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Abstract 

In hyperspectral images, pixels are found as a mixture of the spectral signatures of several materials, especially when there is an 
insufficient spatial resolution. In recent years, spectral libraries have provided spectral information of hundreds of materials that 
allow the development of techniques to solve the problem of hyperspectral unmixing in a semi-supervised fashion. These methods 
which are also known as sparse regression techniques assume that mixed pixels are a sparse linear combination of spectral signatures 
of materials in already available spectral libraries. In this paper, the spectral mixing problem has been solved via sparse separation 
methods. The United States Geological Survey (USGS) spectral library is used to generate simulated hyperspectral data. A 
comparative analysis is performed to determine which material signatures in the library are mixed in the pixels by using the convex-
relaxation-based sparse regression methods. Root Mean Square Error (RMSE), Signal to Reconstruction Error (SRE) and processing 
time of the algorithms are used as comparing criterions. Moreover, Hinton diagrams are used to visualize which material signatures 
are found in the library and the proportions of these found material signatures. 
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Introduction 

Remote sensing is a technology based on the 

measurement of reflected or radiated energy from 

surface materials. Hyperspectral imaging is one of the 

technologies that can measure the spectra of the Earth’s 

surface in hundreds of narrow and adjacent wavelength 

bands. Hyperspectral images are obtained using devices 

that measure reflected or radiated energy from materials 

with respect to wavelengths. The spectral information of 

materials at different wavelengths creates the unique 

spectral patterns so-called spectral signatures which 

allow identification and classification of the materials 

(Kucuk, 2015). Over the last decades, hyperspectral 

imaging could concurrently image an object or a scene 

via hundreds or thousands of narrow bands with a 

spectral range that covers the various visible and infrared 

bands, has faced a growing interest in multifarious fields 

such as mineral exploration, military reconnaissance, 

agricultural analysis, etc. (Ravel, et al., 2018, Zhang et 

al., 2019). Hyperspectral imaging, also known as 

imaging spectroscopy.  

Hyperspectral sensors provide spectrally rich 

information. However, low spatial resolution can 

especially be seen in data obtained from satellite 

platforms. Due to the low spatial resolution, the pixels in 

the hyperspectral images may contain more than one 

substance (Keshava and Mustard, 2002). For this reason, 

spectral unmixing aims at decomposing the measured 

mixed pixels into a collection of pure spectra, called 

endmembers, and into their corresponding proportions, 

called abundances. Spectral unmixing methods can be 

modeled as linear and nonlinear models (Keshava and 

Mustard, 2002; Bioucas-Dias et al., 2012; Heylen et al., 

2014). The Linear Mixing Model (LMM) assumes that 

the mixed pixels are the sum of endmembers weighted 

by their corresponding abundances. That is, LMM 

assumes that the light coming to the hyperspectral sensor 

is proportional to the surface areas of the objects. It does 

not take into account the multiple scattering caused by 

environmental influences. The non-linear models, on the 

other hand, take into account the interaction between 

materials and try to find solutions to the mixing problem. 

The non-linear models often require prior knowledge of 

the physical properties of scene materials (Iordache et 

al., 2011). The computable traceability and flexibility of 

the linear models are the reasons for preference over the 

non-linear models. 

A variety of spectral mixing techniques using LMM are 

based on convex geometry methods. Convex geometry-

based approaches consider that the data is distributed in 

a simplex and most of these methods assume that some 

pixels in the data contain pure pixels. Vertex Component 

Analysis (Nascimento and Dias, 2005), Pixel Purity 

Index (Boardman et all., 1995) and N-Finder (Winter, 

1999) are among the most popular methods assume that 

the data contains pure pixels. These methods aim to find 

the purest pixels in the datasets. However, since most of 

the datasets do not contain pure pixels, the use of these 

methods may not always be suitable for real problems. 

The second approach of convex-based methods is to find 

the smallest volume of simplex that surrounds all data. 
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Iterated Constrained Endmembers (ICE) (Berman et al., 

2004), Sparsity - Promoting ICE (SPICE) (Zare and 

Gader, 2007), its extended version (SPICEE) (Yuksel et 

al., 2016) and Minimum Volume Simplex Analysis 

(MVSA) (Li and Bioucas-Dias, 2008) are some methods 

of obtaining the endmembers from the datasets. If the 

data is too heavily mixed, these methods could extract 

virtual endmembers with no physical meaning (Iordache 

et al., 2011; Akhtar et al., 2015). To overcome the 

deficiencies of the convex geometry-based methods, the 

spectral mixing problem has been addressed by semi-

supervised unmixing approaches. These methods use 

spectral libraries containing material signatures collected 

by the spectrometers in the laboratory. The so-called 

sparse regression techniques assume that mixed pixels 

are expressed as a combination of only a few spectral 

signatures in a library (Iordache et al., 2011; Iordache et 

al., 2014; Akhtar et al., 2015). Sparse regression 

algorithms including Orthogonal Matching Pursuit 

(OMP), Basis Pursuit (BP), BP denoising (BPDN) are 

examined in (Iordache et al., 2011) for unmixing of 

hyperspectral data. Furthermore, some sparse unmixing 

methods have been developed by making use of the 

spatial information (Iordache et al., 2012) and subspace 

nature (Iordache et al., 2014; Shi et al., 2014) of the 

hyperspectral data. The sparse unmixing methods are 

generally based on convex relaxation of the problem. 

However, there are also several Greedy Approaches 

(GAs) that try to find an approximate solution to the l0 

problem directly. The GAs have the advantage of low 

computational complexity in solving the optimization 

problem (Iordache et al., 2011; Shi et al., 2014; Akhtar et 

al., 2015). However, the performance of GAs is 

influenced by the high correlation between the spectra of 

materials frequently occurring in spectral libraries.  

In summary, the semi-supervised unmixing methods 

provide a sparse approximation solution with two 

different types of algorithms. These are the GAs and 

convex relaxation based versions. All these methods 

basically utilize LMM to characterize the mixed 

hyperspectral data. In this paper, we demonstrate that the 

bound-constrained least-squares, also an l1 relaxation-

based method that is implemented in CVX optimization 

software, can produce a sparse solution for mixing 

problems. To evaluate its unmixing performance, we 

compare the bound-constrained least-squares method 

with some convex relaxation-based sparse regression 

methods on a synthetic dataset. 

Materials and Methods 

Sparse regression techniques are derived from the sparse 

representation theory. Thus, the fundamentals of sparse 

representation theory are described in detail in this 

chapter. The sparse representation theory mainly deals 

with Compressed Sensing (CS) which is one of the 

popular topics in recent years. CS is used in a wide range 

of applications including signal processing; image 

processing, machine learning and computer vision 

(Zhang et al., 2015). In sparse modeling, a signal 𝑥 ∈ ℝ𝑛

is modeled as a linear combination of the dictionary 

𝐃 ∈ ℝ𝑛𝑥𝑚 and the sparse representation vector 𝛾 ∈ ℝ𝑚

which has a few numbers of nonzero inputs.  

The system model of sparse representation is shown in 

Figure 1. The main part of the model is the dictionary D 

which is also called the measurement matrix. The 

dictionary D consists of total m atoms and the atoms are 

represented {𝑑𝑗}𝑗
𝑚

=1 in the dictionary. The sparse

representation vector γ is a sparse vector with a few (L 

entries) number of nonzero entries. For instance, the 

sparsity degree of vector γ is L = 3 in given model in 

Figure 1. The sparse representation of signal x consists 

of a linear combination of dictionary atoms 

corresponding to the non-zero elements of the sparse 

representation vector γ. 

Fig. 1. The sparse representation model. The model can 

be expressed as 𝐃𝛾 =  𝑥. 

The dictionary D is created with (m >> n) in most cases. 

For instance, Figure 2 shows 256 different atoms (a 

patch of size 8x8 pixels) of the same size that build up 

the dictionary D. Each patch of the dictionary atoms 

should be vectorized for building the dictionary. For the 

example of Figure 2, the atoms consist of a vector of 

length n = 64. Dictionaries created for cases where the 

total number of atoms is greater than the atoms size (m = 

256 >> n = 64) are called over-complete dictionaries. 

The mathematical expression of the sparse modeling is 

as follows: 

𝑥 =  𝐃𝛾. (Eq. 1) 

Equation (1) is essentially an under-determined linear 

system equation. The sparse vector γ can be found by the 

pseudo-inverse if the dictionary D and the measurement 

vector x are known. However, the pseudo-inverse 

solution is not unique and leads to an intense solution. In 

this case, it is not possible to ensure that very few entries 

of the sparse representation vector γ have non-zeros. The 

sparse representation solution can be achieved by adding 

the constraint of minimizing l0 norm to (1) (Elad, 2010). 

The equation of the sparse modeling becomes the 

optimization problem given in (2) by adding the l0 norm. 

min𝛾‖𝛾‖0  𝑠. 𝑡  𝑥 =  𝐃𝛾 (Eq. 2) 
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In (2), ‖𝛾‖0 represents l0 norm of the sparse vector γ.

The l0 norm, used as a measure of sparsity, gives the 

number of non-zero entries in a vector.  

Fig. 2. The composition of an image patch using three 

building blocks from the dictionary (Papyan et al., 

2018). 

The problem given in (2) aims to produce the signal x as 

a linear combination of a few atoms from the dictionary 

D. However, finding the dictionary atoms to meet the 

conditions in (2) may require a high computational cost. 

For instance; imagine a signal x composed of 15 atoms 

of a dictionary containing 2000 atoms. It may be 

necessary to consider the probability of 15 of the 2000 

atoms, which is about 2.4e37 probabilities. Even if each 

operation takes 1ps, it will require billions of years to 

complete this task. This circumstance is expressed as 

NP-Hard (Non-deterministic Polynomial-time) problem 

(Papyan et al., 2018). Considering the NP-Hard problem, 

we are trying to find approximate solutions to the 

problem given by (2). 

There are various methods in the literature that find 

approximate solutions. Matching Pursuit (Mallat and 

Zhang, 1993; Zhang et al., 2015), Orthogonal Matching 

Pursuit (Pati et al., 1993; Elad, 2010; Zhang et al., 2015), 

Basis Pursuit (Chen et al., 2001; Zhang et al., 2015) are 

most known algorithms. These methods are given in the 

subsections, respectively. 

Matching Pursuit  

Matching Pursuit (MP) is an iterative greedy method. It 

aims to find a single dictionary atom that provides a 

sparse approach to signal x in each iteration. The process 

of MP is summarized in two steps: 

Selection of atoms from the dictionary

The first step is to find the atom that best matches with 

the signal. The dictionary atoms are normalized before 

this process. The best matching is determined by 

taking the inner product of the signal and the 

dictionary atoms. The purpose of this process is to find 

the dictionary atom that is most similar to the signal. 

The dictionary atom has the largest inner product is 

selected as the best matching atom. The mathematical 

expression of these operations is given in (3). 

𝑑𝑘 = max{𝑑𝑗}|< 𝑟𝑘−1, 𝑑𝑗 >| ,   1 ≤ j ≤ 𝑚  (Eq. 3)

where dj denotes j
th

 atom of the dictionary, r denotes

residual signal and <‧ > denotes inner product 

operation. Initially, residual set to measurement signal, 

𝑟0 =  𝑥. The scalar value obtained from the inner

product, 𝛾 = < 𝑟𝑘−1, 𝑑𝑘 > is calculated as the

coefficient for the determined 𝑑𝑘  atom. When the

algorithm ends, the pair (𝑑𝑘 , 𝛾𝑘) is kept in memory to

compose the signal. 

 Update the residual signal

The weighted value of the atom found in the first step 

is subtracted from the signal to give a residual signal. 

The first step is repeated over the obtained residual 

signal. This process continues until a certain stop 

condition is satisfied. As a stopping condition, it is 

usually defined as the norm of the residual signal 

falling below a certain threshold value. Finally, using 

the (𝑑𝑘 , 𝛾𝑘) pairs stored in memory, the approximate �̂�
signal is obtained by the following mathematical 

expression. 

�̂�  = ∑𝑗=1 𝛾𝑗𝑘 𝑑𝑗  (Eq. 4) 

MP is a simple and practical method. However, since all 

dictionary atoms are scanned at each iteration, it has a 

processing cost. 

Orthogonal Matching Pursuit  

Orthogonal Matching Pursuit (OMP) is a greedy 

algorithm aimed at finding an approximate solution to 

sparse problems such as MP. OMP is also an iterative 

algorithm. The main steps of OMP are summarized in 

Algorithm 1 (Zhang et al., 2015). OMP uses a procedure 

similar to MP. In contrast, OMP projects the residual 

signal in each iteration into a subspace spanned by all 

selected atoms until that iteration. This difference occurs 

after Step 2 given in Algorithm 1. 
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Basis Pursuit 

Unlike the greedy algorithms, the Basis Pursuit (BP) 

method uses the l1 norm instead of the l0 norm in (2) to 

calculate the sparse representation vector. This alteration 

provides relaxation on (2) and therefore, such methods 

are called relaxation methods.  BP tries to solve the 

optimization problem given by the mathematical 

expression in (5). 

min𝛾‖𝛾‖1  𝑠. 𝑡  𝑥 =  𝐃𝛾 (Eq. 5) 

Equation (5) is an equation converted to a convex 

optimization problem and can be solved by linear 

programming algorithms. The noise added form of (5) is 

also written as in (6): 

2
2min𝛾‖𝑥 −  𝐃𝛾‖

 
  +   λ‖𝛾‖1 (Eq. 6) 

where λ is a penalty term that increases the sparsity on 

non-zero elements. The first term of (Eq. 6) is always 

greater than zero. The second term is the sum of the 

absolute value of the entries of the vector γ which will 

always be greater than zero. As the penalty term λ 

becomes larger, since the second term becomes more 

dominant than the first term, the minimization of the 

problem will be possible by forcing γ values to zero. 

Thus, the sparse representation of vector γ will be 

provided. 

Linear Mixing Model 

Hyperspectral mixing problem which is considered as a 

sparse approximation problem can be formulated with 

Linear Mixing Model. LMM assumes that the spectral 

response in a spectral band consists of a linear 

combination of the endmembers. Mathematically 

expressed as follows: 

𝑥𝑖 = ∑𝑗=1 𝑒𝑖𝑗𝑝𝑗 + ℇ𝑗
𝑚  (Eq. 7) 

where xi is the spectral reflection measured in the i
th

spectral band, m is the total number of endmember, eij is 

the reflection value of the j
th

 endmember in the i
th

 

spectral band, pj is the abundance value of the j
th

endmember and ℇ𝑗is the measurement error. Assuming

that the hyperspectral data cube contains n spectral 

channels, our model can be written in compact matrix 

form as follows: 

𝑥 = 𝐄𝑝 +  ℇ  (Eq. 8) 

where, 𝑥 ∈ ℝ𝑛represents the measured reflection at one

pixel, 𝐄 ∈ ℝ𝑛𝑥𝑚is a matrix containing endmembers,

𝑝 ∈ ℝ𝑚is the abundance vector and ℇ ∈ ℝ𝑛is the error

vector. The LMM has two constraints for abundance 

values (Keshava and Mustard, 2002; Bioucas-Dias et al., 

2012). The first constrain is the abundance values are 

not negative, and the second is summation of abundance 

values must be equal to 1. 

𝑝 > 0  (Eq. 9) 

𝟏𝑇𝑝 = 1  (Eq. 10) 

These constraints are imposed because LMM assumes 

that the light coming to the hyperspectral sensor is 

proportional to the surface areas of the materials. 

Sparse Spectral Unmixing 

Sparse approximation methods can also be used for 

spectral unmixing if the LMM is reconstructed. 

Assuming that the D dictionary to be created with 

libraries including the spectra of the materials contains 

all the endmember signatures in mixed pixels, the mixed 

signal x is expressed as follows: 

𝑥 = 𝐃𝛾 +  ℇ (Eq. 11) 

where 𝛾 ∈ ℝ𝑚 is a sparse abundance vector with very

few (𝑝 ≪ 𝑚) non-zero entries. When the constraints of 

the LMM are added to (11), the solution of the 

optimization problem is as follows: 

min
𝛾

‖𝛾‖0  𝑠. 𝑡 ‖𝐃𝛾 − 𝑥‖2 ≤ 𝜂, 𝛾 > 0,  𝟏𝑇𝛾 = 1 (Eq. 12)

where 𝜂 denotes the error tolerance. Equation (12) can 

be solved with greedy sparse approximation algorithms 

(Akhtar et al., 2015; Iordache et al., 2011; Toker and  

Yuksel, 2018). The relaxation of the minimization 

problem has also been widely studied for the past few 

years. Most of these methods try to solve the sparse 

mixing problem by adding the constraints of the LMM 

to (6). Dias and Figueiredo have developed an algorithm 

named as the Spectral Unmixing by Variable Splitting 

and Augmented Lagrangian (SUNSAL) (Bioucas-Dias 

and Figueiredo, 2010) to solve the problem given in (6). 

In the same study, the constrained version of SUnSAL 

(CSUnSAL) algorithm was also developed to solve the 

hyperspectral mixing problem. Both SUNSAL and 

CSUnSAL use the Alternating Direction Method of 

Multipliers (ADMM) for sparse unmixing. An improved 

version of SUnSAL called CLSUnSAL (CoLlaborative - 

SUnSAL) tries to unmix all mixed pixels simultaneously 

(Iordache et al., 2014). 

Data Generation for Sparse Spectral Unmixing  

In this study, firstly, a dictionary D is created containing 

the spectral signatures of the materials. For this purpose, 

USGS spectral libraries which contain spectral 

signatures of hundreds of materials with different 

properties such as plant species, minerals, organic 

compounds, soil and rock, man-made materials are used 

(Kokaly et al., 2017). Spectral signatures consist of 118 

spectral bands (some bands are removed) in 0.4 - 2.45 

µm range. The USGS library contains over 2000 spectral 

signatures. In the mixing problem, the excessive 

similarity of the material signatures in a pixel makes the 

spectral unmixing process difficult. Therefore, different 

material signatures have been tried to be selected as 

much as possible to build the dictionary. For this 

purpose, the mutual coherence metric which is 

mathematically expressed in (13) is used. 
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𝜇(𝐃) = max𝑖,𝑗;𝑖≠𝑗

|𝑑𝑖
𝑇𝑑𝑗|

‖𝑑𝑖‖2‖𝑑𝑗‖
2

(Eq. 13) 

The spectra of materials are chosen such that their 

mutual coherence µ is 0.997 and the dictionary 𝐃 ∈
ℝ188𝑥454 is created.  Five different spectra are randomly

selected from the dictionary and 100 mixed pixels are 

generated using the LMM model given in (8). 

Abundances are generated using the Dirichlet 

distribution such that they sum to 1 in each pixel. The 

selected material signatures from the dictionary and 

spectra of a mixed pixel are shown in Figure 3a and 

Figure 3b, respectively.  

(a)                                                                                       (b) 

Fig. 3. (a) Five different material signatures (b) a mixed pixel spectra obtained as a combination of five selected 

signatures from USGS library.

Fig. 4.  Example of white noise: In the given mixed spectra, white noise is added to obtain different levels of SNR. 
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Fig. 5.  Flowchart of the study. 

The noise is added to the mixed simulated data at three 

different levels of SNR = 25 dB, SNR = 75 dB and SNR 

= 125 dB. Figure 4 shows a randomly selected mixed 

pixel spectra from the simulated dataset and its noise 

added spectra with different SNR levels. The general 

flowchart of the simulated dataset generation and 

unmixing procedure is shown in Figure 5.  

Experimental Results 

In this study, CVX - MATLAB software for convex 

programming (Grant and Boyd 2014) is used for sparse 

unmixing of the produced synthetic data. Abundances 

should have two constraints: (i) they should be positive 

as they indicate the ratio of some material to exist, and 

(ii) they should sum to one as we consider the linear 

mixing model. By adding these two constraints of 

abundances to Eq. 6, the equation given below is 

obtained. 

min
𝛾

2
2‖𝐃𝛾 − 𝑥‖ + λ‖𝛾‖1 , 𝛾 > 0,  𝟏𝑇𝛾 = 1 (Eq. 14)

The bound-constrained least squares (BCLS) method is 

used in the CVX for the solution of (14). In addition, the 

performance of the sparse regression of BCLS is 

compared with sparse unmixing methods and the results 

are given in Table 1. The method represented by LS in 

Table 1 is the least squares method that occurs when 

λ = 0. The Root Mean Square Error (RMSE), Signal to 

Reconstruction Error (SRE) which is mathematically 

expressed in (15) and the time spent by the algorithms in 

unmixing 100 mixed pixels is used as comparison 

criterions. 

SNR(dB) = 10log10 (
‖𝑥‖2

‖𝑥−𝑥‖2) (Eq. 15) 

It can be seen from Table 1 that BCLS produces very 

close results to the actual abundances, especially when 

the noise level is low (SNR = 125 dB). However, due to 

the pixel-by-pixel analysis of the mixing problem, BCLS 

spends much more time than other methods. Hinton 

diagrams are used to visualize which material signatures 

are found in the library D and the proportions of these 

found material signatures. Hinton diagrams are often 

used in the field of artificial neural networks to visualize 

matrices. The area covered by the cells in the diagram is 

proportional to the matrix values. For SNR = 25 dB, the 

sparse representation vectors obtained as a result of 

sparse regression methods are shown in Figure 6. In 

each of the graphs in Figure 6, the x-axis represents 

pixels and the y-axis shows which endmembers in the 

dictionary are found in mixed pixels. Hinton diagrams 

for the mixed data having SNR of 125 dB are given in 

Figure 7. It is seen from the Hinton diagrams that LS 

give quite misleading results for two different noise 

levels. Since the LS did not impose any constraints on 

abundances, it produced a dense solution rather than a 

sparse solution. In Figure 6, it is seen that sparse 

regression methods can clearly find the coefficients that 

correspond to actual endmembers. However, it is also 

seen that the mixed pixels contain other endmembers. 

That is, the regression methods have not been able to 

reduce the sparse representation vector values to zero 

sufficiently. In the graphs shown in Figure 7, while the 

noise level is low, the sparse regression methods except 

for LS have successfully found which endmembers are 

mixed in the pixels. Furthermore, they are able to 

estimate the abundances of these endmembers with very 

high accuracy. 

Discussion and Conclusion 

In this study, the results on the generated dataset have 

shown that Sparse unmixing is a powerful technique to 

solve the spectral mixing problem. It has been shown 

that sparse regression methods derived from BP can 

successfully solve the spectral mixing. The bound-

constrained least-squares method yields similar results 

with these methods. However, it is a time-consuming 

procedure when compared to BP-based methods because 

it calculates the abundances pixel by pixel. But, the 

implementation of the bound-constrained least-squares 

method can be developed in parallel computing 

environments for faster unmixing processing. 

Sparse regression methods use dictionary atoms created 

by spectral libraries to analyze mixed pixels. Although 

the number and variety of material signatures in spectral 

libraries increase gradually, a mixed pixel may contain 

an endmember that is not present in the library. In this 

paper, experiments are not performed for the cases 

where the endmembers in the mixed pixels are not 

included in  
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Table 1. Comparison of the unmixing performance of sparse regression methods. 

Fig. 6.   Estimated abundances of each endmember in the dictionary D. (The results are for the mixed data having SNR 

of 25 dB) 
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Fig. 7.   Estimated abundances of each endmember in the dictionary D. (The results are for the mixed data having SNR 

of 125 dB) 

the dictionary atoms. However, if the target material 

signature in the mixed pixel is not one of the dictionary 

atoms, it can be predicted that sparse regression 

methods will select the spectral signature of a highly 

similar endmember among dictionary atoms as the 

target signature. 
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