

Research Article

Metabolome heterogeneity in the isolates of entomopathogenic fungus, *Beauveria bassiana* (Balsamo) Vuillemin

P. R. NITHYA¹, S. MANIMEGALAI¹, S. NAKKEERAN², S. MOHANKUMAR³ and S. JAYARAJAN NELSON¹

¹Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India ²Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India ³Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore – 641003, Tamil Nadu, India

Corresponding author E-mail: menitz91@gmail.com, manimegalaiento@gmail.com

ABSTRACT: Entomopathogenic fungi are known to produce a multitude of low molecular weight secondary metabolites involved in different biological processes including fungal development, intercellular communication and interaction with other organisms in complex niches. In the present investigation, heterogeneity in metabolome profile of three isolates of *Beauveria bassiana viz.*, MH590235 (TM), MK918495 (BR) and KX263275 (BbI8) were analyzed through GC-MS. Distinct differences in metabolite profile of the isolates were observed. A total of 63 metabolites were detected from all the isolates combined. Metabolites, 5-Oxotetrahydrofuran-2-carboxylic acid and undecane were found to be specific to BR isolate. Macrocyclic gamma lactones were detected in culture filtrates of BR and BbI8, oleic acid and hexadecanoic acid in TM and BR. An insecticidal compound, levoglucos an was detected in all the fungal isolates. Among the isolates, TM revealed higher variability in the metabolite production through PCA analysis. The metabolome of TM isolate contained compounds having several biological functions, *viz.*, insecticidal and antimicrobial activity, lipid and fatty acid metabolisms and virulence enhancing factors.

KEYWORDS: Beauveria bassiana, biological functions, GC-MS, metabolome heterogeneity, PCA Analysis

(Article chronicle: Received: 16-07-2019; Revised: 14-11-2019; Accepted: 25-11-2019)

INTRODUCTION

Entomopathogens are considered as a promising component of Integrated Pest Management Programmes (Butt, 2001) among which fungal Biocontrol Agents (BCAs) are widely exploited in view of their broad spectrum activity and amenability for mass production. All BCAs are known for the production of enzymes and secondary metabolites responsible for pathogenicity. The cuticle degrading enzymes, *viz.*, lipases, proteases and chitinases were targets of study from the time of discovery of mode of action of these fungal BCAs but descriptive studies on the secondary metabolite production by these agents are meagre.

Most often, the fungal BCAs secrete metabolites in extremely small quantities even under optimal conditions (Vey *et al.*, 2001). Destruxins produced by *Metarhizium* spp. (Wahlman and Davidson, 1993), beauvericin and bassianolide by *Beauveria bassiana* (Xu *et al.*, 2008; Xu *et al.*, 2009), hirsutellin by *Hirsutella thompsonii* (Mazet and Vey, 1995) are the few metabolites widely studied. Little is known about the complete range of metabolites produced by most of the EPF. Though these fungi produce a wide array of bioactive compounds, the knowledge on specific role of a particular compound is lacking. Production of these metabolites may vary between genus, species and growth conditions (Kershaw *et al.*, 1999; Amiri-Besheli *et al.*, 2000; Wang *et al.*, 2004).

Many studies have been conducted on virulence of several strains of *Beauveria* spp. on insect hosts, in particular, *B. bassiana* (Talaei-Hassanloui *et al.*, 2006; Valero-Jiménez *et al.*, 2014). Few studies demonstrated variation in host range of fungus within species and between species of *Beauveria* (Rohrlich *et al.*, 2018). However, limited studies were carried out on the variation in metabolite profile among isolates of a particular species of fungal BCAs and hence the present study was undertaken to characterize variation in metabolite production among three isolates of *B. bassiana* grown under similar conditions.

MATERIALS AND METHODS

Cultures and growth conditions

Beauveria bassiana isolates bearing NCBI accessions MH590235, MK918495 and KX263275 were obtained from Department of Agricultural Entomology and Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, India. Pure cultures of the isolates were

maintained at 28±5°C on Potato Dextrose Agar (PDA) medium for carrying out the study. Mycelial discs were cut from heavily sporulated culture plates using cork borer and inoculated into Potato Dextrose Broth (PDB) for extraction of metabolites.

Extraction of secondary metabolites

Isolates of *B. bassiana* were cultured in PDB for seven days after which culture filtrates were collected and adjusted to pH 2.0 with 37% (wt/vol) HCl. Metabolites were thrice extracted with an equal volume of ethyl acetate and the pooled ethyl acetate extracts of three biological replicates were dried using a rotary evaporator and re-suspended in HPLC grade methanol (1 ml). The extracts were then dried over Na₂SO₄ and evaporated under vacuum at 60° C to concentrate the metabolites. The metabolites were finally dissolved in HPLC grade methanol and utilized for GC-MS analysis (Strasser *et al.*, 2000).

Gas Chromatography- Mass Spectrometry (GC-MS)

The samples were analyzed using a model Clarus SQ 8C (Perkin Elmer) equipped with a MSD detector (Perkin Elmer). The GC injector port temperature was set to 220°C, interface temperature at 250°C and source temperature was set at 220°C. The MS range was set to scan from 50 to 550 Da. The oven temperature was programmed to 75°C (hold 2 min), then to 150°C (10°C/min), then to 250°C (10°C/min). The injection volume of 1.0 µl and split ratio of 1:12 and the injector used was split less mode. Helium was used as the carrier gas in constant-flow mode of 1.0 ml/min. The DB-5 MS capillary standard non - polar column (Agilent Co., USA) with dimensions were 0.25mm OD x 0.25µm ID x 30 m length was used for analysis. The MS source was maintained at 220°C, 4.5e-6 motor vacuum pressure and ionization energy was set to -70eV. The MS have inbuilt pre-filter which reduced the neutral particles. Interpretation of mass spectrum of GC-MS was done using the database of National Institute Standard and Technology (NIST14). The spectrum of the unknown component was compared with the spectrum of the known components stored in the inbuilt library.

Identification of the metabolites were performed using spectra of individual components transferred to the NIST mass spectral search programs MS Search 2.2v where they were matched against the NIST MS library. Biological function of these compounds was identified by mapping all the metabolites in the KEGG database and Metaboanalyst 2.0.

Statistical analysis

Principal Component Analysis (PCA) and heatmap construction combined with hierarchical clustering were performed using JMP software (version 14) using the data from GC-MS. Percentage area values were used as independent variables in this multivariate analysis. Metabolites were clustered using R software for heat map generation.

RESULTS AND DISCUSSION

Culture filtrates of three isolates of B. bassiana were extracted using ethyl acetate and the variability in metabolite profile of different isolates of Beauveria bassiana were assessed using GC-MS (Fig. 1, 2, 3). In the present investigation, intraspecific variation was observed in the metabolites extracted from culture filtrates of the three isolates of B. bassiana. 29 metabolites including alkanes, carboxylic acid derivatives, glucopyranose and galactofuranose derivatives, unsaturated fatty acids, hexadecanoic acid derivatives were identified in TM isolate (Table 1, Fig. 1). 29 and 26 metabolites were detected in BR and BbI8 isolates mass spectrum respectively (Table 2, 3). Hyun et al. (2013) reported the presence of alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides in 70 % methanol and 100 % hexane extracts of fruiting bodies of Cordyceps bassiana.

PCA is a powerful tool to selectively identify the major controlling factors contributing to differences between samples. It is hence applied in the present study for the comparative visualization and interpretations of the changes in the metabolites profiles of three *B. bassiana* isolates (Ramadan *et al.*, 2006).

PCA biplot for ethyl acetate extracts of three isolates of *B. bassiana* are presented in Figure 4. In the biplot, PCA 1 explained 52 % of the variation and PCA 2 explained 33.2 % of the variation. Results showed clear distinction of TM from other isolates. TM was separated alone in PC 1 while BR and Bb18 were separated from TM along PC 2. Higher levels of palmitic acid and oleic acid were obtained in TM compared to BR.

The present investigation showed distinct differences in metabolite profile of *B. bassiana* isolates (Fig. 5, 6). BR and BbI8 isolates showed similarities in the level of metabolite production (Fig. 4). An anhydrase, 1,6-anhydro- α -D-Glucopyranose (levoglucosan) was detected in all the three isolates. A gamma lactone, 5-Oxotetrahydrofuran-2carboxylic acid was found to be present in the isolates, TM and BbI8. Syed *et al.* (2018) reported the insecticidal activity of levoglucosan obtained through pyrolysis of bio-oils against cutworm larvae.

The furan metabolite, 5-Oxotetrahydrofuran-2-carbox ylic acid is a derivative of bassialone, an antimicrobial secondary metabolite produced by *B. bassiana* was detected in TM isolate in the present study. However, this was absent in BR isolate which showed clear variation in metabolite profile and this may indicate reduced virulence. 2-Deoxy-2-fluoro-1,6-anhydro-á-d-glucopyranose, 3-Hydroxy-2,3-dihydromaltol, 5-Hydroxymethylfurfural, Trioxsalen, Sucrose, Octadecanoic acid and 9,12-Octadecadienoic acid (Z,Z)- were detected in all the three isolates (Table 4) but the level of production varied among the isolates in terms of per cent area. This was confirmed through correlation analysis where positive significant correlation was detected between BR and BbI8 isolates of *B. bassiana* (Table 5, Fig. 7).

The metabolome of isolate TM was completely different from the other two isolates thus revealing least similarity with the other isolates (Fig. 5). Many studies were conducted in relation to the heterogeneity of secretome of entomopathogenic fungi under different growth conditions as well as extraction methods (Smedsgaard, 1997; Hyun *et al.*, 2013; Oh *et al.*, 2014). de Bekker *et al.* (2013) studied variation in metabolite production of *Metarhizium* and *Beauveria* during infectious and saprophytic growth.

Toxicity of secondary metabolites of *B. brongniartii* against pine caterpillar, *Dendrolimus tabulaeformis* was reported by Fan *et al.* (2008). Secondary metabolites of *B. brongniartii* was found to disable the immune mechanisms of *D. tabulaeformis*, and kill its host (Fan *et al.*, 2013). In the present study, the metabolome of isolate TM was completely different from the other two isolates thus revealing least similarity with the other isolates (Fig. 5). In a previous study, isolate TM registered lowest values of LC50 (2.4 x 107 conidia ml-1) and LT50 (3.62 days) compared to the BR

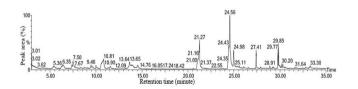


Fig. 1. GC-MS chromatogram of secondary metabolites from *Beauveria bassiana* TM.

Fig. 2. GC-MS chromatogram of secondary metabolites from *Beauveria bassiana* BR.

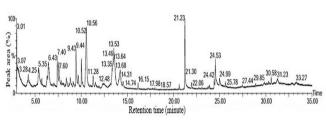


Fig. 3. GC-MS chromatogram of secondary metabolites from *Beauveria bassiana* Bb18.

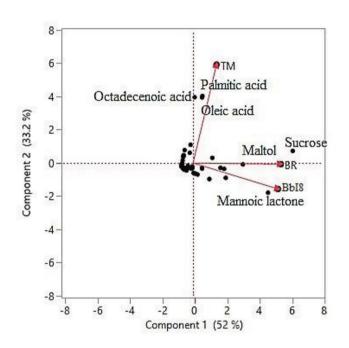


Fig. 4. PCA biplot of three isolates of Beauveria bassiana.

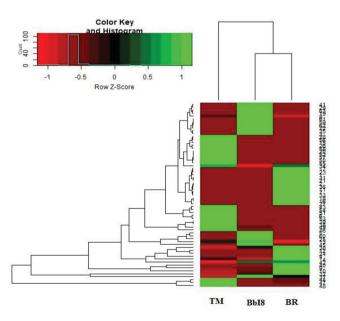


Fig. 5. Heatmap and hierarchial clustering of GC-MS profiles of three isolates of *Beauveria bassiana*.

Molecular Area Molecular Sl. No Compound RT weight **Biological** action Reference (%) formula (g/mol) Insecticidal, repellent, Ibrahim *et al.*. Cyclohexanamine, N-3-butenyl-N-5.449 1 1.857 221.388 C₁₅H₂₇N methylantimicrobial 2001 Mild sex attractant of Hölldobler and 2 Undecane 5.674 0.348 moths, alert signal for 156.31 C11H24 Wilson, 1990 insects 2-Deoxy-2-fluoro-1,6-anhydro-á-d-3 6.275 0.761 182.15 Cell wall synthesis Douglas, 2001 C₆H₁₁FO₅ glucopyranose 4 3-Hydroxy-2,3-dihydromaltol 6.395 2.744 128.13 C_H_oO, 5-Oxotetrahydrofuran-2-carboxylic Bassianolone Oller-Lopez et 5 7.395 1.255 130.099 C₅H₆O₄ acid derivative al., 2005 Kadowaki et al., 6 5-Hydroxymethylfurfural 7.500 3.083 126.11 Fermentation inhibitor $C_6H_6O_3$ 2018 1,3-Oxathiolane, 2-methyl-2-iso-7 7.795 0.686 146.250 C7H14OS propyl-8 Cyclohexanone, 2-(2-butynyl)-8.766 0.364 150.221 Antibacterial activity Liu et al., 2009 C10H14O Sulfurous acid, cyclohexylmethyl Domon et al., 9 9.461 1.088 332.543 Insecticidal C18H36O3S undecyl ester 2018 1,3-Propanediol, 2-methyl-2-pro-10 9.646 0.827 Lipid metabolosim Liu et al., 2015 132.203 $C_{7}H_{16}O_{2}$ pvl-Gowri et al.. 11 Trioxsalen 9.991 0.836 228.24 Antimicrobial C₁₄H₁₂O₃ 2011 Samsinakova, Source for growth and 12 10.832 8.207 Sucrose 342.297 C12H22O11 spore production 1966 13 á-D-Glucopyranose, 1,6-anhydro-11.542 0.838 162.141 C₆H₁₀O₅ Insecticidal Syed et al., 2018 Bernabe et al.. 14 1,6-Anhydro-à-d-galactofuranose 13.663 4.054 162.141 C₆H₁₀O₅ Cell wall component 2011 13.908 15 2-Imidazolidinethione 4.060 102.158 C₂H₆N₂S á-D-Glucopyranose, 4-O-á-D-Bernabe *et al.*. 16 14.548 2.726 342.297 Cell wall component C₁₂H₂₂ galactopyranosyl-2011 Pesticidal activity, Vivekanadan et 17 Palmitic acid 21.271 16.273 256.43 C₁₆H₃₂O₂ Lipid peroxidation al., 2018 Zhang et al., 24.447, 5.522 18 9,12-Octadecadienoic acid (Z,Z)-280.4 Fatty acid metabolism C18H32O2 2012 26.078 Brennan et al., 19 9-Octadecenoic acid, (E)-24.562 15.968 282.4614 Fatty acid metabolism C₁₈H₃₄O₂ 1975 Zhang et al., 20 Octadecanoic acid 24.977 3.766 284.48 Fatty acid metabolism C₁₈H₃₆O₂ 2012 Zhang *et al.*, 21 Ethyl linoleate 25.332 0.379 308.4986 Fatty acid metabolism C20H36O2 2012 Zhang et al., 22 27.413 2.950 Glycidyl palmitate 312.494 Fatty acid metabolism C19H36O3 2012 Suresh et al., 28.909 23 Eicosanoic acid, ethyl ester 0.363 340.592 Antimicrobial activity $C_{22}H_{44}O_{2}$ 2014 Zhang et al., 24 Butyl linoleate 29.774 1.760 336.56 Fatty acid metabolism $C_{22}H_{40}O_{2}$ 2012 Zhang et al., Fatty acid metabolism 25 Glycidyl oleate 29.854 2.540 338.532 C21H38O3 2012 Ortiz-Urquiza Enhancement of 30.204 0.436 568.924 26 1,3-Distearoylglycerol C35H68O5 et al., 2016 virulence

Table 1. GC-MS based metabolite profile of Beauveria bassiana TM

27	2-Palmitoylglycerol	30.319	0.800	330.5026	C ₁₉ H ₃₈ O ₄	Insecticidal	Nagalakshmi and Murthy, 2015
28	Digitoxin	32.855	0.370	764.95	C ₄₁ H ₆₄ O ₁₃	Na-K ATPase inhibitor	PubChem 441201
29	Oleic anhydride	33.295	0.986	546.921	C ₃₆ H ₆₆ O ₃	Fatty acid metabolism	Zhang et al., 2012

Table 2.	GC-MS based metabolite profile of Beauveria bassiana BR
----------	---

Sl. No	Compound	RT	Area (%)	Molecular weight (g/mol)	Molecular formula	Biological action	Reference
1	2-Deoxy-2-fluoro-1,6- anhydro-á-d- glucopyranose	3.013	8.110	182.15	C ₆ H ₁₁ FO ₅	Cell wall synthesis	Douglas, 2001
2	Dihydrothiophenone	3.574	0.729	102.151	C ₄ H ₆ OS	Insecticidal , nematicidal	Champagne <i>et</i> <i>al.</i> , 1986; Hudson and Toers, 1991
3	2-t-Butyl-5-propyl-[1,3] dioxolan-4-one	4.174	0.458	186.251	$C_{10}H_{18}O_{3}$	Fungitoxic	Horsefall and Lukens, 1965
4	Thymine	5.414	5.303	126.11	C5H6N2O2	Pyridine metabolism	Liu <i>et al.</i> , 2015
5	Nonane, 2- methyl-5-propyl-	5.664	0.559	184.367	C ₁₃ H ₂₈	Insect growth regulator	Mian and Mulla, 1982
6	3-Hydroxy-2,3- dihydromaltol	6.425	9.919	128.13	$C_6H_8O_3$	-	-
7	Cyclohexane, 1,1'- dodecylidenebis [4-methyl-	7.040	0.431	362.6752	C ₂₆ H ₅₀	Insecticidal, repellent, antimicrobial	Ibrahim <i>et al</i> ., 2001
8	(S)-(-)-1- Amino-2- (methoxymethyl)- pyrrolidine	7.365	2.820	130.19	C ₆ H ₁₄ N ₂ O	Antimicrobial	Dumoulin <i>et al.</i> , 2010
9	5-Hydroxymethylfurfural	7.500	3.083	126.11	C ₆ H ₆ O ₃	Fermentation inhibitor	Kadowaki <i>et al.</i> , 2018
10	Coumarin-6-carboxalde- hyde	7.770	1.326	174.155	C ₁₀ H ₆ O ₃	Antimicrobial	Al-Majedy <i>et al.</i> , 2017
11	1-Decanamine	7.980	0.673	269.517	C ₁₈ H ₃₉ N	-	-
12	1-(Methylthio)-3-pentanone	8.331	1.330	132.23	C ₆ H ₁₂ OS	-	-
13	N-Nitroso-2,4,4- trimethyloxazolidine	8.766	0.831	144.172	$C_6 H_{12} N_2 O_2$	Antimicrobial, Anti-inflamma- tory	Kim <i>et al.</i> , 2001
14	2-Hydroxy-3- methylsuccinic acid	9.086	0.632	148.114	$C_5H_8O_5$	TCA cycle derivative	Hyun <i>et al.</i> , 2013
15	2,2-Dimethylcyclopropan- carboxylic acid	9.466	2.422	114.14	$C_{6}H_{10}O_{2}$	-	-
16	Hydroxy- docosahexaenoic acid	9.666	1.114	344.5	C ₂₂ H ₃₂ O ₃	Antibacterial	Mil-Homens <i>et al.</i> , 2012
17	Trioxsalen	9.986	2.949	228.24	C ₁₄ H ₁₂ O ₃	Antimicrobial	Gowri <i>et al.</i> , 2011
18	1,2-Heptanediol	10.161	0.851	132.2	C ₇ H ₁₆ O ₂	-	-
19	Sucrose	10.821	14.363	342.297	C ₁₂ H ₂₂ O ₁₁	Source for growth and spore production	Samsinakova, 1966

20	Sumatriptan	11.297	0.519	295.402	$C_{14}H_{21}N_3O_2S$	Serotonin receptor agonist	NCBI, 2018
21	á-D-Glucopyranose, 1,6-anhydro-	11.552	0.787	162.1406	$C_{6}H_{10}O_{5}$	Insecticidal	Syed et al., 2018
22	Ethylenediamine-N,N'-dipropionic acid	13.317	0.456	204.226	$C_8 H_{16} N_2 O_4$	Insecticidal	Paulraj et al., 2011
23	3-Deoxy-d-mannoic lactone	13.643	6.063	162.14	$C_{6}H_{10}O_{5}$	Fructose and mannose metabolism	Hyun <i>et al.</i> , 2013
24	4,5-Dihydroxy-6-hydroxymethyl -oxepan-3-one	14.133	10.885	176.17	$C_7 H_{12} O_5$	-	-
25	3-Deoxy-d-mannonic acid	14.643	5.113	180.156	$C_{6}H_{12}O_{6}$	Fructose and mannose metabolism	Hyun et al., 2013
26	Palmitic acid	21.236	1.907	256.43	$C_{16}H_{32}O_{2}$	Pesticidal activity, Lipid peroxidation	Vivekanadan et al., 2018
27	9,12-Octadecadienoic acid (Z,Z)-	24.402	0.447	280.4	C ₁₈ H ₃₂ O ₂	Fatty acid metabolism	Zhang et al., 2012
28	Oleic Acid	24.522	1.866	282.47	C ₁₈ H ₃₄ O ₂	Fatty acid metabolism	
29	Octadecanoic acid	24.972	0.504	284.48	C ₁₈ H ₃₆ O ₂	Fatty acid metabolism	

Table 3.	GC-MS based	metabolite	profile of	f Beauveria	<i>bassiana</i> Bb18
----------	-------------	------------	------------	-------------	----------------------

Sl. No	Compound	RT	Area (%)	Molecular weight (g/mol)	Molecular formula	Biological action	Reference
1	Undecane	4.249	1.086	184.37	C ₁₃ H ₂₈	Mild sex attractant of moths, alert signal for insects	Hölldobler and Wilson, 1990
2	2-Nonadecanone 2,4- dinitrophenylhydrazine	4.334	0.552	462.635	$C_{25}H_{42}N_4O_4$	-	-
3	Clindamycin	5.389	2.804	424.98	C ₁₈ H ₃₃ ClN ₂ O ₅ S	Antibiotic	Woappi <i>et al.,</i> 2016
4	2-Deoxy-2-fluoro-1,6-anhy- dro-á-d-glucopyranose	6.315	1.322	182.15	$C_6H_{11}FO_5$	Cell wall synthesis	Douglas, 2001
5	3-Hydroxy-2,3-dihydromaltol	6.435	4.010	128.13	C ₆ H ₈ O ₃	-	-
6	5-Oxotetrahydrofuran-2-car- boxylic acid	7.400	1.985	130.099	C5H6O4	Bassianolone derivative	Oller-Lopez et al., 2005
7	5-Hydroxymethylfurfural	7.555	1.544	126.11	C ₆ H ₆ O ₃	Fermentation inhibitor	Kadowaki et al., 2018
8	1,2,3-Butanetriol	8.391	0.951	106.121	C ₄ H ₁₀ O ₃	-	-
9	2-Methoxy-4-vinylphenol	8.821	0.776	150.177	$C_{9}H_{10}O_{2}$	-	-
10	3-Propylglutaric acid	9.441	3.237	174.196	$C_8H_{14}O_4$	-	-
11	1,3-Dioxane-5-methanol, 4,5-dimethyl-	9.676	1.094	146.186	$C_{7}H_{14}O_{3}$		
12	Trioxsalen	10.021	1.679	228.24	$C_{14}H_{12}O_{3}$	Antimicrobial	Gowri <i>et al.</i> , 2011
13	Sucrose	10.556	9.462	342.297	C ₁₂ H ₂₂ O ₁₁	Source for growth and spore production	Samsinakova, 1966
14	á-D-Glucopyranose, 1,6-an- hydro-	11.532	0.568	162.141	$C_{6}H_{10}O_{5}$	Insecticidal	Syed <i>et al.,</i> 2018
15	Benzocycloheptano[2,3,4-I ,j]isoquinoline, 4,5,6,6 atetrahydro-1,9-dihydroxy- 2,10-dimethoxy-5-methyl-	12.482	0.584	341.407	C ₂₀ H ₂₃ NO ₄	-	

16	3-Deoxy-d-mannoic lactone	13.528	12.451	162.14	$C_{6}H_{10}O_{5}$	Fructose and mannose metabolism	Hyun <i>et al.</i> , 2013
17	3-Deoxy-d-mannonic acid	14.228	4.823	180.156	$C_6H_{12}O_6$	Fructose and mannose metabolism	Hyun <i>et al.</i> , 2013
18	d-Glycero-d-galacto-heptose	14.533	1.143	210.182	$C_7 H_{14} O_7$	-	-
19	Propanamide, 2-(3,5-dioxopip- erazin-1-yl)-3-phenyl-	21.241	5.571	393.912	C ₂₀ H ₂₈ ClN ₃ O ₃	-	-
20	9,12-Octadecadienoic acid (Z,Z)-	24.417	0.573	280.4	$C_{18}H_{32}O_{2}$	Fatty acid metabolism	Zhang <i>et al.</i> , 2012
21	cis-Vaccenic acid	24.532	2.442	282.468	$C_{18}H_{34}O_{2}$	-	-
22	Octadecanoic acid	24.987	0.668	284.48	$C_{18}H_{36}O_{2}$	Fatty acid metabolism	Zhang <i>et al.</i> , 2012
23	Methly palmitate	30.314	0.807	444.647	$C_{28}H_{44}$	Fatty acid metabolism	Zhang <i>et al.</i> , 2012
24	Diisooctyl phthalate	30.584	0.807	390.564	$C_{24}H_{38}O_4$	Insecticidal	(Wakil <i>et al.,</i> 2017
25	1,2-Dipalmitin	30.940	0.818	568.924	$C_{35}H_{68}O_5$	Insecticidal	Ragavendran <i>et al.</i> , 2017
26	Ethyl iso-allocholate	31.235	1.008	436.633	$C_{26}H_{44}O_5$		

Table. 4. Comparison of metabolites of different isolates of Beauveria bassiana

SI NO	Commond		Isolatesof Beauveria bas	ssiana
SI. NO.	Compound	TM	BR	B10
1	5-Oxotetrahydrofuran-2-carboxylic acid	+	-	+
2	á-D-Glucopyranose, 1,6-anhydro-	+	+	+
3	Undecane	+	-	+
4	2-Deoxy-2-fluoro-1,6-anhydro-á-d-glu- copyranose	+	+	+
5	3-Hydroxy-2,3-dihydromaltol	+	+	+
6	5-Hydroxymethylfurfural	+	+	+
7	Trioxsalen	+	+	+
8	Sucrose	+	+	+
9	3-Deoxy-d-mannoic lactone	-	+	+
10	3-Deoxy-d-mannonic acid	-	+	+
11	n-Hexadecanoic acid	+	+	-
13	Octadecanoic acid	+	+	+
14	9,12-Octadecadienoic acid (Z,Z)-	+	+	+
15	Oleic Acid	+	+	-
+	Detected			
-	Not detected			

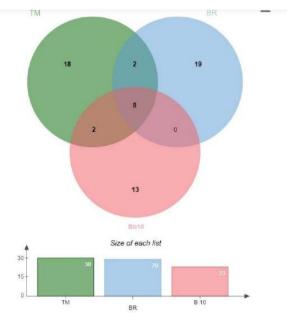


Fig. 6. Venn diagram representing the GC-MS profile of *Beauveria bassiana* isolates.

(Nithya *et al.*, 2019). The enhanced virulence of TM may be attributed to the distinctive metabolites involved in lipid and fatty acid metabolisms. These metabolites might have enabled the fungus to overcome the action of detoxifying enzymes inside insects such as esterases and glutathione-Stransferases which take part in defense responses against the fungus.

In this study, non-targeted profiling approach was performed using GC-MS for metabolite profiling of three isolates of *B. bassiana*. The metabolite profile varied within the species and distinct profiles were recorded in the three study isolates, TM, BR and BbI8. So far, there are no reports on the correlation of metabolites between different isolates of *B. bassiana* and hence the results of the study can be used to interpret the pathogenicity of different isolates of entomopathogenic fungus against any host insect paving way for its management.

ACKNOWLEDGMENTS

The first author thanks the Department of Science and Technology, Government of India for providing an INSPIRE fellowship (IF160933). The authors express their sincere thanks to the Department of Microbiology of Tamil Nadu Agricultural University for technical assistance for GC-MS.

REFERENCES

Amiri-Besheli B, Khambay B, Cameron S, Deadman ML, Butt T.M. 2000. Inter- and intra-specific variation in destruxin production by insect pathogenic *Metarhizium spp.*, and its significance to pathogenesis. *Mycol Res.* 104: 447-452. https://doi.org/10.1017/S095375629900146X https://doi.org/10.1017/S095375629900146X

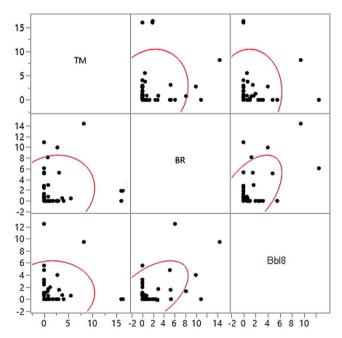


Fig. 7. Scatterplot matrix illustrating the pairwise correlation between the *Beauveria bassiana* isolates.

- Bernabé M, Salvachúa D, Jiménez-Barbero J, Leal JA, Prieto A. 2011. Structures of wall heterogalactomannans isolated from three genera of entomopathogenic fungi. *Fungal Biol.* 115(9): 862-870. https://doi.org/10.1016/j. funbio.2011.06.015 https://doi.org/10.1016/j. funbio.2011.06.015 PMid:21872183
- Brakhage AA. 2013 Regulation of fungal secondary metabolism. Nat Rev Microbiol. 11(1):21-32. https:// doi.org/10.1038/nrmicro2916 https://doi.org/10.1038/ nrmicro2916 PMid:23178386
- Brennan PJ, Griffin PF, Lösel DM, Tyrrell D. 1975. The lipids of fungi. *Prog Chem Fats Lipids* 14: 49-89. https://doi. org/10.1016/0079-6832(75)90002-6
- Butt TM, Jackson CW, Magan N. 2001. Fungi as Biocontrol Agents: Potential, Progress and Problems. CAB International, Wallingford. https://doi.org/10.1079/9780851993560.0000
- deBekker C, Smith PB, Patterson AD, Hughes DP. 2013. Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues. *PLoS ONE* 8(8): e70609. https:// doi.org/10.1371/journal.pone.0070609 https://doi. org/10.1371/journal.pone.0070609 PMid:23940603 PMCid:PMC3734240
- Domon K, Keiji T, Yutaka O, Junichiro B, Kei K, Akira W, Masaaki K, Takeshi M, Seisuke I. 2018. "Alkyl phenyl sulfide derivative and pest control agent." U.S. Patent Application 10/023,532, filed July 17, 2018.

- Douglas CM. 2001. Fungal β (1, 3)-D-glucan synthesis. *Sabouraudia* **39**(1): 55-66. https://doi.org/10.1080/ mmy.39.1.55.66 https://doi.org/10.1080/ mmy.39.1.55.66 PMid:11800269
- Gowri PM, Haribabu K, Kishore H, Manjusha O, Biswas S, Murty USN. 2011. Microbial transformation of(+)heraclenin by Aspergillus niger and evaluation of its antiplasmodial and antimicrobial activities. *Current Sci.* 100(11):1706-1711.
- Hölldobler B, Wilson EO. 1990. The Ants. Harvard University Press, US. https://doi.org/10.1007/978-3-662-10306-7 PMid:24263721
- Hyun SH, Lee SY, Sung GH, Kim SH, Choi HK. 2013. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps *bassiana* Fruiting Bodies According to Developmental Stage. *PLoS ONE*. 8(9): e73065. https://doi.org/10.1371/journal.pone.0073065 https:// doi.org/10.1371/journal.pone.0073065 PMid:24058459 PMCid:PMC3772819
- Retrieved from: https://pubchem.ncbi.nlm.nih.gov/ compound/Digitoxin
- Kadowaki M, Godoy M, Kumagai P, Costa-Filho A, Mort A, Prade R, Polikarpov I. 2018. Characterization of a new glyoxal oxidase from the thermophilic fungus Myceliophthora thermophila M77: hydrogen peroxide production retained in 5-hydroxymethylfurfural oxidation. *Catalysts* 8(10): 476. https://doi.org/10.3390/ catal8100476. https://doi.org/10.3390/catal8100476
- Keller NP. 2015. Translating biosynthetic gene clusters into fungal armor and weaponry. *Nat Chem Biol.* 11(9):671-677. https://doi.org/10.1038/nchembio.1897 PMid:26284674 PMCid:PMC4682562
- Kershaw MJ, Moorhouse ER, Bateman RP, Reynolds SE, Charnley AK. 1999. The role of destruxins in the pathogenicity of *Metarhizium anisopliae* for three species of insect. *J Invertebr Pathol.* **74**: 213-223. https://doi.org/10.1006/jipa.1999.4884 PMid:10534408
- Liu H, Zhao X, Guo M, Liu H, Zheng Z. 2015. Growth and metabolism of *Beauveria bassiana* spores and mycelia. *BMC Microbiology* **15**(1): 267. https://doi. org/10.1186/s12866-015-0592-4 PMid:26581712 PMCid:PMC4652391
- Liu L, Liu S, Chen X, Guo, L, Che Y. 2009. Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus *Pestalotiopsis fici*. *Bioorg Med Chem*. 17: 606-613. https://doi.org/10.1016/j.bmc.2008.11.066 PMid:19101157

- Mazet I, Vey A. 1995. Hirsutellin A, a toxic protein produced in vitro by *Hirsutella thompsonii*. *Microbiology* **141**(6): 1343-1348. https://doi.org/10.1099/13500872-141-6-1343 PMid:7670635
- Mil-Homens D, Bernardes N, Fialho AM. 2012. The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen *Burkholderia cenocepacia*. *FEMS Microbiol Lett.* **328**(1): 61-69. https://doi.org/10.1111/j.1574-6968.2011.02476.x PMid:22150831
- Oh TJ, Hyun SH, Lee SG, Chun YJ, Sung GH. 2014. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of *Cordyceps pruinosa* mycelia cultivated under different media and light conditions. *PLoS ONE* **9**(3): e90823. https://doi.org/10.1371/journal.pone.0090823 PMid:24608751 PMCid:PMC3946585
- Oller-López JL, Iranzo M, Mormeneo S, Oliver E, Cuerva JM, Oltra JE. 2005. Bassianolone: an antimicrobial precursor of cephalosporolides E and F from the entomoparasitic fungus *Beauveria bassiana*. Org Biomol Chem. 3(7): 1172-1173. https://doi.org/10.1039/ B417534D PMid:15785802
- Ortiz-Urquiza A, Fan Y, Garrett T, Keyhani NO. 2016. Growth substrates and caleosin-mediated functions affect conidial virulence in the insect pathogenic fungus *Beauveria bassiana*. *Microbiology* **162**(11): 1913-1921. https://doi.org/10.1099/mic.0.000375 https://doi. org/10.1099/mic.0.000375 PMid:27655425
- Paulraj MG, Reegan AD, Ignacimuthu S. 2011. Toxicity of Benzaldehyde and Propionic Acid against Immatureand Adult Stages of *Aedes aegypti* (Linn.) and Culex quinquefasciatus (Say) (Diptera: Culicidae). *J Entomol.* 8: 539-547. https://doi.org/10.3923/je.2011.539.547 https://doi.org/10.3923/je.2011.539.547
- Ragavendran C, Dubey NK, Natarajan D. 2017. Beauveria bassiana (Clavicipitaceae): a potent fungal agent for controlling mosquito vectors of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). RSC Advances. 7(7): 3838-3851. https://doi. org/10.1039/C6RA25859J
- Ramadan Z, Jacobs D, Grigorov M, Kochhar S. 2006. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. *Talanta* 68: 1683-1691. https://doi. org/10.1016/j.talanta.2005.08.042 PMid:18970515
- Rohrlich C, Merle I, MzeHassani I, Verger M, Zuin M, Besse S. 2018. Variation in physiological host range in

three strains of two species of the entomopathogenic fungus Beauveria. *PLoS ONE* **13**(7): e0199199. https://doi.org/10.1371/journal.pone.0199199 PMid:29975710 PMCid:PMC6033404

- Sayed AM, Behle RW, Tiilikkala K, Vaughn SF. 2018. Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against *Agrotis ipsilon* (Lepidoptera: Noctuidae). *Pestic Phytomed.* **33**(1): 39-52. https://doi.org/10.2298/PIF1801039S
- Smedsgaard J. 1997. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. *J Chromatogr A* **760**(2): 264-270. https://doi.org/10.1016/s0021-9673(96)00803-5 https://doi.org/10.1016/S0021-9673(96)00803-5
- Strasser H, Abendstein D, Stuppner H, Butt TM. 2000. Monitoring the distribution of secondary metabolites produced by the entomogenous fungus *Beauveria brongniartii* with particular reference to oosporein. *Mycol Res.* **104**: 1227-1233. https://doi.org/10.1017/ S0953756200002963 https://doi.org/10.1017/ S0953756200002963
- Strasser H, Vey A, Butt TM. 2000. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of *Metarhizium, Tolypocladium* and *Beauveria* species? *Biocontrol Sci Technol.* 10: 717-735. https:// doi.org/10.1080/09583150020011690 https://doi. org/10.1080/09583150020011690
- Talaei-Hassanloui R, Kharazi-Pakdel A, Goettel M, Mozaffari J. 2006. Variation in virulence of *Beauveria bassiana* isolates and its relatedness to some morphological characteristics. *Biocontrol Sci Technol.* 16(5): 525-534. https://doi.org/10.1080/09583150500532758 https://doi.org/10.1080/09583150500532758
- Valero-Jiménez CA, Debets AJ, van Kan JA, Schoustra SE, Takken W, Zwaan BJ. 2014. Natural variation in virulence of the entomopathogenic fungus *Beauveria bassiana* against malaria mosquitoes. *Malar J.* 13(1):1-8. https:// doi.org/10.1186/1475-2875-13-479 PMid:25480526 PMCid:PMC4364330
- Vey A, Hoagland R, Butt TM. 2001. Toxic metabolites of fungal biocontrol agents, pp. 311-345. In: Butt TM, Jackson CW. and Magan N. (Eds.). Fungi as Biocontrol Agents: Potential, Progress and Problems. CAB International, Wallingford, UK. https://doi. org/10.1079/9780851993560.0311

- Vivekanandhan P, Kavitha T, Karthi S, Senthil-Nathan S, Shivakumar M. 2018. Toxicity of *Beauveria bassiana-28* mycelial extracts on larvae of *Culex quinquefasciatus* mosquito (Diptera: Culicidae). *Int J Environ Res* Public Health **15**(3): 440. https://doi.org/10.3390/ ijerph15030440 PMid:29510502 PMCid:PMC5876985
- Wakil W, Yasin M, Shapiro-Ilan D. 2017. Effects of single and combined applications of entomopathogenic fungi and nematodes against *Rhynchophorus ferrugineus* (Olivier). *Sci Rep.* 7(1): 5971. https://doi.org/10.1038/s41598-017-05615-3 PMid:28729649 PMCid:PMC5519636
- Wahlman M, Davidson BS. 1993. New destruxins from the entomopathogenic fungus *Metarhizium anisopliae*. *J Nat Prod.* 56(4): 643-647. https://doi.org/10.1021/ np9601216
- Wang CS, Skrobek A, Butt TM. 2004. Investigations on the destruxin production of the entomopathogenic fungus *Metarhizium anisopliae* in liquid and solid media. J *Invertebr Pathol.* 85: 168-174. https://doi.org/10.1016/j. jip.2004.02.008 PMid:15109899
- Woappi Y, Gabani P, Singh A, Singh O.V. 2016. Antibiotrophs: the complexity of antibiotic-subsisting and antibioticresistant microorganisms. *Crit Rev Microbial*. 42(1): 17-30. https://doi.org/10.3109/1040841X.2013.875982 PMid:24495094
- Xu Y, Orozco R, Wijeratne EK, Espinosa-Artiles P, Gunatilaka AL, Stock SP, Molnár I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of *Beauveria bassiana*. *Fungal Genet Biol.* **46**(5): 353-364. https://doi. org/10.1016/j.fgb.2009.03.001 PMid:19285149
- Xu Y, Orozco R, Wijeratne EMK, Gunatilaka AAL, Stock SP, Molnár I. 2008. Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus *Beauveria bassiana*. *Chem Biol.* **15**: 898-907. https://doi.org/10.1016/j. chembiol.2008.07.011 PMid:18804027
- Zhang S, Widemann E, Bernard G, Lesot A, Pinot F, Pedrini N, Keyhani NO. 2012. CYP52X1, representing new cytochrome P450 subfamily, displays fatty acid hydroxylase activity and contributes to virulence and growth on insect cuticular substrates in entomopathogenic fungus *Beauveria bassiana*. *J Biol Chem.* 287(16): 13477-13486. https://doi.org/10.1074/jbc.M111.338947 https://doi.org/10.1074/jbc.M111.338947 PMid:22393051 PMCid:PMC3339963