Seyedamirhesam Khalafi¹ Ali Salmasnia Mohammad Reza Maleki

Article info: Received 15.10.2019 Accepted 04.02.2020

UDC - 621.9.08 DOI - 10.24874/IJQR14.04-03

REMEDIAL APPROACHES TO DECREASE THE EFFECT OF MEASUREMENT ERRORS ON SIMPLE LINEAR PROFILE MONITORING

Abstract: In most profile monitoring applications, the explanatory variables are not fixed from profile to profile. However, in most studies, they are assumed to be fixed values. Furthermore, the observed units usually contain some source of uncertainty referred as "measurement errors." In this paper, first the effect of neglecting the measurement errors effect on detection capability of two common control charts for Phase II monitoring of simple linear profiles is evaluated. Then, three remedial approaches including ranked set sampling, multiple measurement and increasing sample size are utilized to decrease the mentioned effect. Simulation studies in terms of average run length (ARL) metric show that neglecting the measurement errors adversely affects the capability of both charts. The results also confirm that the remedial approaches adequately compensate for the mentioned effect.

Keywords: Measurement errors; Multiple measurement approach; Ranked set sampling (RSS); Simple linear profile; Statistical process monitoring (SPM).

1. Introduction In some production systems, the quality of the process is characterized by a relationship between a response variable and one or more independent explanatory variables. Monitoring such functional relationships over time is referred to as "profile monitoring". Different profile monitoring schemes are classified into two general categories including Phase I and Phase II. The purpose of Phase I monitoring is to provide an analysis on the preliminary data for estimating the model parameters. The main purpose of profile monitoring approaches in Phase II is to design a monitoring scheme for detecting different out-of-control scenarios in the process parameters. The most important application of profile monitoring includes

calibration of measurement instruments to ascertain their proper performance over time, determine the optimum calibration frequency, and avoid over-calibration. Furthermore, Kang and Albin (2000) presented a real application where the amount of an artificial sweetener dissolved per liter of water (response variable) is represented by a temperature function of (explanatory variable). Other applications of profile monitoring include agriculture field, optical imaging system, semiconductor manufacturing industry, automotive industry, aluminum electrolytic capacitor manufacturing process, turning process, vertical density of particleboard (please see Maleki et al., 2018).

The most common model in profile monitoring is referred to as "simple linear

¹ Corresponding author: Seyedamirhesam Khalafi Email: <u>skhalafi@uh.edu</u>

profile" where the behavior of response variable (y) depends linearly on the value of a single explanatory variable (x). Monitoring simple linear profiles is explored by some researchers such as Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004), Saghaei et al. (2009), Noorossana et al. (2011), Yeh and Zerehsaz (2013), Abdella et al. (2014), Kazemzadeh et al. (2016), Khedmati and Niaki (2016). Chiang et al. (2017), Kalaei et al. (2018), Mahmood et al. (2018) and Hassanvand et al. (2019).

Different profile monitoring approaches are generally classified into two major categories: (1) Control charts with fixed explanatory variable(s), and (2) Control charts under random explanatory variable(s). In most researches in the literature such as Zhang et al. (2009), Noorossana et al. (2010), Amiri et al. (2013), Farahani et al. (2014), the x values are considered as fixed values from profile to profile. However, in real world applications, the explanatory variables usually are random quantities. To the best of our knowledge, only few researches such as Noorossana et al. (2015) and Abbas et al. (2019) have taken into account the randomness of explanatory variables.

In statistical process monitoring applications, the samples are taken from the process and plotted for analyzing the process stability and variability. However, because of some inevitable sources of uncertainty, the measured quantities are not completely in accordance with their actual values. This difference between the measured and the actual quantities of products is called as "measurement errors". The effect of measurement errors on the performance of different univariate and multivariate control charts is investigated by several researchers. Examples include Abbasi (2010), Yang et al. (2013), Chakraborty and Khurshid (2013), Hu et al. (2015), Noorossana and Zerehsaz (2015), Hu et al. (2016), Maleki et al. (2016a), Maleki et al. (2016b), Amiri et al. (2018), Salmasnia et al. (2018), Tang et al. (2018), Tran et al. (2019) and Zaidi et al. (2019) and Haq et al. (2020). Readers are referred to the review paper by Maleki et al. (2017) for detailed information.

As noted, in some real statistical process monitoring applications, the process outcome is characterized by profile data instead of multivariate univariate or quality characteristics. A preliminary assumption to construct a control chart to monitor a profile model is that the observed data are accurate and are free from gauge measurement errors. However, exact data is a rare phenomenon in any manufacturing or non-manufacturing environment where human involvement is evident. As far as we know, investigating the effect of measurement errors on the performance of profile monitoring schemes is clearly neglected in the literature. Due to the importance of the issue as well as to fill the mentioned research gap, incorporating a linear covariate error model in constructing two control charts for monitoring simple linear profiles is taken into consideration in this paper. Hence, the first goal of this paper is to study the effect of ignoring the measurement errors on the performance of EWMA-3 and Hotelling T^2 charts for monitoring simple linear profiles in the case of random explanatory variable. We provide simulations studies to show how neglecting the measurement errors adversely affect the performance of both charts. As the second goal, we also suggest three remedial approaches for reducing the measurement errors effect on Phase II monitoring of simple linear profiles. The rest of this paper is structured as follows: In section 2, the problem definitions and assumptions are presented. In Section 3, the effect of neglecting measurement errors in constructing EWMA-3 and Hotelling T^2 charts under random explanatory variable is discussed. In Section 4, we present simulation studies for evaluating the effect of ignoring measurement errors on the performance of both charts to detect different step shifts in the parameters of simple linear regression model. In Section 5, three remedial approaches including ranked set sampling (RSS), multiple measurement approach as

well as increasing sample size are suggested for reducing the effect of measurement errors. In Section 6, the performance of the remedial approaches is investigated via simulation studies. Finally, Section 7 is devoted to conclusion remarks and recommendation for future study.

2. Problem definition

As noted, the difference between the measured and the actual quantities caused by

the measuring equipment and/or operators is called as measurement errors. In this paper, we focus on Phase II monitoring of simple linear profiles in the case of random explanatory variable which is contaminated by measurement gauge errors. First, the statistical properties of T^2 and EWMA-3 charts in terms of *ARL* criterion are investigated when the measurement error is ignored. Then, to lessen the undesired effect of measurement errors, three remedial approaches are proposed. Figure 1 depicts the proposed approach:

Figure 1. The proposed method

The notations and definitions used to formulate the problem are presented in Table 1. According to the mentioned explanations, when the process is in-control, the relationship between the response variable of interest and the random explanatory variable is:

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \varepsilon_{ij}, \ i = 1, ..., n, \ j = 1, 2, ...$$
(1)

where the error term ε_{ij} and explanatory variable x_{ij} are two independent and normally distributed variables with the following parameters:

$$\mathcal{E}_{ij} \sim N(0, \sigma_0^2), \, x_{ij} \sim N(\mu_x, \sigma_x^2).$$
 (2)

The regression parameters in profile j; j = 1, 2, ... can be estimated via ordinary least square (OLS) method according to the following equation:

$$\hat{\beta}_{1j} = \frac{S_{xy(j)}}{S_{xx(j)}}, \ \hat{\beta}_{0j} = \overline{y}_j - \hat{\beta}_{1j}\overline{x}_j$$
⁽³⁾

where

$$S_{xx(j)} = \sum_{i=1}^{n} (x_{ij} - \overline{x}_j)^2, S_{xy(j)}$$

= $\sum_{i=1}^{n} (x_{ij} - \overline{x}_j)(y_{ij} - \overline{y}_j)$ (4)

Here the additive error model is:

$$w_{ij} = Ax_{ij} + B + u_{ij}.$$
 (5)

Typically when A = 1 and B = 0, we have:

$$w_{ij} = x_{ij} + u_{ij}.$$
 (6)

It can be concluded that embedding Equation (6) in Equation (1) leads to the following regression model:

$$y_{ij} = \beta_0 + \beta_1 (w_{ij} - u_{ij}) + \varepsilon_{ij} = \beta_0 + \beta_1 w_{ij} - \beta_1 u_{ij} + \varepsilon_{ij}; i = 1, 2..., j = 1, ..., n$$
(7)

Obviously, in the presence of measurement errors, the actual values of explanatory variable are not accessible. Therefore, the estimated values of the regression parameters considering the measurement errors are obtained via the observed explanatory variable as follows:

QUAL

$$\hat{\beta}_{1j} = \frac{S_{wy(j)}}{S_{ww(j)}}, \ \hat{\beta}_{0j} = \overline{y}_j - \hat{\beta}_{1j}\overline{w}_j \tag{8}$$

where

$$S_{ww(j)} = \sum_{i=1}^{n} (w_{ij} - \overline{w}_{j})^{2}, S_{wy(j)} = \sum_{i=1}^{n} (w_{ij} - \overline{w}_{j})(y_{ij} - \overline{y}_{j})$$
(9)

Table 1.	The	notations	and	definitions

Notation	Description
j	Set of profiles
i	Set of observations
x_{ij}	Observation <i>i</i> in profile <i>j</i>
μ_{x}	The mean of explanatory variable
σ_x^2	The variance of explanatory variable
\mathcal{E}_{ij}	Error term for observation <i>i</i> in profile <i>j</i>
e_{ij}	The residual value for observation i in profile j
\overline{e}_{j}	The average of residuals in profile j
$\sigma_{\scriptscriptstyle 0}^{\scriptscriptstyle 2}$	In-control variance of error term
σ^2	Out-of-control variance of error term
u_{ij}	measurement error term for observation <i>i</i> in profile <i>j</i>
σ_u^2	The variance of measurement error term
W _{ij}	The measured quantity of X_{ij}
β_0	In-control intercept parameter
β_1	In-control slope parameter
eta_0'	Out-of-control intercept parameter
eta_1'	Out-of-control slope parameter
$\widehat{oldsymbol{eta}}_{0j}$	The estimated intercept parameter in profile j
$\hat{\pmb{eta}}_{1j}$	The estimated slope parameter in profile j
E[.]	The expected value of the quantity in the brackets
Var[.]	The variance of the quantity in the brackets
Σ	The variance-covariance matrix
θ	Smoothing parameter of EWMA control chart
n	Sample size in each profile
LCL_k	Lower control limit of control chart k
UCL_k	Upper control limit of control chart k
L_k	Control limit coefficient of control chart k

3. Neglecting measurement errors

In this section, two common approaches namely EWMA-3 and Hotelling T^2 charts in monitoring simple linear profile under random explanatory variable and gauge measurement errors are discussed.

3.1. EWMA-3 approach

One of the most common approaches for monitoring simple linear profiles is EWMA-3 control chart which is first proposed by Kim et al. (2003) in the case of fixed explanatory variable. In EWMA-3 chart, to have independent regression parameters, the *x*values are transformed so that the average of the transformed explanatory variable in each profile becomes zero (Equation 10).

$$x_{ij}^* = x_{ij} - \overline{x}_j \tag{10}$$

After applying this transformation, the regression model in Equation (1) will be:

$$y_{ij} = \alpha_0 + \alpha_1 x_{ij}^* + \varepsilon_{ij} \ i = 1, 2, ..., n, \ j = 1, 2, ...$$
(11)

where

$$\alpha_1 = \beta_1, \ \alpha_0 = \beta_0 + \beta_1 \mu_x. \tag{12}$$

When the random explanatory variable is affected by the measurement errors, it is not possible to directly observe *x*-values. Hence, instead of actual value of explanatory variable, the transformation is performed with respect to measured quantities as follows:

$$w_{ij}^* = w_{ij} - \overline{w}_j \tag{13}$$

After transforming the *w*-values, we can apply three separate charts for monitoring regression parameters including intercept, slope, and standard deviation under measurement errors. The corresponding statistics and control limit for each chart are discussed as follows. The EWMA_I statistic (for monitoring intercept parameter) is not affected by the measurement errors (Noorossana and Zerehsaz, 2015). It can be statistically checked that when the explanatory variable has random nature, the variance of response variable (EWMA_I statistic)

changes from
$$\sigma_0^2$$
 to $\sigma_0^2 + \beta_1^2 \sigma_x^2$ $(\frac{\theta}{2-\theta} \frac{\sigma_0^2}{n})$ to

 $\frac{\theta}{2-\theta} \frac{\sigma_0^2 + \sigma_x^2 \beta_1^2}{n}$). The chart statistic corresponding to *j*th profile: j = 1, 2, ... for monitoring the intercept parameter will be as:

$$EWMA_{I}(j) = \theta \hat{\alpha}_{0j} + (1 - \theta) EWMA_{I}(j - 1),$$
(14)

where θ ; $0 \le \theta \le 1$ is smoothing parameter and *EWMA*₁(0) = $\alpha_0 = \beta_0 + \beta_1 \mu_x$. The upper and lower control limits are given by Equations (15) and (16), respectively:

$$UCL_{I} = \beta_{0} + \beta_{1}\mu_{x} + L_{I}\sqrt{\frac{\theta}{2-\theta}}\frac{\sigma_{0}^{2} + \sigma_{x}^{2}\beta_{1}^{2}}{n}$$

$$= \alpha_{0} + L_{I}\sqrt{\frac{\theta}{2-\theta}}\frac{\sigma_{0}^{2} + \sigma_{x}^{2}\beta_{1}^{2}}{n}$$
(15)

$$LCL_{I} = \beta_{0} + \beta_{1}\mu_{x} - L_{I}\sqrt{\frac{\theta}{2-\theta}}\frac{\sigma_{0} + \sigma_{x}\rho_{1}}{n}$$

$$= \alpha_{0} - L_{I}\sqrt{\frac{\theta}{2-\theta}}\frac{\sigma_{0}^{2} + \sigma_{x}^{2}\beta_{1}^{2}}{n}$$
(16)

Next, we concentrate on constructing a proper statistic and corresponding control limits for monitoring slope parameter. According to the literature, the control limits for slope parameter, when the values of explanatory variable are error-free and fixed from profile to profile are given as:

$$UCL_{s} = \beta_{1} + L_{s} \sqrt{\frac{\theta}{2 - \theta} \frac{\sigma_{0}^{2}}{S_{xx}}}$$

$$= \alpha_{1} + L_{s} \sqrt{\frac{\theta}{2 - \theta} \frac{\sigma_{0}^{2}}{S_{xx}}}$$
(17)

$$LCL_{s} = \beta_{1} - L_{s} \sqrt{\frac{\theta}{2 - \theta} \frac{\sigma_{0}^{2}}{S_{xx}}}$$

$$= \alpha_{1} - L_{s} \sqrt{\frac{\theta}{2 - \theta} \frac{\sigma_{0}^{2}}{S_{xx}}}$$
(18)

The control limits in Equations (17) and (18) depend on the value of S_{xx} which is in turn is a function of explanatory variable. Consequently, when the explanatory variable has random nature and is affected by the measurement errors, two problems will be arisen. The first is that the actual values for explanatory variable are not available and the second is regarding to the control limits which will vary from profile to profile. In this case, to have constant control limits, the slope statistic is standardized as follows:

$$Z_{\hat{\alpha}_{1}}(j) = \frac{\widehat{\alpha}_{1j} - \alpha_{1}}{\sqrt{\frac{\sigma_{0}^{2}}{S_{_{WW}}}}} = \frac{\widehat{\beta}_{1j} - \beta_{1}}{\sqrt{\frac{\sigma_{0}^{2}}{S_{_{WW}}}}}$$
(19)

The modified EWMA-based slope statistic is obtained as Equation (20):

$$EWMA_{S}(j) = \theta Z_{\hat{\alpha}_{1}}(j) + (1-\theta)EWMA_{S}(j-1),$$
⁽²⁰⁾

where $EWMA_{S}(0) = 0$. Now, the modified slope statistic is analyzed with the following constant control limits:

$$UCL_{S} = L_{S}\sqrt{\frac{\theta}{2-\theta}}$$
(21)

$$LCL_{s} = -L_{s}\sqrt{\frac{\theta}{2-\theta}}$$
(22)

In the last step of EWMA-3 procedure, the chart statistic for monitoring the error variance is derived as:

$$EWMA_{E}(j) = \max\{\theta \ln(MSE_{j}) + (1-\theta)EWMA_{E}(j-1), \ln(\sigma_{0}^{2})\}; j = 1, 2, ...$$
(23)

 $EWMA_E(0) = \ln(\sigma_0^2) \qquad \text{and} \qquad$

 $MSE_j = \frac{SSE_j}{n-2}$. Note that the value of SSE_j in *j*th profile is calculated by the measured

quantities as

$$SSE_{j} = \sum_{j=1}^{n} (e_{ij} - \overline{e}_{j})^{2}; e_{ij} = y_{ij} - (\hat{\alpha}_{0j} + \hat{\alpha}_{1j} w_{ij}^{*}).$$

Since the chart statistic is a positive value, the

lower control limit is considered equal to zero. Meanwhile, the upper control limit is obtained based on the following equation:

$$UCL_{E} = \ln(\sigma_{0}^{2}) + L_{E}\sqrt{\frac{\theta}{2-\theta} \operatorname{var}[\ln(MSE)]}$$
(24)

where *Var*[ln(*MSE*)] is obtained via the following formula (Crowder & Hamilton, 1992):

$$Var[\ln(MSE)] = \frac{2}{n-2} + \frac{2}{(n-2)^2} + \frac{4}{3(n-2)^3} - \frac{16}{15(n-2)^5}$$
(25)

After deriving the control statistics for each parameter, the designed control scheme signals when at least one of the mentioned statistics falls outside the corresponding control limit interval. The control limits of each control chart are set such that (1) The same in-control average run length (ARL_0) value for each method is obtained, (2) The overall ARL_0 equals to a desired value.

3.2. Hotelling T^2

Kang and Albin (2000) proposed Hotelling T^2 chart based on the fact that the estimated parameters obtained by least square method are normally distributed. The modified control scheme considering the random explanatory variable under contaminated data by measurement errors is discussed in this subsection. Recall that under measurement errors, the *x*-values are not accessible and instead of the actual values of explanatory variable, the contaminated observations are employed to drive the chart statistic. Despite of EWMA-3 approach, Hotelling T^2 control chart uses a single statistic for monitoring model parameters as follows:

$$T_j^2 = (\mathbf{u}_j - \mathbf{u})^T \boldsymbol{\Sigma}^{-1} (\mathbf{u}_j - \mathbf{u}), \qquad (26)$$

where

$$\mathbf{u}_{j} = [\hat{\beta}_{0j} = \frac{S_{wy_{(j)}}}{S_{ww_{(j)}}}, \hat{\beta}_{1j} = \overline{y}_{j} - \hat{\beta}_{0j}\overline{w}_{j}]^{T}$$
(27)

$$\mathbf{u} = [\beta_0, \beta_1]^T$$
(28)
$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{\hat{\beta}_0}^2 & \sigma_{\hat{\beta}_0\hat{\beta}_1} \\ \sigma_{\hat{\beta}_0\hat{\beta}_1} & \sigma_{\hat{\beta}_1}^2 \end{bmatrix} = \begin{bmatrix} \sigma_0^2 (\frac{1}{n} + \frac{\overline{w}^2}{S_{ww}}) & -\frac{\overline{w}\sigma_0^2}{S_{ww}} \\ -\frac{\overline{w}\sigma_0^2}{S_{ww}} & \frac{\sigma_0^2}{S_{ww}} \end{bmatrix}$$
(29)

The chart triggers an out-of-control signal when $T_j^2 > UCL_T$ where UCL_T is set such that ARL_0 becomes a pre-determined value.

4. Simulation studies

In this section the effect of ignoring measurement errors on the performance of EWMA-3 and Hotelling T^2 charts is investigated through simulation studies where the relationship between *y* and *x* is expressed by a simple linear model as:

$$y_{ij} = 3 + 2x_{ij} + \varepsilon_{ij}, \qquad (30)$$

where $x \sim N(5, \frac{5}{3})$, $\varepsilon \sim N(0, 1)$, n = 4 and

 $\theta = 0.2$. We suppose that *x* is affected by the measurement errors according to Equation (6). As mentioned, we use *ARL* values to

assess both EWMA-3 and Hotelling T^2 control charts in all simulation experiments. ARL criterion is defined as the expected number of samples taken from the process until the first sample falls outside the control limits interval. In all simulations, the control limits coefficients of EWMA-3 chart and the UCL value of Hotelling T^2 chart, UCL_T , are set such that we have $ARL_0 = 200$ for both methods. To do that, L_I, L_S and L_E are chosen separately such that for each of EWMA-3 charts, the ARL_0 becomes approximately equal to 599. This leads to obtain the overall $ARL_0 = 200$. The control limits coefficients corresponding to each control chart for EWMA-3 are reported in the first rows of each Table. The effect of the ignoring measurement errors on performance of EWMA-3 chart to detect shifts in β_0 , β_1 and σ under different values of σ_u^2 are given in Tables 2-4, respectively. The results of Tables 2-4 show that ignoring the measurement errors can adversely affect the ability of EWMA-3 control chart in detecting all regression model parameters. It is represented that the ARLs increase as the value of σ_{μ}^2 increases.

Table 2. ARLs of EWMA-3 control chart for different values of σ_u^2 under shifts in β_0

L_I	3.0156	3.0276	3.0289	3.0294
L_S	3.0109	3.0869	3.3521	3.8881
L_E	1.3723	1.4374	1.6094	1.8575
$\sigma_u^2 = \beta_0'$	No Error	0.01	0.04	0.09
3	199.6620	200.3130	199.9450	201.7490
3.2	151.7380	155.7440	165.0300	168.1360
3.4	91.4240	96.4000	98.8860	100.8840
3.6	51.0290	53.7810	55.8960	56.3800
3.8	29.8120	30.7770	32.1410	32.4030
4	19.2230	19.8770	20.3880	21.0420
4.2	13.7840	14.5110	14.6610	14.9760
4.4	10.3120	10.8540	10.9880	11.2330
4.6	8.2520	8.4090	8.6880	8.7770
4.8	6.9030	6.9470	7.1670	7.2650
5	5.8020	6.0280	6.1150	6.1620

			ü	1 1
L_I	3.0156	3.0276	3.0289	3.0294
L_S	3.0109	3.0869	3.3521	3.8881
L_E	1.3723	1.4374	1.6094	1.8575
σ_u^2 β_1'	No Error	0.01	0.04	0.09
2	199.6620	200.3130	199.9450	201.7490
2.025	163.1000	188.5590	190.7970	194.2240
2.050	119.5190	128.3730	145.4930	149.5680
2.075	78.8010	88.0480	95.3280	102.4580
2.100	51.2480	58.7590	64.6000	65.2050
2.125	34.7670	38.6940	43.8960	44.4290
2.150	25.9270	26.5180	31.8310	32.2570
2.175	19.2660	20.9920	23.8190	24.6760
2.200	15.6860	17.3510	18.0290	18.5820
2.225	12.9160	13.0930	14.5630	15.4390
2.250	10.7300	11.1300	12.0700	12.4890

Table 3. ARLs of EWMA-3 control chart for different values of σ_u^2 under shifts in β_1

Table 4. *ARLs* of EWMA-3 control chart for different values of σ_u^2 under shifts in σ

L_I	3.0156	3.0276	3.0289	3.0294
L_S	3.0109	3.0869	3.3521	3.8881
L_E	1.3723	1.4374	1.6094	1.8575
σ_u^2	No Error	0.01	0.04	0.09
1	199.6620	200.3130	199.9450	201.7490
1.2	37.0520	41.1810	49.9270	56.3350
1.4	14.0850	15.0720	18.9240	21.6090
1.6	7.7170	8.2060	10.1920	12.1700
1.8	5.5040	5.9030	7.0490	8.5390
2	4.2910	4.4200	5.4390	6.3870
2.2	3.5250	3.7400	4.3960	5.0290
2.4	3.0250	3.322	3.7860	4.3620
2.6	2.7410	2.8640	3.3540	3.7460
2.8	2.4270	2.6160	2.9760	3.4480
3	2.2010	2.4030	2.7410	3.1750

Tables 5-7 contains *ARLs* of Hotelling T^2 control chart in detecting model parameters under covariate model presented in Equation (6) and different values of σ_u^2 . Similar to EWMA-3 control chart, The *ARLs* reported in Tables 5-7 confirm that the ability of Hotelling T^2 control chart in detecting all regression model parameters is affected by

the measurement errors. The results also reveal that as σ_u^2 increases, the *ARLs* tend to increase. By comparing the results of Tables 2-4 with those given in Tables 5-7, we can see that in the presence of measurement errors which are ignored, the Hotelling T^2 control chart performs better than EWMA-3 chart.

	8			
UCL _T	10.5966	11.0966	12.2966	14.6166
β_0^2	No Error	0.01	0.04	0.09
3	200.2980	199.0770	199.8970	199.1050
3.2	138.6150	143.2200	148.8170	150.8100
3.4	63.3120	67.0110	71.6190	83.9860
3.6	27.4160	28.9130	33.8550	38.5910
3.8	12.6390	13.6130	17.4020	19.2940
4	6.7820	7.4510	8.6000	11.1720
4.2	3.8730	4.3050	4.9670	6.5910
4.4	2.5630	2.7650	3.2840	4.0320
4.6	1.8660	1.9520	2.3170	2.7500
4.8	1.4260	1.5200	1.7740	2.0140
5	1.2040	1.2450	1.4230	1.5840

Table 5. ARLs of Hotelling T^2 control chart for different values of σ_u^2 under shifts in β_0

Table 6. ARLs of Hotelling T^2 control chart for different values of σ_u^2 under shifts in β_1

UCL_T	10.5966	10.5966 11.0966 12		14.6166
σ_u^2 β_1'	No Error	0.01	0.04	0.09
2	200.2980	199.0770	199.8970	199.1050
2.025	167.2550	173.1380	173.2770	183.8580
2.050	106.4040	112.7970	124.4000	130.0830
2.075	64.7410	68.6230	77.7720	87.7420
2.100	37.5110	39.9930	49.4520	53.7320
2.125	22.1240	25.1840	29.7610	35.8630
2.150	13.9380	14.8820	19.2350	23.3280
2.175	9.2940	10.0300	11.6400	15.5490
2.200	6.0780	6.4000	8.1150	10.5910
2.225	4.1940	4.5750	5.9970	7.2420
2.250	3.2950	3.4380	4.1920	5.1450

Table 7. ARLs of Hotelling T	control chart for different	values of σ_u^2 under shifts in σ
------------------------------	-----------------------------	---

UCL_T	10.5966	11.0966	12.2966	14.6166
σ^2_u	No Error	ror 0.01 0.04		0.09
1	200.2980	199.0770	199.8970	199.1050
1.2	40.1760	40.2870	47.2910	54.3630
1.4	14.5130	15.6660	18.8220	22.3790
1.6	7.9980	8.2380	9.7950	11.6030
1.8	4.9050	5.4210	6.1650	7.3340
2	3.7960	3.8980	4.5820	5.4540
2.2	3.0370	3.2600	3.6470	3.9170
2.4	2.5540	2.6250	2.7960	3.3570
2.6	2.1620	2.2130	2.5060	2.6950
2.8	1.9670	2.0580	2.2380	2.4240
3	1.8110	1.8560	1.9520	2.3130

5. Remedial approaches

In the previous sections, we proved the undesired effect of ignoring the measurement errors on monitoring simple linear profiles. To consider such errors, the statistics and the corresponding control limits should be modified as follows (see also Fuller, 1987). As measurement errors have no effect on the EWMA_I chart, no modification is required. However, The EWMA_S and EWMA_E statistics and their corresponding control limits should be modified. In this regard, the standardized slope statistic is given as:

$$Z'_{\bar{\alpha}_{1}}(j) = \frac{\widehat{\alpha}_{1j} - \lambda\alpha_{1}}{\sqrt{\frac{\sigma_{y}^{2} - \sigma_{wy}\lambda\alpha_{1}}{S_{ww}}}} = \frac{\widehat{\beta}_{1j} - \lambda\beta_{1}}{\sqrt{\frac{\sigma_{y}^{2} - \sigma_{wy}\lambda\beta_{1}}{S_{ww}}}}$$
(31)

where $\lambda = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2}$ is the reliability ratio, $\sigma_y^2 = \sigma_0^2 + \beta_1^2 \sigma_x^2$ and $\sigma_{wy} = \beta_1 \sigma_x^2$ Then:

$$EWMA_{S}(j) = \theta Z'_{\hat{\alpha}_{1}}(j) + (1-\theta)EWMA_{S}(j-1)$$
(32)

where $EWMA_s(0) = 0$ and the control limits are computed via Equations (21) and (22). Next, The EWMA_E statistic in the presence of measurement errors is given by:

$$EWMA_{E}(j) = \max\{\theta[MSE_{j} - (\sigma_{0}^{2} + \lambda \sigma_{u}^{2}\beta_{1})] + (1 - \theta)EWMA_{E}(j - 1), 0\}; j = 1, 2, ...$$
(33)

where $EWMA_E(0) = 0$. Then:

$$UCL_{E} = L_{E}\sqrt{\frac{2(\sigma_{0}^{2} + \lambda \sigma_{u}^{2}\beta_{1})^{2}}{n-2}}\frac{\theta}{2-\theta}$$
(34)

The T^2 statistic for *j*th profile in the presence of measurement errors is similar to Equation (26), where:

$$\mathbf{u} = [\beta_0 + \beta_1 \mu_x (1 - \lambda), \lambda \beta_1]^T$$
(35)

and

$$\Sigma = \begin{bmatrix} \sigma_{\hat{\beta}_{0}}^{2} & \sigma_{\hat{\beta}_{0}\hat{\beta}_{1}} \\ \sigma_{\hat{\beta}_{0}\hat{\beta}_{1}} & \sigma_{\hat{\beta}_{1}}^{2} \end{bmatrix} = \begin{bmatrix} \frac{\sigma_{0}^{2} + \lambda \sigma_{u}^{2}\beta_{1}}{n} + \overline{w}^{2} \frac{(\sigma_{y}^{2} - \sigma_{wy}\lambda\beta_{1})}{S_{ww}} & -\overline{w} \frac{(\sigma_{y}^{2} - \sigma_{wy}\lambda\beta_{1})}{S_{ww}} \\ -\overline{w} \frac{(\sigma_{y}^{2} - \sigma_{wy}\lambda\beta_{1})}{S_{ww}} & \frac{(\sigma_{y}^{2} - \sigma_{wy}\lambda\beta_{1})}{S_{ww}} \end{bmatrix}$$
(36)

Now to reduce the adverse effect of measurement errors, three remedial approaches are developed in the following sub-sections.

5.1. Ranked set sampling spproach

In this subsection, first the RSS method is briefly explained. Then, utilizing this strategy for the sake of reducing the effect of measurement error is given. Let *X* follows a given distribution with mean μ_x and variance σ_x^2 whose probability density function and cumulative distribution function are denoted by f(x) and F(x), respectively. Suppose that vector $\mathbf{X} = (x_1, x_2, ..., x_n)^T$ denote a simple random sample of size *n* taken from f(x) while $\mathbf{X}' = (x_{(1:n)}, x_{(2:n)}, ..., x_{(n:n)})^T$ is the ordered statistics of the corresponding sample. The mean and variance of *i*th; i = 1, 2, ..., n ordered statistic can be obtained by Equations (41) and (42):

$$\mu_{x(i:m)} = \int x f_{(i:m)}(x) dx$$
(37)
$$\sigma_{x(i:m)}^2 = \int (x - \mu_{x(i:m)})^2 f_{(i:m)}(x) dx$$
(38)

where $f_{(i:m)}(x)$ is the probability density function of $x_{(i:m)}$ which is obtained by Equation (39):

$$f_{(i:m)}(x) = \frac{m!}{(i-1)!(m-i)!}$$

$$\{F(x)\}^{i-1} \{1 - F(x)\}^{m-i} f(x), -\infty < x < \infty$$
(39)

For more information, the readers can also see David and Nagaraja (2003). Now the utilization of RSS strategy in our research is discussed. Let $\mathbf{W}_{j} = (w_{1j}, w_{2j}, ..., w_{1n})^{T}$ be a simple random sample of size *n* from the measured quantities. In order to incorporate the RSS strategy in simple linear profile monitoring approaches under conatminated *x*values, the following steps are recommended:

1- Take *n* samples (profile) each of size *n*: Suppose that *n* simple random samples in each sampling cycle are \mathbf{W}_i ; j = 1, 2, ..., n.

2- Sort the measured quantities within each profile: After sorting the quantities, the sample vector for jth; sample is denoted by

$$\mathbf{W}'_{\mathbf{j}} = (w_{(1:n)j}, w_{(2:n)j}, ..., w_{(n:n)n})^T$$

3- The smallest ranked unit is selected from the first profile and the second smallest ranked unit is selected from the second set. The procedure continues and the largest ranked unit is selected from the last set.

4- This completes one cycle of a ranked set sample of size *n*.

5- $S_{ww(j)}$ and $S_{wy(j)}$ in Equation (8), are computed based on the ranked set samples instead of the simple random samples.

Note that the transformation in EWMA-3 must be performed in respect to the ranked set sampling of the measure quantities.

5.2. Multiple measurement approach

One of the most common approaches for covering the measurement error is taking several measurements on each sample point which is also applied by Linna and Woodall (2001) as well as Costa and Castagliola (2011). Taking multiple measurements at each observation of the underlying quality characteristic generally leads to a smaller variance of the error component (Haq et al., 2015). In this section, taking multiple measurement on each observation of a given profile is discussed. Let $y_{ij1}, y_{ij2}, ..., y_{ijk}$ be k measurements which are taken for y_{ij} ; i = 1, ..., n, j = 1, 2, ... Considering the covariate model in Equation (6), the variance of the measured quantity will be:

$$\sigma_w^2 = \sigma_x^2 + \sigma_u^2 \tag{40}$$

As the variance of the error term in Equation (40) increases the difference between the actual and measured quality characteristic will increase. It can be statistically checked that by taking *k* measurements on each sample, the variance of the measured quality

characteristic reduces to $\sigma_w^2 = \sigma_x^2 + \frac{\sigma_u^2}{k}$.

Obviously by utilizing this approach, the difference between the actual and measured quantities decrease and consequently more reliable measurements are obtained.

5.3. Incerasing sample size

It is proved in statistical process monitoring literature that as the sample size increases, the power of a control scheme in detecting process faults increases (Montgomery, 2005). This issue confirms that increasing the sample size results in decreasing of the variance of statistic. Consequently, it can be employed as third remedial approach to reduce the undesirable effect of measurement errors in monitoring a simple linear profile.

6. Performance evaluation of remedial approaches

The performance of the proposed remedial approaches to reduce the measurement errors effect is analyzed and compared in this section. For this purpose, the example presented in section 4 is also used in this section. The results of utilizing the remedial approach in EWMA-3 and Hotelling T^2 control charts are reported in Tables 8-10 and 11-13, respectively. The results given in Tables 8-10 represent that both RSS and measurements multiple approaches compensate for the undesirable effects of measurement errors on detecting ability of EWMA-3 control chart. However, the RSS method outperforms the multiple

measurement approach under step shifts in β_0 and β_1 . We can see that when k = 5, the *ARLs* are close to those obtained under no error scenario. It could be observed from Tables 8-10 that increasing the sample size effectively improves the detecting ability of EWMA-3 control chart in detecting all out-of-control scenarios.

Tables 11-13 represent the results of utilizing remedial approaches in Hotelling T^2 control chart for monitoring intercept parameter, slope parameter and error variance,

respectively. It can be seen from Tables 11-13 that in multiple measurement approach, using k = 5 measurements per observation can adequately cover the measurement errors effect. Similar to EWMA-3 control chart, both RSS and increasing sample size approaches can also reduce the *ARL*s in all out-of-control scenarios. However, the performance of increasing the sample size in improving the detecting ability of Hotelling T^2 control chart is more considerable.

Table 8. ARLs of	remedial method	s in EWMA-3 chart	under shifts in β_0	when $\sigma_u^2 = 0.04$

L_I	3.0290	3.0201	3.0189	3.0172	2.1676	3.0290	3.0290	3.0290
$L_{\rm S}$	3.0241	3.0204	3.0114	3.0074	3.0269	3.0241	3.0241	3.0241
L_E	4.5584	4.2984	4.2524	4.2134	4.5494	4.2684	4.1468	4.0826
ß'	1-1	Mult	iple measure	ement	DCC	incre	asing sample	e size
$ ho_0$	K-1	k=2	<i>k</i> =3	<i>k</i> =5	КЭЭ	<i>n</i> =6	n=8	<i>n</i> =10
3	199.643	200.816	199.534	199.522	200.253	201.78	199.204	199.741
3.2	160.797	155.92	153.913	153.824	137.183	149.896	129.361	123.387
3.4	97.885	96.537	93.781	92.312	61.138	73.684	60.657	46.323
3.6	54.554	54.054	51.162	51.048	29.063	38.613	27.923	23.545
3.8	31.866	31.769	31.023	30.691	15.911	20.702	15.744	13.340
4	20.734	20.394	20.147	19.876	10.589	12.859	10.422	8.643
4.2	14.564	14.499	14.401	13.824	7.972	9.417	7.809	6.438
4.4	10.912	10.820	10.538	10.334	6.161	7.597	6.145	5.265
4.6	8.646	8.626	8.498	8.48	5.102	6.227	5.030	4.337
4.8	7.125	6.970	6.956	6.925	4.356	5.206	4.381	3.798
5	5.988	5.945	5.932	5.867	3.785	4.557	3.806	3.228

Table 9 . ARLs of remedial methods in EWMA-3 chart under shifts in β_1 whe	$\sigma_u^2 = 0.04$
---	---------------------

L_I	3.0289	3.0201	3.0189	3.0172	2.1676	3.0290	3.0290	3.0290
L_S	3.0241	3.0204	3.0114	3.0074	3.0269	3.0241	3.0241	3.0241
L_E	4.5584	4.2984	4.2524	4.2134	4.5494	4.2684	4.1468	4.0826
ß'	<i>l</i> _1	Multiple measurement			DCC	increasing sample size		
$ ho_1$	<i>K</i> -1	k=2	<i>k</i> =3	<i>k</i> =5	КЗЗ	<i>n</i> =6	n=8	<i>n</i> =10
2	199.643	200.816	199.534	199.522	200.253	201.78	199.204	199.741
2.025	174.888	171.951	168.987	162.335	165.086	168.331	151.158	144.815
2.050	124.286	121.666	119.178	112.461	99.890	99.066	85.288	78.703
2.075	82.772	81.381	81.345	81.307	58.908	63.828	46.214	41.233
2.100	55.343	54.097	53.776	53.037	34.670	39.679	31.015	26.025
2.125	38.435	37.321	36.696	35.970	22.220	26.346	20.492	16.554
2.150	27.820	27.320	27.193	26.926	16.634	18.927	14.796	12.159
2.175	22.265	20.303	20.079	19.732	12.236	14.438	11.364	9.383
2.200	17.147	15.998	15.947	15.547	10.052	11.696	9.240	7.586
2.225	14.319	13.394	13.243	13.169	8.144	9.813	7.325	6.359
2.250	11.171	10.946	10.754	10.729	6.824	7.886	6.454	5.674

L_I	3.0290	3.0201	3.0189	3.0172	2.1676	3.0290	3.0290	3.0290
L_{S}	3.0241	3.0204	3.0114	3.0074	3.0269	3.0241	3.0241	3.0241
L_E	4.5584	4.2984	4.2524	4.2134	4.5494	4.2684	4.1468	4.0826
σ	1-1	Multiple measurement			DCC	increasing sample size		
0	<i>κ</i> =1	k=2	<i>k</i> =3	<i>k</i> =5	КЭЭ	<i>n</i> =6	n=8	<i>n</i> =10
1	199.643	200.816	199.534	199.522	200.253	201.78	199.204	199.741
1.2	45.528	40.580	38.331	37.696	43.160	29.313	22.873	17.319
1.4	16.130	14.491	13.663	13.474	15.798	9.869	7.483	6.036
1.6	8.885	7.836	7.659	7.625	8.638	5.441	4.183	3.551
1.8	5.873	5.156	5.001	4.893	5.629	3.795	2.963	2.516
2	4.479	3.983	3.890	3.814	4.242	2.754	2.303	1.956
2.2	3.607	3.194	3.123	3.078	3.448	2.399	1.968	1.714
2.4	3.051	2.745	2.645	2.635	2.871	2.021	1.669	1.487
2.6	2.456	2.440	2.337	2.313	2.481	1.789	1.486	1.332
2.8	2.277	2.083	2.067	2.058	2.255	1.583	1.371	1.227
3	2.020	1.913	1.897	1.862	2.052	1.473	1.263	1.14

Table 10. ARLs of remedial methods in EWMA-3 chart under shifts in σ when $\sigma_u^2 = 0.04$

Table 11. ARLs of remedial approaches in T^2 chart under shifts in β_0 when $\sigma_u^2 = 0.04$

							~	
UCL	15.6866	15.5729	15.5599	10.5178	15.4896	12.0000	10.4603	9.7187
ß'	7 1	Multiple measurement			DCC	Increasing sample size		
ρ_0	K=1	k=2	<i>k</i> =3	<i>k</i> =5	КЭЭ	<i>n</i> =6	<i>n</i> =8	<i>n</i> =10
3	202.2075	199.4289	200.2399	202.3810	202.6230	201.0561	199.7367	200.0940
3.2	131.5736	126.3640	121.1526	120.2241	129.2083	118.5529	116.2991	123.0383
3.4	55.4392	52.9146	51.6215	50.1912	55.9009	44.6357	42.4279	44.6097
3.6	24.5755	23.1632	22.1306	21.6579	24.8869	17.9641	15.6114	15.6941
3.8	12.1850	11.0994	10.8567	10.3899	12.0005	8.0928	6.8284	6.3067
4	6.5763	5.9643	5.8161	5.6716	6.4905	4.2584	3.4097	3.0243
4.2	4.0398	3.5887	3.4584	3.3865	3.9495	2.5607	2.0834	1.8430
4.4	2.6240	2.4267	2.3764	2.2856	2.6177	1.7758	1.4835	1.3433
4.6	1.8929	1.7569	1.7464	1.7052	1.8806	1.4115	1.1988	1.1144
4.8	1.4988	1.4182	1.4017	1.3805	1.4866	1.1873	1.0759	1.0390
5	1.2796	1.2279	1.2119	1.1879	1.2657	1.0792	1.0247	1.0099

Table 12. ARLs of remedial approaches in T^2 chart under shifts in β_1 when $\sigma_u^2 = 0.04$

UCL	15.6866	15.5729	15.5599	10.5178	15.4896	12.0000	10.4603	9.7187
ß'	L 1	Multiple measurement			DCC	Incre	asing sample size	
ρ_1	<i>k</i> -1	k=2	<i>k</i> =3	<i>k</i> =5	КЭЭ	<i>n</i> =6	<i>n</i> =8	<i>n</i> =10
2	202.2075	199.4289	200.2399	202.3810	202.6230	201.0561	199.7367	200.0940
2.025	170.9360	167.3911	160.6785	163.7788	169.5597	157.1161	164.1008	171.6316
2.050	107.1641	105.1903	106.3814	104.6275	104.4821	96.0579	97.5662	100.1347
2.075	63.8460	63.0219	62.0686	61.6160	63.9408	53.4925	51.4281	55.5351
2.100	38.7724	36.5657	35.6803	34.9352	35.8472	29.5911	26.9286	28.3027
2.125	22.5777	21.5263	21.4652	21.6798	23.1531	16.8320	14.5689	14.5148
2.150	15.1654	13.4507	13.5525	13.1943	14.1029	10.2177	8.6438	7.6737
2.175	9.7245	8.8835	8.7131	8.6377	9.6917	6.3543	5.0994	4.5853
2.200	6.6023	5.9712	5.9076	5.6589	6.2834	4.1534	3.4372	30048
2.225	4.6684	4.3342	4.2180	4.1512	4.6617	3.0729	2.4599	2.1406
2.250	3.4195	3.1705	3.2157	3.1072	3.4144	2.2580	1.8480	1.6372

UCL	15.6866	15.5729	15.5599	10.5178	15.4896	12.0000	10.4603	9.7187
5	1, 1	Multiple measurement			DCC	increasing sample size		
0	K-1	k=2	<i>k</i> =3	<i>k</i> =5	КЪБ	<i>n</i> =6	n=8	<i>n</i> =10
1	202.2075	199.4289	200.2399	202.3810	202.6230	201.0561	199.7367	200.0940
1.2	101.6049	94.7838	92.2298	94.1701	99.6060	95.5580	95.1960	94.6360
1.4	56.2428	52.3460	50.9836	51.7580	57.7461	51.8065	50.7440	53.9060
1.6	37.3530	34.3042	33.0529	32.6370	37.4673	33.4905	34.2365	35.2810
1.8	27.6202	24.3028	24.8623	23.2745	26.1062	24.4775	23.9700	25.5295
2	19.2646	18.4189	17.4450	17.4702	19.6970	18.0755	18.1560	18.7440
2.2	16.0198	14.5617	13.9818	13.3626	15.8358	13.9950	14.1615	14.8410
2.4	12.6644	12.0286	11.5582	11.4561	12.3729	11.4600	11.4495	11.7190
2.6	10.9065	9.7943	9.7419	9.2139	10.4800	9.4940	9.7210	10.1985
2.8	9.3397	8.2912	8.0791	8.0429	8.8343	8.2095	8.3885	8.5355
3	8.1601	7.3439	7.1449	7.1281	7.9894	7.5210	7.2140	7.4815

Table 13. ARLs of remedial approaches in T^2 chart under shifts in σ when $\sigma_u^2 = 0.04$

7. Conclusion and future study

As a relatively new area in the context of SPM, profile monitoring has gained much attentions after the review paper by Woodall (2007). To the best of the authors' knowledge, all profile monitoring approaches have neglected the effect of errors cause by measuring instrument, environment and work-pieces on the capability of control charts. To address this issue, the effect of ignoring measurement errors on the performance of EWMA-3 and Hotelling T^2 charts to monitor simple liner profiles under random explanatory variable was investigated in this paper. Thorough simulation studies, we showed that ignoring the measurement errors adversely affects the detecting ability of the both mentioned charts. We also showed that as the variance of measurement error term increases, the ability of both charts to detect step shifts in intercept parameter, slope parameter and error variance reduces. In order to compensate the measurement errors effects, three remedial approaches including ranked set sampling, multiple measurements per unit as well as increasing sample size were utilized. The results showed that all suggested remedial approaches can adequately reduce the effect of measurement errors. The methods discussed in this paper have been proposed under three general limitations. First we considered a simple linear regression model to express the relationship between response explanatory and variables. Second, it was assumed that the response variable follows a Normal distribution. The last limitation is the assumption in which the observations within each profile are independent from each other. Concerning the first and second limitations, considering other types of regression models under nonnormality assumption such as generalized linear models with Binary or Poisson response data is recommended as the future research. Developing time-series models to address autocorrelation structure of data is suggested to fulfill the third limitation. Moreover, utilizing other remedial approaches for decreasing the errors effect on profiling monitoring control charts could be mentioned as another research direction

References:

Abbas, T., Abbasi, S. A., Riaz, M., & Qian, Z. (2019). Phase II monitoring of linear profiles with random explanatory variable under Bayesian framework. *Computers & Industrial Engineering*, *127*, 1115-1129.

- Abbasi, S. A. (2010). On the performance of EWMA chart in the presence of two-component measurement error. *Quality Engineering*, 22(3), 199-213.
- Abdella, G. M., Yang, K., & Alaeddini, A. (2014). Multivariate adaptive approach for monitoring simple linear profiles. *International Journal of Data Analysis Techniques and Strategies*, 6(1), 2-14.
- Amiri, A., Ghashghaei, R., & Maleki, M. R. (2018). On the effect of measurement errors in simultaneous monitoring of mean vector and covariance matrix of multivariate processes. *Transactions of the Institute of Measurement and Control*, 40(1), 318-330.
- Amiri, A., Mehrjoo, M., & Pasek, Z. J. (2013). Modifying simple linear profiles monitoring schemes in phase II to detect decreasing step shifts and drifts. *The International Journal of Advanced Manufacturing Technology*, 64(9-12), 1323-1332.
- Chakraborty, A. B., & Khurshid, A. (2013). Measurement error effect on the power of control chart for the ratio of two Poisson distributions. *Economic Quality Control*, 28(1), 15-21.
- Chiang, J. Y., Lio, Y. L., & Tsai, T. R. (2017). MEWMA control chart and process capability indices for simple linear profiles with within-profile autocorrelation. *Quality and Reliability Engineering International*, 33(5), 1083-1094.
- Costa, A. F., & Castagliola, P. (2011). Effect of measurement error and autocorrelation on the \overline{X} chart. *Journal of Applied Statistics*, 38(4), 661-673.
- Crowder, S. V., & Hamilton, M. D. (1992). An EWMA for monitoring a process standard deviation. *Journal of Quality Technology*, 24(1), 12-21.
- David, H. A. & Nagaraja H. N. (2003). Order statistics. 3rd ed. Hoboken, N. J: John Wiley & Sons, Inc.
- Farahani, E., Noorossana, R., & Koosha, M. (2014). Profile monitoring in the presence of outliers. *The International Journal of Advanced Manufacturing Technology*, 74(1-4), 251-256.
- Fuller, W.A. (1987). Measurement error models, 1st edition, New York: Wiley, ISBN-13: 978-0470095713 ISBN-10: 0470095717.
- Haq, A., Brown, J., Moltchanova, E., & Al-Omari, A. I. (2015). Effect of measurement error on exponentially weighted moving average control charts under ranked set sampling schemes. *Journal of Statistical Computation and Simulation*, 85(6), 1224-1246.
- Haq, A., & Khoo, M. B. (2020). Memory-type multivariate charts with fixed and variable sampling intervals for process mean when covariance matrix is unknown. *Quality and Reliability Engineering International*, *36*(1), 144-160.
- Hassanvand, F., Samimi, Y., & Shahriari, H. (2019). A robust control chart for simple linear profiles in two-stage processes. *Quality and Reliability Engineering International*, 35(8), 2749-2773.
- Hu, X., Castagliola, P., Sun, J., & Khoo, M. B. (2015). The effect of measurement errors on the synthetic \overline{X} chart. *Quality and Reliability Engineering International*, 31(8), 1769-1778.
- Hu, X., Castagliola, P., Sun, J., & Khoo, M. B. (2016). The performance of variable sample size \overline{X} chart with measurement errors. *Quality and Reliability Engineering International*, 32(3), 969-983.
- Kalaei, M., Atashgar, K., Niaki, S. T. A., & Soleimani, P. (2018). Phase I monitoring of simple linear profiles in multistage processes with cascade property. *The International Journal of Advanced Manufacturing Technology*, 94(5-8), 1745-1757.

- Kang, L., & Albin, S. L. (2000). On-line monitoring when the process yields a linear profile. *Journal of quality Technology*, 32(4), 418-426.
- Kazemzadeh, R. B., Amiri, A., & Kouhestani, B. (2016). Monitoring simple linear profiles using variable sample size schemes. *Journal of Statistical Computation and Simulation*, 86(15), 2923-2945.
- Khedmati, M., & Niaki, S. T. A. (2016). Monitoring simple linear profiles in multistage processes by a MaxEWMA control chart. *Computers & Industrial Engineering*, 98, 125-143.
- Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles. *Journal of Quality Technology*, 35(3), 317-328.
- Linna, K. W., & Woodall, W. H. (2001). Effect of measurement error on Shewhart control charts. Journal of Quality technology, 33(2), 213-222.
- Linna, K. W., Woodall, W. H., & Busby, K. L. (2001). The performance of multivariate control charts in the presence of measurement error. *Journal of Quality Technology*, 33(3), 349-355.
- Mahmood, T., Riaz, M., Omar, M. H., & Xie, M. (2018). Alternative methods for the simultaneous monitoring of simple linear profile parameters. *The International Journal of Advanced Manufacturing Technology*, 97(5-8), 2851-2871.
- Mahmoud, M. A., & Woodall, W. H. (2004). Phase I analysis of linear profiles with calibration applications. *Technometrics*, 46(4), 380-391.
- Maleki, M. R., Amiri, A., & Castagliola, P. (2017). Measurement errors in statistical process monitoring: a literature review. *Computers & Industrial Engineering*, 103, 316-329.
- Maleki, M. R., Amiri, A., & Castagliola, P. (2018). An overview on recent profile monitoring papers (2008–2018) based on conceptual classification scheme. *Computers & Industrial Engineering*, 126, 705-728.
- Maleki, M. R., Ghashghaei, R., & Amiri, A. (2016a). Simultaneous monitoring of multivariate process mean and variability in the presence of measurement error with linearly increasing variance under additive covariate model. *International Journal of Engineering*, 29(4), 514-523.
- Maleki, M. R., Maleki, F., & Dizabadi, A. K. (2016b). Decreasing the effect of measurement errors on detecting and diagnosing performance of MAX-EWMAMS control chart in Phase II. *International Journal of Quality Engineering and Technology*, *6*(1-2), 54-66.
- Maravelakis, P. E. (2012). Measurement error effect on the CUSUM control chart. *Journal of Applied Statistics*, 39(2), 323-336.
- Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.
- Noorossana, R., Eyvazian, M., & Vaghefi, A. (2010). Phase II monitoring of multivariate simple linear profiles. *Computers & Industrial Engineering*, 58(4), 563-570.
- Noorossana, R., Fatemi, S. A., & Zerehsaz, Y. (2015). Phase II monitoring of simple linear profiles with random explanatory variables. *The International Journal of Advanced Manufacturing Technology*, 76(5-8), 779-787.
- Noorossana, R., Vaghefi, A., & Dorri, M. (2011). Effect of non-normality on the monitoring of simple linear profiles. *Quality and Reliability Engineering International*, 27(4), 425-436.
- Noorossana, R., & Zerehsaz, Y. (2015). Effect of measurement error on phase II monitoring of simple linear profiles. *The International Journal of Advanced Manufacturing Technology*, 79(9-12), 2031-2040.

- Saghaei, A., Mehrjoo, M., & Amiri, A. (2009). A CUSUM-based method for monitoring simple linear profiles. *The International Journal of Advanced Manufacturing Technology*, 45(11-12), 1252-1260.
- Salmasnia, A., Maleki, M. R., & Niaki, S. T. A. (2018). Remedial measures to lessen the effect of imprecise measurement with linearly increasing variance on the performance of the MAX-EWMAMS scheme. *Arabian Journal for Science and Engineering*, *43*(6), 3151-3162.
- Tang, A., Castagliola, P., Sun, J., & Hu, X. (2018). The effect of measurement errors on the adaptive EWMA chart. *Quality and Reliability Engineering International*, 34(4), 609-630.
- Tran, P. H., Tran, K. P., & Rakitzis, A. (2019). A Synthetic median control chart for monitoring the process mean with measurement errors. *Quality and Reliability Engineering International*, 35(4), 1100-1116.
- Woodall, W. H. (2007). Current research on profile monitoring. Production, 17(3), 420-425.
- Yang, S. F., Yang, C. M., & Cheng, G. Y. (2013). Effects of measurement error on process signal detection. In *Applied Mechanics and Materials*, 263, 496-500.
- Yeh, A., & Zerehsaz, Y. (2013). Phase I control of simple linear profiles with individual observations. *Quality and Reliability Engineering International*, 29(6), 829-840.
- Zaidi, F. S., Castagliola, P., Tran, K. P., & Khoo, M. B. C. (2019). Performance of the Hotelling T² control chart for compositional data in the presence of measurement errors. *Journal of Applied Statistics*, 46(14), 2583-2602.
- Zhang, J., Li, Z., & Wang, Z. (2009). Control chart based on likelihood ratio for monitoring linear profiles. *Computational statistics & data analysis*, 53(4), 1440-1448.

Seyedamirhesam	Ali Salmasnia	Mohammad Reza
Khalafi	Department of Industrial	Maleki
University of Houston,	Engineering, Faculty of	Department of Industrial
College of Technology,	Engineering, University of	Engineering, University of
Houston,	Qom,	Eyvanekey,
USA	Oom,	Eyvanekey,
<u>Skhalafi@uh.edu</u>	Iran	Iran
	A.salmasnia@qom.ac.ir	Reza.maleki88@gmail.com

