the bovine inoculum at the 1.67 gVS.L-1.day-1 load. 

It was observed that the greatest mean values of CODtotal removals referred to the                        

0.67 gVS.L-1.day-1 load, with the swine inoculum and 1.00 gVS.L-1.day-1, with the bovine 

inoculum. 

Regarding CODsoluble removal, the greatest mean values were reached at the                             

1.00 gVS.L-1.day-1 load, being 61.31% and 53.29% for bovine and swine inoculum, 

respectively. 

It is worth mentioning that the choice inoculum depends on the main purpose process 

(biogas or biofertilizer production). Therefore, in this case, where the goal was biofertilizer 

production, the use of swine inoculum is recommended, because it resulted in the best TS and 

COD removals and higher potassium (K) and calcium (Ca) levels in the generated sludge. 
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