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ABSTRACT 
This study evaluated the impact of diet as a mitigation action to improve the water 

efficiency of lactating cows. An intensive pasture dairy system was considered to calculate 

direct and indirect water use. Group 1 was fed with a diet containing 20% crude protein content. 

The crude protein content of Group 2 was adjusted according to milk production, ranging from 

23% to 14.5%. The total water footprints had a value of 502.4 L kg-1 fat protein corrected milk 

for Group 1 and 451.2 L kg-1 fat protein corrected milk for Group 2. The diet with the adjusted 

protein provided a reduction of 10% in the footprint value. The green water footprint was the 

most representative of consumption in the total value of the water footprint, 86.4% and 85.5% 

for Groups 1 and 2, respectively. The animals in Group 1 had a mean total drinking water 

consumption of 83.3 L animal-1 day-1 and those of Group 2, 80.4 L animal-1 day-1. This study 

demonstrated that high crude protein content in the diet provided a greater water footprint, 

therefore lower water efficiency. The proposed nutritional practice proved viable as a water-

mitigating action, making the ratio of liters of water per liter of milk more advantageous. The 

results of this study could be considered a validation of a nutritional mitigation practice to 

improve water efficiency and could be used as best management for the dairy supply chain. 

Keywords: blue, crude protein, green, grey, nitrogen. 

Boa prática de produção para reduzir a pegada hídrica do leite bovino 

RESUMO 
O objetivo do estudo foi avaliar o impacto do teor de proteína bruta da dieta de vacas em 

lactação como ação mitigadora para dar maior eficiência hídrica. Um sistema intensivo de 

produção de leite a pasto foi considerado para calcular os usos indiretos e diretos da água. Os 

animais do Grupo 1 receberam dieta contendo 20% de proteína bruta. A proteína bruta do Grupo 

2 foi ajustado de acordo com a produção de leite, variando de 23% a 14.5%. A pegada hídrica 

total teve um valor de 502,4 L kg-1 de leite corrigido para gordura e proteína para o Grupo 1 e 

451,2 L kg-1 de leite corrigido para gordura e proteína para o Grupo 2. A dieta com a proteína 

ajustada apresentou redução de 10% no valor da pegada hídrica. A pegada hídrica verde foi a 

mais representativa no valor total da pegada hídrica, 86,4% e 85,5% para os Grupos 1 e 2, 

respectivamente. Os animais do Grupo 1 tiveram um consumo médio de água de 83,3 L animal-

1 dia-1 e os do Grupo 2, 80,4 L animal-1 dia-1. O estudo demonstrou que o elevado teor de 
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proteína bruta na dieta resulta em uma maior pegada hídrica e, portanto, menor eficiência 

hídrica. A prática nutricional proposta mostrou-se viável como ação mitigadora, tornando mais 

eficiente a relação de litros de água por litro de leite. Os resultados podem ser considerados 

como uma validação de uma prática de mitigação nutricional para melhorar a eficiência de uso 

da água e para o melhor manejo hídrico do complexo agroindustrial do leite. 

Palavras-chave: azul, cinza, nitrogênio, teor de proteína, verde. 

1. INTRODUCTION 

One of the greatest present and future challenges for livestock is to remain a provider of 

quality food and conserve natural resources. This activity demands large volumes of water and 

has a high polluting potential as a point and no-point source. Therefore, a detailed understanding 

of livestock water uses and the impact of production practices on water efficiency can help the 

internalization of water management by the sector, reduce conflicts with society, and show how 

management practices promote water conservation. 

Water is one of the most important factors on a dairy farm because it is essential for 

livestock consumption to support milk production. This dependence may lead to more active 

regulation and monitoring of water use, which puts a great amount of pressure, especially 

financially, on farmers (Robinson et al., 2016). Nowadays studies are estimating water 

consumption by ruminants, but the efforts are only based on direct water use (Murphy et al., 

2014; Fischer et al., 2017; Legesse et al., 2017).  

The physiological importance of water to dairy is well established. It is important when it 

comes to the health and well-being of the animal, but is a reductionist vision if the goal is the 

efficient use of water in the production system and the management of the natural resources. 

Investigations by Fischer et al. (2017) emphasize that the discussion about water consumption 

in livestock is from the perspective of production. However, this aspect must also be seen in 

the context of water demand by people, industry and services. 

The water footprint approach provides information about water consumed and the impact 

of the product in the quantity and quality of water. Two internationally accepted concepts of 

water footprint have been developed; the water footprint concept (Hoekstra et al. (2017) and 

the Life Cycle Assessment (LCA). Very few studies have been performed to evaluate the impact 

of mitigation practices on the footprint value. The majority of the studies explored the impact 

of dairy production on freshwater resources of countries, basins, or production systems 

(Murphy et al., 2014; Palhares and Pezzopane, 2015). To evaluate the relationship between 

dairy production systems and water use, it is necessary to know the consumptive water used in 

the “feed production-dairy-manure management” chain and to identify the major factors 

affecting the water consumption for milk production (Lu et al., 2018). Legesse et al. (2017) 

reported that feed production/utilization, best water management practices, and animal 

production efficiency are strategies to increase the water efficiency of ruminant production. 

Nutritional management is one of these strategies. By adopting better precision nutrition, 

it can improve water efficiency and reduce environmental impact. This will promote green, 

blue, and grey water efficiency. Palhares et al. (2018) showed that animal nutrition is a 

mitigation aspect to reduce the cost of water, natural resource consumption, and livestock 

polluting potential.  

This study evaluated the impact of diet as a mitigation action to improve the water 

efficiency of lactating cows. Diet formulation for lactating cows considering the ideal crude 

protein content is not new to the science of animal nutrition. This investigation proposes a 

holistic view, considering the various aspects of dairy production systems, in this case animal 

nutrition, water consumption, water efficiency, and polluting potential. The innovation of this 
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study is to give a water view to nutritional management, demonstrating that a nutritional 

practice routine in dairy production, besides all the productive and economic advantages, also 

has environmental advantages. 

2. MATERIALS AND METHODS 

The concept of the Water Footprint Standard (Hoekstra et al., 2011) was used to evaluate 

the water footprint of dairy milk in a cradle-to-farm gate perspective. This method was chosen 

considering the experience of the authors in its use and because it distinguishes between green, 

blue and grey water. Water footprint is a comprehensive indicator of freshwater resource 

appropriation, which goes beyond traditional restrictive measures of water withdrawal. The 

water footprint is defined as the total volume of fresh water that is consumed to produce a 

product. The consumptive water footprint is split into three categories: green, measuring 

consumption of rainwater; blue, measuring consumption of groundwater or surface water; and 

grey, measuring how much water is needed to assimilate polluting substances.  

Water footprints were calculated from primary data related to direct and indirect water 

consumption, effluent nitrogen load, and feed and milk production. 

2.1. Systems data 

An intensive pasture dairy production system was considered in order to produce the raw 

milk. The lactating cows were milked twice daily at 0800 h and 1600 h. The lactation period 

was 305 days. Raw milk production yield for Group 1 and Group 2 was 52,267 kg and 56,622 

kg, respectively. The average daily production per cow was 23.1 L day−1 for Group 1 and 25.2 

L day−1 for Group 2. 

The diets of both experimental groups are presented in Table 1. Group 1 was fed with a 

diet containing 20% crude protein content in the diet of dry matter throughout the lactation. The 

crude protein content of Group 2 was determined according to milk production during the 

lactation period. Diets (roughage + concentrate) were given twice daily for each group. 

Pasture and corn silage was cultivated on-farm and soya and maize were cultivated off-

farm. Protein and fat content of milk varies depending on the type and age of animal, feed, and 

production management. International standards were determined for Fat Protein - Corrected 

Milk (FPCM) (FAO, 2013). 

Table 1. Nutritional management and diets for the two experimental groups (average 

dry matter intake animal-1 day-1). 

 Group 1 

 Lactating Period (month) 

Intake (kg) 1 2 3 4 5 6 7 8 9 10 11 12 

Total Dry matter 25.3 21.1 24.5 21.6 21.7 22.9 20.2 20.1 20.1 20.1 20.1 20.1 

Pasture 7.8 2.5 4.5 4.5 4.5 4.5 4.8 9.5 9.5 9.5 9.5 9.5 

Maize Silage 5.9 7.0 8.4 5.6 6.6 7.8 4.8      

Concentrate* 11.6 11.6 11.6 11.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 

Soybean Meal 3.5 3.5 3.5 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 

Maize 7.5 7.5 7.5 7.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

Crude Protein (%) 20 20 20 20 20 20 20 20 20 20 20 20 

 Group 2 

 Lactating Period (month) 

Intake (kg) 1 2 3 4 5 6 7 8 9 10 11 12 

Total Dry matter 26.0 21.3 24.6 21.7 20.5 21.7 19.0 20.2 20.2 20.2 20.2 20.2 

Pasture 7.8 2.5 4.5 4.5 4.5 4.5 4.8 9.5 9.5 9.5 9.5 9.5 

Maize Silage 5.9 7.0 8.4 5.6 6.6 7.8 4.8      

Concentrate* 12.3 11.8 11.7 11.6 9.4 9.4 9.4 10.7 10.7 10.7 10.7 10.7 

Soybean Meal 2.4 4.3 4.3 4.2 2.4 2.4 2.4 2.0 2.0 2.0 2.0 2.0 

Maize 9.2 6.8 6.7 6.7 6.5 6.5 6.5 8.2 8.2 8.2 8.2 8.2 

Crude Protein (%) 23 23 23 17 17 17 17 17 17 14.5 14,5 14.5 

*Concentrate- is the sum of soybean meal, maize, and minerals. 
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2.2. Water footprint calculations 

The green water footprint is the sum of evapotranspiration water plus the water in the feed 

product. Each feedstuff produced or imported was considered to calculate the green water 

footprint. Feed produced at the farm considered field data and yields. Feed imported was taken 

from farm documents. The water volume of each feedstuff was reported from the dry matter 

content.  

Green water footprint was calculated as Equation 1: 

𝐺𝑟𝑒𝑒𝑛𝑊 =
∑ (𝑛

𝑝=1 𝐸𝑇𝑐+𝑃𝑟𝑜𝑑𝑢𝑐𝑡) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑖𝑙𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
             (1) 

Green water footprint (GreenW) (L kg−1); ETc [a,s] is the potential crop evapotranspiration 

of each feed ingredient p consumed by each experimental group (L kg−1); and Product is water 

content in feed ingredient p in each experimental group (L kg−1). 

The potential crop evapotranspiration for pasture, corn silage, maize, and soya was 

calculated multiplying reference evapotranspiration (ETo) by based crop coefficient (Kc) 

(Allen et al., 1998). Reference evapotranspiration was derived from a climatic station installed 

at the farm using the Food and Agriculture Organization Penman–Monteith equation (Allen et 

al., 1998). Climatic parameters values were obtained monthly from the Agritempo database 

(AGRITEMPO, 2017). 

The following productive conditions were used to calculate ETc: maize produced in Parana 

State, (Prudentopolis,) and soybean produced in Mato Grosso State (Rondonopolis,). It was 

considered that these crops were produced in a rainfed manner. To calculate Tanzania grass 

amounts, daily values of crop coefficient were used. Silage and grass were produced on the 

farm. 

Soybean meal is the form that cows feed on. Technical Conversion Factors for Agricultural 

Commodities (FAO, 2013) were used to calculate the water quantity from evapotranspiration; 

considering the Brazilian condition, it is 77% meal and 23% oil. 

Pasture irrigation, animal drinking, and water in the product were considered in the blue 

water calculation. Blue water footprint was calculated as Equation 2: 

𝐵𝑊 =
(𝑊𝑖𝑟𝑟 )+(𝑊𝑎𝑛𝑖)+(𝑊𝑝𝑟𝑜𝑑)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑖𝑙𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
             (2)  

Blue water footprint (BW) (L kg−1); Wirr is consumption of water to irrigate (L kg−1), Wani 

is water consumed by animals (L kg−1), and Wprod is water in milk, considering an average of 

87% water per kg of milk (NEPA, 2011). 

The drinking water intake of each lactating cow was recorded daily and measured by 

automatic water bin (Oliveira et al., 2018). 

The irrigation water was evaluated considering the type of equipment. Irrigation 

characteristics were: 32 paddocks divided into seven irrigation sectors, each sector with twelve 

sprinklers with a flow rate of 0.45 m−3 h-1; nocturnal irrigation with two hours of irrigation per 

sector; irrigation efficiency of 85%. Irrigation started on 06/09/2015 and ended on 10/25/2015 

(97 days). 

The milking parlor comprised of a one-stage dairy shed effluent stabilization system. 

Effluent was considered water for cleaning and disinfection. Water meters were installed on the 

milking parlor to record effluent volume. To calculate the grey water footprint, nitrate was set 

as the pollutant under consideration. Grey water footprint was calculated as Equation 3: 

𝐺𝑟𝑒𝑦𝑊 =
[(𝛼 𝑥 (𝐸𝑓𝑢 𝑥 𝐶𝑒𝑓𝑢)]/(𝐶𝑚𝑎𝑥−𝐶𝑛𝑎𝑡)

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑖𝑙𝑘𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
                        (3) 
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Grey water (GreyW) (L kg−1); α dimensionless factor, defined as the fraction of applied 

chemical substance reaching freshwater bodies; Eflu is volume of effluent (L); Ceflu is the 

nitrate concentration of the effluent (23.6 mg L−1 N-NO3 – Group 1 and 22.8 mg L−1 N-NO3 – 

Group 2) (Palhares and Pezzopane, 2015); Cmax is maximum acceptable concentration (mg 

L−1) with reference to CONAMA Resolution 357/2005 (10 mg L−1 N-NO3); and Cnat is natural 

concentration in a receiving water body (mg L−1), and was considered zero (CONAMA, 2005).  

The average volume of effluent produced by each lactating cow during the study period 

was 39.8 L animal-1 day-1. This value was multiplied by the number of cows in each group to 

get the volume of effluent. 

3. RESULTS AND DISCUSSION 

The total water footprints had a value of 502.4 L kg-1 FPCM for Group 1 and 451.2 L kg-1 

FPCM for Group 2 (Table 2). This study demonstrated that high crude protein content in the 

diet, besides not producing more milk, caused a greater water footprint, therefore lower water 

efficiency of the product. It is emphasized that a higher protein concentration has a higher cost, 

which will also negatively impact the cost of production of the milk. 

The manipulation of the crude protein content of the concentrate resulted in better water 

efficiency. Ran et al. (2016) indicate that feed quality, digestibility, and feed conversion 

efficiency impact livestock water productivity. Bosire et al. (2015) found diet composition can 

determine the magnitude of the water footprint of milk, because diet translates into better feed 

conversion and more efficient use of freshwater. White (2016) showed that management to 

reduce water consumption of dairy cattle improves the use of protein and energy. Palhares et 

al. (2017) demonstrated that diet formulation is a tool to improve the water efficiency of animal 

products. 

Table 2. Water footprints by experimental group. 

Waters Group 1 Group 2 

Green (L kg-1 FPCM) 434.0 (86,4%) 386.0 (85,5%) 

Blue (L kg-1 FPCM) 67.7 (13,5%) 64.6 (14,4%) 

Gray (L kg-1 FPCM) 0.7 (0,14%) 0.6 (0,13%) 

Total Footprint (L kg-1 FPCM) 502.4  451.2  

The green water footprint was the most representative, 86.4% and 85.5% for Groups 1 and 

2, respectively, in the water footprint value. Bai et al. (2018) found that indirect water footprint 

accounting for more than 92% of dairy farm water footprint. Noya et al. (2018) showed that 

feed/fodder production contributed 99% of the water footprint of milk while the dairy farm 

stage has a minor influence. These results showed the importance of the indirect water 

consumption instead of the minor influence of the direct water requirements. The water 

footprint of animal and plant products involves biological systems that have different phases of 

development, have specific nutrient requirements and are influenced by different climatic and 

management aspects. Therefore, there is a need for all these aspects to be evaluated together, 

as well as their interrelations, in order to achieve results of significant impact. 

The diet with the adjusted protein provided a reduction of 11% in the green footprint value. 

Owusu-Sekyere et al. (2017) verified that dairy diets with high protein concentrates had the 

highest water footprint. According to Mekonnen and Hoekstra (2014), green water footprint for 

milk in pasture systems is 1.087 L kg-1 of milk. This represents more than double the values 

found in this study. The difference can be the result of the type of diet considered in the studies, 

not as a comparable functional unit, the geographical and temporal location of crop cultivation, 

and milk production. De Léis et al. (2015) point that the productive factors that most impact 
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the value of the green water consumption and footprint are the animals’ diet, dry-matter intake, 

and agricultural productivity. Zhuo et al. (2016) propose choosing crops that have more 

nutritional value and consume less water. 

The water footprint of soybean was 4,304 m3 ha-1 and for maize it was 3,246 m3 ha-1. As 

the adjusted diet presented a total lower demand of soybean meal, the green water consumption 

in Group 2 was lower. This is characteristic of the tropical regions and the major Brazilian 

grain-producing regions due to the fact that the rainfall satisfies the crops’ water demands. The 

maize WF quantified by other authors was 1,222 m3 ton-1 (Mekonnen and Hoekstra, 2010), 

910 m3 ton-1 (Wang et al., 2014), 900 m3 ton-1 (Chapagain and Hoekstra, 2004), 868 m3 ton-

1 (Huang et al., 2014), and 750 m3 ton-1 (Williams and Al-Hmoud, 2015). 

To calculate the green water consumption of the pasture, only the portion of pasture 

ingested daily by the animals was recorded. Thus, the total green water consumed was 403 m3. 

The quantification of green water volume in cattle production systems that include grazing 

basically can have two interpretations: considering only the portion of grass that was ingested 

by the animal or the total evapotranspiration of the grazing area. In this study we chose to 

calculate considering only the amount of grass ingested by the animals. If the total area of the 

rotational grazing system (1.7 ha) were considered, the green water consumption from pasture 

would be 95% higher. There is still no methodological standardization for the calculation of the 

green water consumed from grazing systems. It is known that in a rotational grazing system the 

entire area contributes to the production of the products and that this system provides reduced 

environmental services. 

The silage consumed by Group 1 represented the volume of 1,448 m3 of green water and, 

for Group 2, was 1,478 m3. If pasture irrigation had not been used in the dry period, the animals 

would need to be fully supplemented with maize silage. This situation means that green water 

consumption of Group 1 would increase by 6.8% and that of Group 2 by 7.7%. Consequently, 

blue water consumption would reduce by 72.8% because no irrigation would be used. 

The blue water footprint of Group 1 was 67.7 L kg-1 FPCM, and for Group 2 64.6 L kg-1 

FPCM. Mekonnen and Hoekstra (2014) estimated 56 L kg-1 FPCM and Huang et al. (2014) 

estimated 69 L kg-1 FPCM. Palhares and Pezzopane (2015) calculated the same production 

system evaluated in this study as 75 L kg-1 FPCM, but without nutritional management 

intervention. 

In Group 1, the composition of the blue water footprint was 93.3% (63.2 L kg-1 FPCM) 

irrigation water, 5.4% (3.6 L kg-1 FPCM) drinking water, and 1.3% (0.87 L kg-1 FPCM) water 

in the product. For Group 2, these percentages were 93.3% (60.3 L kg-1 FPCM) irrigation water, 

5.3% (3.4 L kg-1 FPCM) drinking water, and 1.3% (0.87 L kg-1 FPCM) water in the product. 

Irrigation represented the highest consumption of blue water, totaling 6,297 m3. If irrigation 

were not used, the value of the blue water footprint would be reduced by 15 times. Henderson 

et al. (2017) calculated the national average blue water consumption for the US associated with 

milk production. It was 210 L kg milk-1 and is dominated by feed irrigation. Studies that 

calculated the dairy blue water footprint without considering irrigation found values between 

1.2 to 9.7 L kg-1 FPCM (Murphy et al., 2014).  

Irrigation is a practice used to maintain pasture production at the beginning of the dry 

season in tropical regions because it means reduced feed costs due to the lower need to buy 

concentrated feed. But the practice should be based on best practices and scheduling does not 

mean inefficient water use. As the cost of water is zero or insignificant compared to the cost of 

concentrated feed, farmers use irrigation without worrying about the volume of water consumed 

if they are in a region without water scarcity problems.  

The animals in Group 1 had a mean total drinking water consumption of 83.3 L animal-1 

day-1 and those of Group 2, 80.4 L animal-1 day-1. The average daily water consumption per 

Holstein lactating cows was 114 L animal-1 day-1 (Le Riche et al., 2017) and 78.4 L animal-1 
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day-1 (Appuhamy et al., 2016). Considering a lactation period, the animals of Group 1 drank 

165.9 m3 and those of Group 2,165 m3. The difference is 900 liters. Chouchane et al. (2015) 

and Owusu-Sekyere (2016) noted that blue water use is associated with production costs. 

In Group 1, the drinking water intake per kg of milk produced was 3.6 L kg-1 FPCM and 

for Group 2, 3.4 L kg-1 FPCM. The adjustment of the protein content of the diet contributed to 

a reduced consumption of drinking water and positively impacted the relation between water 

consumption by the quantity of product. The lack of routine measuring of water consumption 

in dairy farms is a great challenge to have more precise calculations of blue water consumption 

and footprint. Considering the various consumptions of blue water in the dairy system, drinking 

water consumption by lactating cows is one of the largest. Therefore, the use of water meters is 

essential for advancements in the water management of dairy production.  

Group 1 presented a higher value of grey water footprint. The results demonstrate that 

excessive crude protein content in the diet results in a higher consumption of water from the 

environment to assimilate the pollutant loads generated by the production system. By 

integrating nutrient-use efficiency (adjustable protein) with the calculation of the grey water 

footprint, it was possible to identify the relationship between the type of diet, the polluting 

potential, and the value of the footprint. The evaluation by White (2016) of the environmental 

benefits of animal-nutrition research demonstrated that improved protein efficiency greatly 

reduced the cost of achieving targeted reductions in water use in dairy production. Animals 

from the groups presented different nitrogen-use efficiencies, and consequently had different 

concentrations of it in their effluents. Therefore, the diet with adjustable protein produced an 

effluent with a lower nitrogen load, requiring less water to dilute the effluent. In this way, the 

study promoted the advantages of the relationships between the grey water footprint from 

diffuse sources and the nutritional management of the animal systems. The connection between 

the livestock productive aspects is essential. For example, diets with low green and/or blue 

footprints may result in high grey footprint values, because if the digestibility of the nutrients 

of the diet is poor, they will be eliminated as wastes, which will affect the volume of greywater. 

4. CONCLUSIONS 

The results demonstrated that the manipulation of the crude protein content of the lactating 

cow diet improved milk water efficiency in all water footprint dimensions. Footprint values 

showed that the nutritional approach can be a general recommendation across all regions and 

production systems to increase water efficiency and reduce the conflicts of resource availability. 

Therefore, the proposed nutritional practice proved viable as a water-mitigating action, making 

the ratio of liters of water per liter of milk more advantageous. The results reinforce the fact 

that the use of best practices in animal nutrition can also have positive impacts on several 

aspects of the dairy system. 

The results of this study could be considered a validation of a nutritional mitigation practice 

to improve water efficiency and could be used as best management by farmers, the dairy 

industry and governments as a water-saving strategy from an environment and economic cost–

benefit point of view. The study also contributes to the provision of benchmarks regarding 

mitigation actions that can be used to improve dairy water-use efficiency. Future studies should 

continue to explore the relationship between practices and technologies in animal nutrition and 

water efficiency, as well as other productive aspects such as genetics, the type of production 

system and the use and reuse of water and effluents in productive management. 

5. ACKNOWLEDGES 

To the Brazilian Agricultural Research Company – Embrapa Southeast Livestock and the 

researchers Teresa Cristina Alves and Andre Luiz M. Novo by the supplying in the study 



 

 

Rev. Ambient. Água vol. 15 n. 1, e2454 - Taubaté 2020 

 

8 Julio Cesar Pascale Palhares et al. 

delineation. This study was supported by The National Council for Scientific and Technological 

Development (CNPq) (Proc. 404243/2013-4). 

6. REFERENCES 

AGRITEMPO. Agrometeorological Monitoring System: Southeast Region stations. 

Available at: http://www.agritempo.gov.br/agritempo/redeEstacoes.jsp. Access: 2017. 

ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop evapotranspiration: guidelines 

for computing crop water requirements. Rome: FAO, 1998.  

APPUHAMY, J. A. D. R. N. et al. Prediction of drinking water intake by dairy cows. Journal 

of Dairy Science, v. 99, n. 9, p. 7191-7205, 2016. http://dx.doi.org/10.3168/jds.2016-

10950   

BAI, X. et al. Comprehensive water footprint assessment of the dairy industry chain based on 

ISO 14046: A case study in China. Resources, Conservation and Recycling, v. 132, p. 

369-375, 2018. http://dx.doi.org/10.1016/j.resconrec.2017.07.021     

BOSIRE, C. K.; OGUTU, J. O.; SAID, M.Y. et al. Trends and spatial variation in water and 

land footprints of meat and milk production systems in Kenya. Agriculture, Ecosystems 

and Environment, v. 205, p. 36–47, 2015. http://dx.doi.org/10.1016/j.agee.2015.02.015     

CHOUCHANE, H.; HOEKSTRA, A. Y.; KROL, M. S. et al. The water footprint of Tunisia 

from an economic perspective. Ecological Indicators, v. 52, p. 311–319, 2015. 

https://dx.doi.org/10.1016/j.ecolind.2014.12.015  

CONAMA (Brasil). Resolução nº 357 de 17 de março de 2005. Dispõe sobre a classificação 

dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como 

estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. 

Diário Oficial [da] União: seção 1, Brasília, DF, n. 053, p. 58-63, 18 mar. 2005. 

DE LÉIS, C. M. et al. Carbon footprint of milk production in Brazil: a comparative case study. 

The International Journal of Life Cycle Assessment, v. 20, n. 1, p. 46-60, 2015. 

http://dx.doi.org/10.1007/s11367-014-0813-3    

FAO. Technical conversion factor for agriculture commodities. 2013. Available at: 

http://www.fao.org/fileadmin/templates/ess/documents/methodology/tcf.pdf. Access: 

2017. 

FISCHER, A. et al. Studies on drinking water intake of fallow deer, sheep and mouflon under 

semi-natural pasture conditions. Grassland Science, v. 63, n. 1, p. 46-53, 2017. 

http://dx.doi.org/10.1111/grs.12149   
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