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ABSTRACT 
There is great concern with soil and plant contamination by heavy metals due to the use of 

polluted water in agricultural irrigation. In this study, areas irrigated with Vieira River water 

were evaluated as to contamination by As, Cr, Cu, Ni, Pb and Zn. The Vieira River receives 

effluent from Montes Claros city, state of Minas Gerais, Brazil. To do so, two irrigated areas 

were selected, one upstream and one downstream of the Montes Claros city. Wastewater 

discharge increased the concentration of As and Ni in the water of Vieira River, and 

consequently, of As, Cr, Cu, Ni, Pb and Zn in the soil and of As and Zn in forage grasses. 

However, the content of heavy metals in the soil did not exceed the internationally 

recommended limits. Pollution load index (PLI) and contamination factor (CF) indicated the 

existence of pollution and moderate contamination in downstream soils of the city of Montes 

Claros. Potential ecological risk index (RI) and ecological risk factor (Er) indicated a low 

ecological risk, but these indicators were higher in downstream soils of Montes Claros. Arsenic 

(As) was the only heavy metal that featured a transfer factor (TF) higher than the widespread 

values found in literature and positive geoaccumulation index (Igeo), indicative of anthropogenic 

pollution. 

Keywords: ecological risk, geoaccumulation index, water contaminated. 

Metais pesados em solos e plantas forrageiras irrigadas com água do 

Rio Vieira, Montes Claros, Brasil, contaminada com efluentes de 

esgoto 

RESUMO 
A contaminação de solo e plantas por metais pesados devido ao uso de águas poluídas na 

irrigação agrícola é motivo de grande preocupação. No presente estudo, áreas irrigadas com 

água do rio Vieira foram avaliadas quanto a contaminação por As, Cr, Cu, Ni, Pb e Zn. Para 

isso foram selecionadas duas áreas, uma a montante e outra a jusante da cidade de Montes 

Claros. A descarga de água residuária aumentou a concentração de As e Ni na água do rio 
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Vieira; e, consequentemente, de As, Cr, Cu, Ni, Pb e Zn no solo; e de As e Zn em plantas 

forrageiras. No entanto, os teores de metais pesados no solo não excederam os limites 

internacionais recomendados. O índice de carga de poluição (PLI) e o fator de contaminação 

(CF) indicaram existência de poluição e contaminação moderada em solos a jusante da cidade 

de Montes Claros. O índice de risco ecológico potencial (RI) e o coeficiente de risco ecológico 

(Er) indicaram baixo risco ecológico, porém esses indicadores foram maiores no solo a jusante 

de Montes Claros. O As foi o único metal pesado que apresentou fator de transferência (TF) 

maior que os valores generalizados encontrados na literatura e índice de geoacumulação (Igeo) 

positivo, indicativo de poluição antropogênica. 

Palavras-chave: água contaminada, índice de geoacumulação, risco ecológico.  

1. INTRODUCTION 

 The dispersal of heavy metals in irrigated agricultural areas is growing, which results in 

food contamination that can be harmful for animals and humans. Heavy metals have low 

solubility, and are not degradable in water, which contributes to their accumulation in soil, and 

therefore in plants cultivated on these irrigated areas with contaminated water. Heavy metals’ 

transfer from soils to plants is one of the main ways of humans exposure through the food chain 

(Chopra and Pathak, 2015). 

Until 2010, Vieira River was the main river receiving untreated sewage produced in the 

city of Montes Claros, state of Minas Gerais, Brazil. Currently, the river still receives city 

sewage; however, there is a prior treatment process, carried out in the wastewater treatment 

plant (WWTP) of Montes Claros. In the margins of Vieira River, there are farms that use its 

water for the irrigation of pastures; nevertheless, there are no studies on heavy metal 

contamination of soil and plants irrigated with the river water.  

The intake of heavy metals through the food chain has been widely disseminated 

throughout the world (Chary et al., 2008; Chopra and Pathak, 2015). Heavy metals are non-

biodegradable and persistent compounds, which, because of these characteristics, accumulate 

in vital organs of the human body, such as kidneys, bones and liver, and are associated with 

several serious health disorders, such as diarrhea, stomatitis, tremor, ataxia, paralysis, 

convulsion, depression, and pneumonia (McCluggage, 1991). The nature of the effects of these 

disorders can be toxic, neurotoxic, carcinogenic, mutagenic, or teratogenic (EU, 2002). 

This study assessed the concentration of As, Cr, Cu, Ni, Pb, and Zn in water, soil, and 

forage grasses in areas irrigated with Vieira River water. 

2. MATERIALS AND METHODS 

2.1. Study area 

The study area is located in the city of Montes Claros, Brazil, in the North of the state of 

Minas Gerais. The climate of the region is classified, according to Köppen, as Aw. Vieira River 

is the main receiver of wastewater of domestic and industrial sewage of Montes Claros. Vieira 

River rises in the south of Montes Claros and flows through residential and industrial areas 

before joining Verde Grande River, one of the main affluents of the middle region of the São 

Francisco River Basin. The length of the main course of Vieira River and the area of its basin 

is approximately 42 km and 580 km2, respectively. The Wastewater Treatment Plant (WWTP) 

is located in Northern Montes Claros (Figure 1). Several industry plants are located west of the 

WWTP (Figure 1), including textile, biofuels, food, pharmaceutical, and mining industries. 

About 1 km east of the WWTP, there is another textile factory (Figure 1).  
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Figure 1. Location map of the study area. 

The unpleasant odor and presence of solid residues and white foam in waters of Vieira 

River are easily observed in stretches passing through Montes Claros and downstream of 

WWTP.  

2.2. Sample collection 

To evaluate levels of contamination by heavy metals in areas irrigated with Vieira River 

water, samples of water, soil, and plants were collected at two farms (sites F1 and F2 in Figure 

1) in July 2015. The F1 farm is located upstream of the city of Montes Claros and uses Vieira 

River water for irrigation of forage grasses (Pennisetum purpureum), and the irrigation system 

used is the sprinkler. The F2 farm is located downstream of the city of Montes Claros and 

diverts part of the Vieira River water to an area of flood irrigation, which cultivates forage 

grasses (Brachiaria mutica) for feeding the cattle of milk producers. 

Samples of unfiltered water of the river were collected approximately 10 m from the 

margin, where the water used in irrigation is collected. The water samples were stored in 

polypropylene bottles that had been previously washed with HNO3 (10%). To preserve the 

water samples, about 1.5 mL of HNO3 (65%) was added to reduce their pH to values lower than 

2. Sampling bottles were kept in coolers with ice during their transportation to the laboratory, 

where they were stored in a refrigerator at temperatures between 0 and 4°C until the 

quantification of heavy metals (APHA et al., 1998). 

At each farm (F1 and F2), eight sites were selected for the collection of samples of soil and 

forage grasses (Figure 1). Each sample was composed of three subsamples collected in an area 

of 1 m². Samples were placed in plastic bags and sealed for transportation and storage 

(Gebrekidan et al., 2013). 

Soil samples were collected in the 0-20 cm layer. In the laboratory, samples were dried in 

an oven at 60°C for 72 hours, homogenized in an agate mortar and pistil, and sieved in a Nylon 

sieve of 0.3 mm.  

In the samplings of plant material, the plants were cut to 4 cm from the ground. In the 

laboratory, samples were washed with tap water and distilled water for removing particulate 

material deposited on the surface of the plant. Then, all samples were dried in an oven at 75°C 
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until constant weight, grinded, and sieved (Nylon sieve of 0.3 mm).  

The sieved soil and plant samples were stored in Falcon tubes for further analysis of heavy 

metal content. 

2.3. Chemical analysis 

The stock standard solution of 1000 mg L-1 for atomic absorption spectroscopy of Sigma 

Aldrich (Germany), diluted in different concentrations with ultrapure water (Milli-Q, 

Millipore), was used for the preparation of analytical curves. Cr, Cu, Ni, Pb, and Zn elements 

were measured in flame atomization mode, composed of Ar-acetylene (acetylene 2.8 AA), and 

the As element was determined by a hydride generator system using argon (99.999% purity) 

and Ar-acetylene (acetylene 2.8 AA) (APHA et al., 1998). All analyses were performed in 

triplicate. 

For total metal analysis, 100 mL of the water sample was mixed with 10 mL of HNO3 

(65%, PA) and taken to a hot plate, in which it was evaporated to a volume from 10 to 20 mL 

(APHA et al., 1998). Digested samples were then filtered through a quantitative filter paper 

(Unifil, C42, blue stripe) and transferred to Falcon tubes. The volume of each sample was 

adjusted to 25 mL using ultrapure water (Milli-Q, Millipore). Concentrations of As, Cr, Cu, Ni, 

Pb, and Zn were determined in an atomic absorption spectrophotometer (Varian, AA 240 FS 

model). 

For soil digestion, 0.50 g of each sample was mixed to 9 mL of HNO3 (65%, PA) and 3 

mL of HCl (37%) and microwave digested (Mars 6, CEM) according to the USEPA 3051A 

method (USEPA, 1998). In the case of forage grasses, 0.01 g of each sample was mixed with 

10 mL of HNO3 (65%, PA) and digested in a similar way to the soil samples. 

After the digestion process, soil and plant samples were then filtered through a quantitative 

filter paper (Unifil, C42, blue stripe) and diluted with ultrapure water (Milli-Q, Millipore) until 

it reached a volume of 25 mL. Concentrations of As, Cr, Cu, Ni, Pb, and Zn were determined 

in an atomic absorption spectrophotometer (Varian, AA 240 FS model). 

2.4. Indicators and Statistical analysis 

To understand the impact of heavy metals present in the soil, the following were calculated: 

contamination factor (CF) (Equation 1); pollution load index (PLI) (Equation 2); 

geoaccumulation index (Igeo) (Equation 3); and potential ecological risk index (RI) (Equation 

4). Assessment of contamination level by heavy metals using these factors has been successfully 

employed in several studies (Varol, 2011; Wang et al., 2018). 

𝐶𝐹 =
𝐶ℎ𝑒𝑎𝑣𝑦 𝑚𝑒𝑡𝑎𝑙

𝐶𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
               (1) 

CF is the ratio between each metal content in soil samples and the background value. The 

adopted background values were 0.23 mg kg-1 for As (Kabata-Pendias and Pendias, 1999); 

35.00; 25.00; 20.00; and 20.00 mg kg-1 for Cr, Cu, Ni, and Pb, respectively (Taylor and 

McLennan, 1995); and 49.50 mg kg-1 for Zn (Turekian and Wedepohl, 1961). 

Interpretation of CF values was suggested by Hakanson (1980), according to which CF < 

1 indicates low contamination; 1 < CF < 3 indicates moderate contamination; 3 < CF < 6 

indicates considerable contamination; CF > 6 indicates very high contamination. 

𝑃𝐿𝐼 = (𝐶𝐹1 𝑥 𝐶𝐹2 𝑥 𝐶𝐹3 𝑥 … 𝑥 𝐶𝐹𝑛)
1

𝑛           (2) 

Where CF is the contamination factor, and n is the number of metal species. PLI presents 

a general overview of pollution in each sampling site and also shows the contribution of each 



 

 

5 Heavy metals in soils and forage grasses … 

Rev. Ambient. Água vol. 15 n. 2, e2440 - Taubaté 2020 

 

metal to pollution. PLI < 1 indicates that there is no pollution by heavy metals in the site; 

however, PLI > 1 indicates that there is pollution (Varol, 2011). 

Igeo determines metal contamination in soils, comparing current contents with background 

values (Equation 3). 

𝐼𝑔𝑒𝑜 = [
𝐶𝑛

1.5𝐵𝑛
]                (3) 

Where Cn is the n metal concentration in soil samples, and Bn is the background value of 

the n element. The factor 1.5 is introduced in the equation to minimize possible variation in the 

background value, which can be attributed to lithospheric effects. The seven categories of the 

geoaccumulation index are presented as follows: Igeo < 0, practically uncontaminated; 

0 ≤ Igeo < 1, uncontaminated to moderately polluted; 1 ≤ Igeo < 2, moderately polluted; 

2 ≤ Igeo < 3, moderately to heavily polluted; 3 ≤ Igeo < 4, heavily polluted; 4 ≤ Igeo < 5, heavily to 

extremely polluted; and Igeo > 5, extremely polluted. 

RI is a factor used to evaluate the potential ecological risk of heavy metals in soils and was 

initially proposed by Hakanson (1980) (Equation 4). 

RI = ∑ Er
n
i=1 = ∑ Tr x CFn

i=1               (4) 

Where Er is the ecological risk factor of a certain heavy metal and Tr is the toxicity factor 

of a single metal. Toxicity factors of As, Cr, Cu, Ni, Pb, and Zn were 10, 2, 5, 5, 5, and 1, 

respectively (Hakanson, 1980). Criteria for the Er classification are: Er < 40, low potential 

ecological risk; 40 ≤ Er < 80, moderate potential ecological risk; 80 ≤ Er < 160, considerable 

potential ecological risk; 160 ≤ Er < 320, high potential ecological risk; and Er ≥ 320, very high 

potential ecological risk (Hakanson, 1980). The RI classification introduced by Hakanson 

(1980) was based on eight parameters (As, Cd, Cr, Cu, Hg, Pb, Zn, and PCBs). In this study, 

all these parameters were not evaluated, therefore, the RI classification should be adjusted 

according to the number of parameters and the ratio of toxicity coefficient of each parameter 

(Wang et al., 2018). The adjusted RI classification is: RI < 110, low ecological risk; 

110 ≤ RI < 220, moderate ecological risk; 220 ≤ RI < 440, considerable ecological risk; and 

RI ≥ 440, very high ecological risk. 

For understanding the bioavailability of a heavy metal, was calculated the transfer factor 

(TF), which in this study was determined by the relationship between the metal content in the 

shoot of the plants and in the soil (Equation 5) (Gebrekidan et al., 2013). 

𝑇𝐹 =
𝑀𝑒𝑡𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠ℎ𝑜𝑜𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑡

𝑀𝑒𝑡𝑎𝑙 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑜𝑖𝑙
           (5) 

Analysis of variance (ANOVA) and F-test were conducted at 5% error probability level to 

verify differences in contamination by heavy metals between upstream (F1) and downstream 

(F2) of the city of Montes Claros. All statistical analyses were carried out using the R-plus® 

3.4.2. software (R Development Core Team, 2017). 

3. RESULTS AND DISCUSSION 

3.1. Heavy metal contamination in water of Vieira River used in irrigation 

The concentrations of heavy metals As and Ni were significantly higher (p < 0.01) in the 

water of Vieira River at the farm margins downstream of the city of Montes Claros (F2), when 

compared with the water of the river at the farm margins upstream (F1). On the other hand, Cu 

featured the higher concentration (p < 0.01) in the water of Vieira River at the F1 margins. 

None of the concentration values of heavy metals found in the two farms (F1 and F2) were 

higher than the international limits recommended for water use in irrigation (USEPA, 2012; 
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WHO, 2006). However, Cu and Ni exceeded the limits recommended by the Brazilian 

legislation for the use of water in irrigation (CONAMA, 2009), being Cu in the two farms (F1 

and F2) and Ni only in F2 (Table 1). It is important to emphasize that the water can be 

inappropriate for irrigation and superficial flooding depending on the use and occupation of the 

soil, once this irrigation method can favor the direct contact of animals and humans with the 

contaminated water.  

Table 1. Concentration of heavy metals (µg L−1) in water samples of Vieira River for irrigation of F1 

and F2 farms, and maximum permitted concentration (µg L−1) in water (n = 3). 

Metals 
F1 Farm F2 Farm 

CONAMA (2005) USEPA (2012) WHO (2006) 
Mean SD Mean SD 

As (µg L-1) 0.4** 0.09 1.7 0.01 33 100 100 

Cr (µg L-1) 0.0 0.00 0.0 0.00 50 100 100 

Cu (µg L-1) 82.6** 0.74 19.4 2.61 13 200 200 

Ni (µg L-1) 0.0** 0.00 52.3 1.51 25 200 200 

Pb (µg L-1) 0.0 0.00 0.0 0.00 33 5000 5000 

Zn (µg L-1) 189.1 5.94 197.6 23.25 5000 2000 2000 

SD – Standard deviation; and ** (p < 0.01) indicates statistical difference (ANOVA; F-test) between 

mean values of metals in F1 and F2. 

3.2. Heavy metal contamination in soil irrigated with water of Vieira River 

Contents of As, Cr, Cu, Ni, Pb, and Zn in samples of soil irrigated with water of Vieira 

River in F2 were significantly higher (p < 0.05) than in F1 (Table 2), which indicates 

anthropogenic pollution of Vieira River waters, possibly due to the discharge of domestic and 

industrial wastewater generated in Montes Claros. The highest concentration of As and Ni in 

water samples collected at F2 (Table 1) also reinforces the indications of anthropogenic 

pollution of Vieira River waters. 

Table 2. Content of heavy metals (mg kg-1), contamination factor (CF), and pollution load index (PLI) 

in soil irrigated with Vieira River water in two farms (F1 and F2) (n = 8). 

Metals 
F1 Farm  F2 Farm  Maximum allowed 

Mean SD CF  Mean SD CF  Ewers (1991) CONAMA (2009) 

As (mg kg−¹) 0.3 0.05 1.40  0.6** 0.12 2.50  20.0 35.0 

Cr (mg kg−¹) 30.5 5.33 0.87  42.5** 5.27 1.21  100.0 150.0 

Cu (mg kg−¹) 15.9 4.01 0.64  20.0* 1.73 0.80  100.0 200.0 

Ni (mg kg−¹) 5.5 1.53 0.28  15.9** 0.86 0.79  50.0 70.0 

Pb (mg kg−¹) 10.2 2.50 0.51  13.7** 2.10 0.69  100.0 180.0 

Zn (mg kg−¹) 33.9 6.73 0.69  53.3** 7.97 1.08  300.0 450.0 

PLI   0.65    1.06    

SD - Standard Deviation; CF - contamination factor; PLI - pollution load index; * (p < 0.05) and ** (p 

< 0.01) indicate statistical difference (ANOVA; F-test) between mean values of metals in F1 and F2. 

Contents of heavy metals in the soil of the study area were higher at F2 farm, downstream 

of the city of Montes Claros, when compared with those reported by Gebrekidan et al. (2013) 

for Cr (31.02 mg kg-1), Pb (3.27 mg kg-1), and Zn (51.83 mg kg-1), except Cu (25.25 mg kg-1) 

and Ni (26.00 mg kg-1) in areas irrigated with water of the Ginfel River, polluted by wastewater 

produced in Sheba Tannery, Ethiopia. The Cr content reported by Chary et al. (2008) (33.00 ± 

12.00 mg kg-1) and by Singh et al. (2010) (19.21 ± 3.26 mg kg-1) was also lower than the mean 

value found in F2. However, no heavy metal detected in both farms (F1 and F2) featured values 
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higher than international and Brazilian limits recommended for soils (CONAMA, 2009; Ewers, 

1991) (Table 2). 

CF values indicated that Cu, Ni, and Pb in both farms (F1 and F2) and Cr and Zn in F1 

farm presented low level of contamination. Cr and Zn in F2 and As in both farms (F1 and F2) 

showed a moderate level of contamination, according to CF (Hakanson, 1980). PLI indicates 

the existence of heavy-metal pollution in soil irrigated with the water of Vieira River 

downstream of Montes Claros, despite the its value in F2 being very close to the limit (PLI = 

1) that indicates whether or not there is pollution (Varol, 2011) (Table 2). 

Mean values of geoaccumulation index (Igeo) in the soils of both farms (F1 and F2) 

accounted for the following descending order: As > Cr > Zn > Cu > Pb > Ni. The As in F2 was 

the only heavy metal that featured positive Igeo values, indicating the presence of pollution. Igeo 

value for As in F2 was 0.74, which characterizes the soil in that area as unpolluted to moderately 

polluted (Table 3). Igeo values for Cr, Cu, Ni, Pb, and Zn in both farms (F1 and F2) and for As 

in F2 were negative, indicating absence of pollution in soils (Table 3). 

Table 3. Assessment of geoaccumulation indices (Igeo) and potential ecological risk for pollution by 

heavy metals in samples of soil irrigated with Vieira River water in two farms (F1 and F2) (n = 8). 

Sites 
Igeo 

Mean 
As Cr Cu Ni Pb Zn 

F1 Farm -0.10 -0.78 -1.24 -2.44 -1.56 -1.13 -1.21 

F2 Farm 0.74 -0.31 -0.90 -0.92 -1.13 -0.48 -0.50 

Mean 0.32 -0.54 -1.07 -1.68 -1.34 -0.80   

Sites 
Er 

RI 
Risk 

level As Cr Cu Ni Pb Zn 

F1 Farm 13.98 2.21 3.85 1.25 1.31 6.97 29.56 Low 

F2 Farm 25.04 3.08 4.85 3.57 1.77 10.96 49.26 Low 

Mean 19.51 2.64 4.35 2.41 1.54 8.96 39.41 Low 

RI – potential ecological risk index; and Er – ecological risk factor of certain heavy metal. 

Mean Er of each analyzed heavy metal accounted for the following descending order: As 

> Zn > Cu > Cr > Ni > Pb. All analyzed metals (As, Cr, Cu, Ni, Pb, and Zn) featured low 

ecological risk in both farms (F1 and F2), according to the Er classification proposed by 

Hakanson (1980). Nevertheless, Er values were higher in F2, which indicates increased 

ecological risk in soils irrigated with water of Vieira River downstream of Montes Claros (Table 

3). RI values were much lower than 110 in all sampling sites, indicating a low potential 

ecological risk. The As significantly contributed to the environmental RI, which can be 

attributed to the effect of anthropogenic activities. The As is used as preservative for leather 

and wood, additive for metal alloys, and in herbicides (Halli et al., 2014; Thuong et al., 2013). 

RI value was also higher at F2 (Table 3). 

3.3. Heavy metal contamination in plants irrigated with water of Vieira River 

Contents of As and Zn in Brachiaria mutica plants in F2 were significantly higher  

(p < 0.05) than those found in Pennisetum purpureum plants in F1. On the other hand, Cu 

featured higher concentration (p < 0.01) in Pennisetum purpureum plants (F1). The mean 

content of heavy metals in plants of both farms (F1 and F2) accounted for the following 

descending order: Zn > Cu > Ni > As. Cr and Pb were not detected in forage grasses in both 

farms (F1 and F2) (Table 4). 
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Table 4. Content of heavy metals (mg kg-1) in forage grasses irrigated with Vieira River water in 

two farms (F1 and F2) and transfer factor (TF) (n = 8). 

Metals F1 Farm F2 Farm Normal 

intervalsa 

Agronomic 

crop toleranceb 

Widespread 

values of TFc  Mean SD TF Mean SD TF 

As 

(mg kg−¹) 
0.22** 0.04 0.70 0.26 0.02 0.48 1 - 1.7 - 0.01 - 0.1 

Cr 

(mg kg−¹) 
0.00 0.00 0.00 0.00 0.00 0.00 0.1 - 0.5 2 0.01 - 0.1 

Cu 

(mg kg−¹) 
7.63** 0.68 0.51 4.60 1.18 0.23 5 - 30 5 - 20 0.1 - 1 

Ni 

(mg kg−¹) 
0.50 0.35 0.10 1.05 1.11 0.07 0.1 - 5 1 - 10 0.1 - 1 

Pb 

(mg kg−¹) 
0.02 0.05 0.00 0.34 0.96 0.03 5 - 10 0.5 - 10 0.01 - 0.1 

Zn 

(mg kg−¹) 
50.77** 2.74 1.54 69.92 25.11 1.32 27 - 150 50 - 100 1 - 10 

SD – Standard deviation; TF – transfer factor; a – (Kabata-Pendias and Pendias, 2001); b - (Kabata-

Pendias and Pendias, 2001; 1999; MacNicol and Beckett, 1985); c - (Kloke et al., 1984). * (p < 0.05) 

and ** (p < 0.01) indicate statistical difference (ANOVA; F-test) between mean values of metals in 

F1 and F2. 

No metal exceeded the normal intervals (Kabata-Pendias and Pendias, 2001) or the 

agronomic crop tolerance values (Kabata-Pendias and Pendias, 1999; 2001; MacNicol and 

Beckett, 1985) (Table 4), including Cu and Ni, which featured concentrations in the water 
higher than the limits recommended by the Brazilian legislation for use of water in irrigation 

(CONAMA, 2005) (Table 1). 

The metal content in forage grasses depends not only on the content of metals in the soil, 

but also on the efficiency of metal transfer from the soil to the plants. This efficiency can be 
estimated by TF, which is one of the key indicators of human exposure to metals through the food 

chain (Cao et al., 2014), and is often used to study environmental pollution (Khan et al., 2013). TF 

values in both farms (F1 and F2) accounted for the following descending order: Zn > As > Cu 

> Ni. The highest TF values indicated that Zn and As were easily transferred from the soil to 

forage grasses when compared with other metals considered in this study. The As was the only 

metal accounting for TF higher than the widespread values (Kloke et al., 1984) (Table 4). 

The As mobility in the soil depends on pH, redox potential, and type and amount of 

adsorbents (oxides and hydroxides of Fe3+, Al3+, Mn3+, or Mn4+, humic substances, and clay 

minerals) present in the soil (Bissen and Frimmel, 2003; Oscarson et al., 1983). In addition, the 

amount of As adsorbed in the soil significantly decreased in the presence of organic matter 

(Bissen and Frimmel, 2003; Redman et al., 2002). Therefore, soil fertilization practices with 

animal manure at F1 farm, and use for irrigation of Vieira River water contaminated with 

sewage from Montes Claros at farm F2, contributed to the increase in the organic matter content 

in soils of these two farms (F1 and F2). This greater amount of organic matter in the soil can 

result in greater mobility of As (Bissen and Frimmel, 2003; Redman et al., 2002), which 
corroborates the fact that, in this study, such element featured TF values higher than the widespread 

values (Table 4). 

TF values of heavy metals were lower in F2 when compared with the values in F1 (Table 

4), although there is higher content of heavy metal in the F2 soil (Table 2). This can be attributed 

to frequent flooding and drying of soils in F2 promoted by the flood irrigation system. Xie and 
Huang (1998) reported that water saturation and drying of soils, promoted by flooded rice irrigation, 

considerably increased the soil redox potential and, therefore, reduced As solubility and 

availability. 
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4. CONCLUSION 

Irrigation of agricultural lands with polluted water from Vieira River has increased the 

concentration of As and Ni in water; of As, Cr, Cu, Ni, Pb, and Zn in the soil; and of As and Zn 

in forage grasses. Pollution load index (PLI) and contamination factor (CF) indicated the 

existence of pollution and moderate contamination by As, Cr, and Zn in the soil of the farm 

downstream of the city of Montes Claros (F2), respectively.  

Values of the indicators of ecological risk (Er and RI) observed in the soil of both farms 

(F1 and F2) showed low ecological risk. However, these indicators were higher in the F2, which 

indicates increased ecological risk in soils irrigated with water of Vieira River downstream of 

Montes Claros. 

Surface flood irrigation may have contributed to the lower transfer factor (TF) of heavy 

metals found in the F2 farm; however, the use of this irrigation system in pasture areas is 

worrisome, because the direct contact of the animal with polluted water from Vieira River may 

facilitate the contamination of milk or meat of these animals by heavy metals or other inorganic 

or biological compounds. 

Furthermore, there must be greater awareness of contamination of forage grasses and soil 

by As, since this was the only metal that featured transfer factor (TF) higher than the widespread 

values found in literature and positive geoaccumulation index (Igeo), indicative of anthropogenic 

pollution. 
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