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Abstract 

Solar energy is a renewable energy source directly from sunlight and its production depends on roof characteristics such as roof type 

and size. In solar potential analysis, the main purpose is to determine the suitable roofs for the placement of solar panels. Hence, roof 

plane detection plays a crucial role in solar energy assessment. In this study, a detailed comparison was presented between aerial 

photogrammetry data and LIDAR data for roof plane recognition applying RANSAC (Random Sample Consensus) algorithm. 

RANSAC algorithm was performed to 3D-point clouds obtained by both LIDAR (Laser Ranging and Detection) and aerial 

photogrammetric survey. In this regard, solar energy assessment from the results can be applied. It is shown that, the RANSAC 

algorithm detects building roofs better on the point cloud data acquired from airborne LIDAR regarding completeness within model, 

since aerial photogrammetric survey provides noisy data in spite of its high-density data. This noise in the source data leads to 

deformations in roof plane detection. The study area of the project is the campus of Istanbul Technical University. Accuracy 

information of the roof extraction of three different buildings are presented in tables. 
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Introduction 

In the 21st century, long-term conservation of natural 

resources, sustainability practices, and environmental 

monitoring are of great importance throughout the world. 

Planning of new urban areas in crowded cities is one of 

the main issues of decision-makers and planners. With 

developing technology, many advantages emerge for 

also monitoring urbanization in urban and rural areas. 

Automated roof detection methods are deployed using 

effective techniques to detect and monitor buildings in 

urban areas. Remote sensed data is widely used for fast 

solutions such as tracking the Earth's surface. Feature 

extraction techniques are commonly used to observe and 

analyse specific objects (Atik et al., 2018). 

In the recent past, the interest in accurate and detailed 

3D building data acquired by airborne LIDAR systems 

has been growing. Building Information Modelling 

(BIM), snow load capacity estimating and modelling and 

solar potential analysis can be given as examples of 

application areas for building detection (Jochem et al., 

2009; Büyüksalih and Gazioğlu, 2019). Today, solar 

energy can be produced on the rooftops of private houses 

as easily as in energy companies after detecting proper 

building roofs. 

Building reconstruction is applied by algorithms 

generally on planar surfaces. However, a fundamental 

issue that has not been completely solved occurs in 

building detection. The data from laser scanning 

measurements taken in the city area mostly includes 

noise and incompleteness caused by tree points or 

reflection (Huang et al., 2011; Büyüksalih, 2016; Avşar 

et al., 2016). There are two different approaches to detect 

roof planes in literature: Model-driven and data-driven. 

In the model-driven approach, the algorithms try to find 

the most suitable model and bring the model as an output 

from model library computing parameter values. The 

other approach, namely data-driven, visualizes the 

building point cloud one by one and then brings the best 

fitting part as output (Tarsha-Kurdi et al., 2008; 

Büyüksalih et al., 2018). 

In this contribution, a comparison of aerial 

photogrammetry and LIDAR data in roof plane detection 

presented with completeness values of each data source. 

The aim of the study is utilizing RANSAC algorithm on 

different input sources and assessing these two separate 

results regarding their accuracy. The main aim of this 

contribution is evaluating two different data inputs and 

concluding which data is superior to another in the 

aspect of accuracy, correctness and completeness. 

Materials and Methods 

Study Area 

Study area of the project is located in Istanbul Technical 

University (ITU)-Ayazaga Campus (Fig. 1). The three 

buildings that have regular roof planes were selected 

from both aerial images and LIDAR point clouds to 

apply the algorithm. Besides single buildings and block 

buildings, the study area contains small objects such as 

cars and vegetation types. In the study area, trees that are 

close to buildings were cleaned up from the buildings to 

eliminate their influence on roof plane extraction. 
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Fig. 1. Orthophoto of ITU-Ayazaga Campus 

Data Used 

In the study, two distinct data sources were used: LIDAR 

data and aerial photogrammetry data. 

The airborne LIDAR point cloud was obtained using a 

laser scanning system. The horizontal and vertical 

accuracy of the LIDAR data are about 8 cm. Average 

point density of the data is 16 points/m2. Point cloud 

belonging to three buildings was selected. The selected 

roofs were shown in Fig. 2, Fig. 3 and Fig.4. 

Fig. 2. Aerial LiDAR data of Ari-1 building 

Fig. 3. Aerial LiDAR data of Turk Telekom Building 

Fig. 4. Aerial LiDAR data of Faculty of Mining 

For taking aerial photographs, DJI Phantom 4 Pro was 

used. The UAV has a sensor with a calibrated focal 

length of 3.61 mm. Flight parameters were selected as 

the following: Forward-overlap and side-overlap is 80% 

and 70%, respectively. The UAV was flown at a height 

of 80 m. In total, 288 high resolution images were 

acquired from the flight. Approximately a Ground 

Sampling Distance (GSD) of 3.55 cm/pixel was 

obtained. It means that one pixel in these images 

represents 3.55 cm on the ground. Flight planning was 

carried out with the help of a software, namely 

Pix4Dcapture mobile phone application. Aerial 

photographs of the buildings were represented in Fig. 5, 

Fig. 6 and Fig 7. 

Fig. 5. Aerial photo of Ari-1 building 

Fig. 6. Aerial photo of Turk Telekom building 
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Fig. 7. Aerial photo of Faculty 0f Mining 

RANSAC 

RANSAC algorithm developed by Fischler and Bolles 

(1981) is a method to create appropriate solutions of 

mathematical models in iteration processes. Parameters 

corresponding to the mathematical model are defined 

before iteration process. A consensus solution is 

obtained as the best result (Carrilho and Galo, 2018). 

𝑘 =
log(1−𝑧)

log(1−𝑤𝑛)
 (Eq. 1) 

In the equation 1, n is the minimum number of points 

which is required for the calculation of the 

corresponding model. Since minimum 3 points can 

define a plane, n is equal to 3 in the case of planar 

models. Probability z is a minimum probability value of 

finding at least one proper set of observations in N 

iterations. z is usually in the range between 0.90 and 

0.99. w is the probability of observations allowed to be 

incorrect (in percentage).  

During the iteration process, algorithm is performed 

many times and corresponding data set is removed from 

the original point cloud. The next iteration continues on 

the remaining points. Finally, iteration is terminated 

when the number of non-modelled. Points is smaller than 

defined threshold (Tarsha-Kurdi et al., 2008). An 

essential advantage of RANSAC algorithm is that 

number of trials and data size are not directly dependent 

on each other. Thus, iterations can be quickly obtained 

on even high-density point clouds (Carrilho and Galo, 

2018). Other advantages of RANSAC algorithm are 

listed below: 

 Its concept is simple to apply

 It is a general algorithm and used in a wide variety

of applications

 It can robustly work, even if the data includes more

than 50% of outliers (Schnabel et al., 2007).

Experiment 

In order to detect building rooftops, two different 

sources were used for comparison. LIDAR data is 

already a point cloud data and RANSAC algorithm is 

applied on the LIDAR data directly. However, aerial 

photogrammetry data has to be transformed into 3D 

point cloud data to apply the proposed algorithm. A 

software, namely Agisoft Photoscan, was utilized to 

create a dense point cloud from the aerial images. For 

the three roof datasets, three different dense point clouds 

were created using 9, 11 and 20 aerial images, 

respectively.  

Fig. 8. Flowchart of the proposed roof plane extraction method 
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For the selection of roof types, regularity plays an 

important role as regular roof types can be easily 

detected with the algorithm. Furthermore, the study 

focuses on regular rooftop planes only. Therefore, a 

height threshold was defined for the classification of 

objects. The points below a predefined height threshold 

were eliminated from original data to separate ground 

and non-ground points. Non-ground points included 

rooftops and high trees. Using all points without any 

height threshold would result in deformations or 

incorrect orientation of rooftops. Since each rooftop has 

different height, threshold value was changed for each 

building. Threshold values were determined depending 

on the Z coordinates of the points and implemented on 

MATLAB software. 

RANSAC algorithm was performed using MATLAB 

software (Zuliani, M., 2008). During the application of 

RANSAC algorithm, the largest roof plane in the point 

cloud data was detected and then this area was removed 

from the original data. In the next iteration step, the 

second largest roof plane can be detected. So, in each 

step, detected roof plane must be removed in order to 

find other roof planes. A flowchart of the proposed roof 

plane extraction method is shown in the Figure 8. 

Results and Discussion 

As shown in the following figures, roof planes were 

extracted separately for LIDAR and aerial 

photogrammetric data by using RANSAC algorithm. 

The results from different data sources were compared to 

each other regarding their error, accuracy, correctness, 

completeness, by calculating confusion matrix of each 

plane. The values of reference class were manually 

calculated on both LIDAR and aerial photogrammetric 

data. Building roofs consist of multiple surfaces. In the 

study, these surfaces were extracted separately. Because 

RANSAC algorithm works as surface extraction one by 

one. Detected planes were shown in Fig. 9, Fig. 10, Fig. 

11, Fig. 12, Fig. 13 and Fig. 14. 

Fig. 9. Detected roof plane from LIDAR data (Ari-1 

building) 

Fig. 10. Detected roof plane from aerial photogrammetry 

data (Ari-1 building) 

Fig. 11. Detected roof plane from LIDAR data (Turk 

Telekom building) 

Fig. 12. Detected roof plane from aerial photogrammetry 

data (Turk Telekom building) 
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Fig. 13. Detected roof plane from LIDAR data (Faculty 

of mining) 

Fig. 14. Detected roof plane from aerial photogrammetry 

data (Faculty of mining) 

Table 1 shows confusion matrix containing True Positive 

(TP), True Negative (TN), False Positive (FP) and False 

Negative (FN) values. These values are components of 

confusion matrix which defines reference class and 

model class. 

Table 1. Confusion matrix (Alpaydin E., 2010). 

Detected model class 

True class 

(Reference) 
Positive Negative Total 

Positive 

Negative 

True Positive 

(TP) 

False 

Negative 

(FN) 

p 

False Positive 

(FP) 

True 

Negative 

(TN) 

n 

Total p’ n’ N 

TP: True Positive refers to plane points which are 

included inside the detected model. 

TN: True Negative refers to non-plane points which are 

outside the detected model. 

FP: False Positive refers to plane points which are not 

included inside the detected model. 

FN: False Negative refers to non-plane points which are 

included inside the detected model. 

Error, accuracy, correctness, completeness of the 

detected plane model can be easily derived from the 

confusion matrix values. Formulas of the values are 

mentioned below (Alpaydin, 2010). 

Error =
FP+FN

N
(Eq. 2) 

Accuracy =
TP+TN

N
= 1 − error (Eq. 3) 

Correctness =
TP

TP+FP
(Eq.4) 

Completeness =
TP

TP+FN
(Eq.5) 

The following tables indicate a result of the proposed 

method. In the results, error means the probability of 

incorrectly detected points in total. In contrast to error, 

accuracy refers to the probability of correctly detected 

points in total. Correctness is the probability of correctly 

detected plane points. Completeness means how many 

points that are detected as plane points are plane points 

in the reality. 

Some planes were not detected by using dense point 

cloud from aerial images. Because there are many tree 

points on the rooftops and those points cover a part of 

roof planes. But, on the LIDAR data, all the planes were 

extracted without any problem. According to the results 

above, RANSAC algorithm extract more completed 

model planes on LIDAR data. Because dense point cloud 

created by aerial photogrammetry produces noisier data. 

Noisy data can lead to incompleteness in model. But, 

LIDAR data has more error which means how many 

points in total are mistakenly detected.  The correctness 

value is greater than 95 percent on all surfaces.  

The roof plane detection from the roof surfaces obtained 

with the LIDAR point cloud has lower accuracy. The 

reason for this is that the density of the data is lower than 

the aerial photogrammetry. Only in the Turk Telecom 

building LIDAR has higher accuracy. However, there is 

no big difference with air photogrammetry. The 

percentages of the results were represented in Table 2, 

Table 3 and Table 4. 

Table 2: Analysing of detected roof planes (Ari 1) in regard to their confusion matrix value 

Error Accuracy Correctness Completeness 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

1 32 % 46 % 68 % 54 % 100 % 97% 28 % 44 % 

2 30 % 47 % 70 % 53 % 97 % 97 % 28 % 44 % 

3 34 % 46 % 66 % 54 % 98 % 98 % 24 % 44 % 

4 31 % 47 % 69 % 53 % 99 % 96 % 23 % 42 % 

5 20 % 55 % 80 % 45 % 96 % 95 % 28 % 33 % 

6 - - - - - - - - 
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Table 3. Analyse of detected roof plane (Turk Telekom) in regard to their confusion matrix values. 

Error Accuracy Correctness Completeness 

Aerial 

p. data

LIDAR 

data 

Aerial 

p. data

LIDAR 

data 

Aerial p. 

data 

LIDAR 

data 

Aerial p. 

data 
LIDAR data 

1 41 % 40 % 59 % 60 % 100 % 97 % 48 % 58 % 

2 64 % 46 % 36 % 54 % 100 % 100 % 35 % 52 % 

3 85 % 60 % 15 % 40 % 99 % 99 % 12 % 30 % 

4 86 % 64 % 14 % 36 % 98 % 96 % 11 % 26 % 

Table 4. Analyse of detected roof planes (Faculty of Mines) in regard to their confusion matrix values. 

Accuracy value which means how many points in total 

are correctly detected is usually better on dense point 

cloud data. Also, correctness value which means how 

many plane points are correctly detected is also better 

on dense point cloud data, in contrast to LIDAR data.  

Non-roof points like ground points should be properly 

cleaned until there are mostly roof points on the data  

on which the algorithm is performed. Because the non-

roof points can be also detected as plane, if many 

ground-points exist and they can also define a plane 

surface. 

Conclusion 

In recent years, a lot of algorithms have been 

developed which detect roof planes. RANSAC 

algorithm which is one of the most used algorithms on 

LIDAR data to extract mathematical shapes is 

represent in this study for a comparison of between 

aerial photogrammetry and LIDAR data. However, as a 

main result of this study, data source is very important 

for successful roof plane detection. In block buildings, 

algorithm has difficulties to find plane points correctly. 

It is concluded that irregular shapes of the roofs are not 

successfully detected. Moreover, tree points or ground 

points can negatively affect the roof plane detection. 

In future studies, larger roof planes can be preferred for 

better accuracy analysis. For aerial photogrammetry 

data, more photos should be used. Because, the planes 

acquired by aerial photogrammetry have many gaps on 

the rooftop plane. These gaps could be filled with the 

help of more aerial photographs and completeness 

value could be increased in this manner. 

Reference class can be defined according to other 

criteria in forthcoming studies. Defining a reference 

class manually like in this study can cause incorrect 

classification of points. Considering the results of the 

study, laser data and optical data can be integrated and 

used together, since they complement each other. 
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