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ECONOMIC SUSTAINABILITY OF THE �̅� 

IMPLEMENTATION IN UNCAPABLE 

PROCESSES 

 
Abstract: This study aims to evaluate the economic viability of 

SPC implementation in an out-of-specification production 

system in order to find the most sustainable point to change 

from the 100% inspection to sampling inspection. It can 

prevent losses with false alarms and, or, excessive inspection. 

It was a computational simulation study through the 

application of Duncan's (1956) model for the economic design 

of control charts. The model was optimized using a simulated 

annealing algorithm to find the parameters' values — a 

comparative study realized with a real case and a decision flow 

chart for SPC implementation provided. The results have 

several relevant practical implications, since the correct 

decision concerning the inspection type to be adopted based on 

the proportion of defective items allows its operation with 

lower costs, eliminating wastes in unnecessary inspections. The 

optimization of resources also contributes to focusing efforts 

on continuous process improvement. 

Keywords: Sustainability; Economic Design; Control Chart; 

SPC Implementation 

 

 

1. Introduction 
 

The capacity of sustaining or maintaining an 

operational system in equilibrium depends on 

simultaneously meeting technical-economic 

requirements that incorporate minor losses, 

less material use, and lower energy 

expenditure.  Smith and Sharicz (2011) define 

sustainability as the result of an 

organization’s activities, which demonstrates 

the organization’s capacity to maintain its 

production and commercial operations viable 

(including financial viability depending on 

the case), even though it does not affect 

negatively on the ecological and social 

systems. Gunasekaran et al. (2013) present 

the concept of Sustainable Operations 

Management (SOM) as operational 

strategies, tactics, techniques, and operational 

policies to support an organization’s 

economic and environmental objectives and 

goals. Thus, the idea of sustainability strongly 

relates to the dynamics in businesses and their 

adaptive capacity needed for better 

production system management (Voinov & 

Farley, 2007). In this context, priority given 

to manufacturing costs, product quality, 

process flexibility, product innovation, and 

delivery. Nevertheless, considering the level 

of complexity involved in this type of 

analysis, results that reflect in detail the 

ecological, economic and social dimensions 

are hardly found in the same study (Govindan 

et al., 2013). 

Total quality is considered a lean practice that 

influences the three sustainability dimensions 

(Govindan et al., 2014). Also, due to the 

increase in competitive pressure, today’s 
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managers view quality improvement as a 

means to improve and sustain organizational 

performance (Meftah Abusa & Gibson, 

2013). Monitoring quality standards play an 

essential role in organizations’ sustainability 

in competitive markets (Kasarapu & Vommi, 

2013). The techniques used for monitoring 

inserted in the statistical process control 

(SPC). The seven SPC tools, once well 

developed in a firm, resolve most product and 

process quality issues. Related with lean 

practices and SPC, Korzenowski et al. (2013) 

propose the use of endogenous variables in 

predictive models aimed at overcoming the 

multiple setup and short production runs 

problems found. 

In the context of production management, 

SPC tools utilized by companies. The SPC’s 

pioneer, Walter Shewhart, whose studies 

aimed to improve quality and productivity. 

This system of controlling variations and the 

increase of process capacity, based on 

continuous improvement, had a positive 

impact on Japanese manufacturers 

(Montgomery, 2009). Korzenowski et al. 

(2015) show this improvement with two new 

proposals of self- start statistical process 

control procedures for implementing quality 

control charts in mass customized production 

environments. Including, starting in the 

1970s, Ohno and Shingo implemented the 

concept of "seven wastes", reducing costs and 

consequently increasing profits in a 

continuous improvement environment, 

having SPC as technical support for its 

success (Kausalya et al., 2013). Nowadays, 

determine which mass customization 

characteristics prioritized in mass-customized 

service design it is hard, but Vidor et al. 

(2015) show in his research the method. 

SPC provides a way to reach the maximum 

levels of productivity and has contributed to 

several economic benefits in different 

industry sectors (Amir et al., 2014). However, 

to do so, attention to decision errors regarding 

the use of control charts is required since such 

errors may generate undesirable costs - 

tangible as well as intangible ones. For 

instance, the chart may signal the occurrence 

of an alteration in the process, which did not 

occur. It may generate costs associated to the 

unproductive investigation of the supposed 

issue. If the decision in the SPC strategy is to 

stop the production line, these costs could be 

even higher. On the other hand, there is still 

the possibility that the process undergoes a 

significant alteration, and the chart does not 

signal this occurrence. For example, such 

alteration increases the production of 

defective items without noticing them, 

causing future expenses with warranty, 

replacement and rework, besides intangible 

costs associated with losing client’s trust. 

The aim of using control charts is to propose 

a strategy of monitoring quality standards 

with lower costs, and this occurs at the 

moment that a complete inspection does not 

take place and is replaced by sampling 

inspection, reducing costs associated with 

data gathering, sample size, information 

registration and evaluation costs (Engi˙n, 

2008). When searching for a definition or the 

choice of applying a chart, the intention is to 

choose a chart which has the highest 

performance possible, that is, with a lower 

number of errors, which will then minimize 

non-detection costs, which will cause failure 

and/or false alarm costs, contributing to a rise 

in evaluation costs (Montgomery, 2009; 

Zhang et al., 2011). 

Economic sustainability investigated in 

association with SPC in the study of Engi˙n 

(2008), which combines traditional charts 

with equipment efficiency parameters. From 

the assessment of the number of events in 

which equipment stop or present some 

failure, the time spent to finish the inspection, 

to solve the issue, and the number of 

equipment assigned to each operator 

considered. In this case, economic 

sustainability sought through the combination 

of control charts and the sum of individual 

equipment efficiency. 

The case studied here reflects the reality of a 

firm that currently faces quality issues in its 

production line. The fraction of defective 

items was 60,000 per million (ppm) and, after 
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some improvement efforts, such number 

reduced to 5,000 ppm. The company still 

utilizes a quality evaluation system through 

complete (100%) inspection. The costs of this 

type of assessment system are becoming 

deterrent due to the production volume, once 

the reached improvement in this process has 

reduced the volume of rework until then.    In 

this context, considering 100% inspection 

costs and the current quality level of the 

production process, the following question is 

highlighted: can we affirm that the current 

stage, from the company’s economic 

sustainability point of view, is appropriate for 

the implementation of statistical process 

control through monitoring charts? The 

literature points that, for SPC implantation, a 

stable process required (Korzenowski et al., 

2014) and, a priori, the fact that the process 

does not meet the specifications is not a 

limiting factor for its implantation. Note that, 

according to Montgomery (2009), a process 

with Cp = 1, potential capacity presents a rate 

of 2,700 ppm. 

This case study aims to evaluate, through the 

application of Duncan’s (1956) model for 

economic design, the economic viability of 

SPC implantation, in addition to sensitivity 

analysis in error costs associated with a 

control chart decision. Due to the process 

characteristics, the implantation of a control 

chart for averages (�̅� Chart) used as a 

reference. The results demonstrate that the 

decision to implant �̅� control charts was 

directly impacted by the SPC operational cost 

in an out-of-state control, as the out-of-

specification production volume increases.   

The contribution of this study is in the 

evaluation of which process conditions 

(considering production volume and the ppm 

of defective ones) make the 100% inspection 

more preferable concerning the use of a 

process control chart. The subsequent 

sections present the theoretical review of 

Duncan’s Economic Model, the optimization 

method chosen for this study, the 

methodology itself, the analysis of the results, 

and final remarks. 

2. Theoretical Background 

 
2.1. Duncan’s Economic Design  

 

Duncan (1956) was the first to work with an 

economic model using Shewhart charts and to 

incorporate an optimization method to 

determine �̅� control chart parameters. 

Through such a proposition of an economic 

model for optimal economic planning, his 

article was a stimulus for several subsequent 

studies in this area, such as de Magalhães et 

al. (2002); Mortarino (2010); Pan et al. 

(2011); Korzenowski and Werner (2012); 

Mohammadian and Amiri (2012). 

Duncan (1956) utilized as a reference to the 

work of Girshick and Rubin (1952), which 

uses a net income per time unit maximization 

criterion.  Duncan admits that a µ0 stable 

control state characterizes the process and 

that after the occurrence of a random 

attributable cause at a δ magnitude, a change 

of µ0 mean to µ0 + δσ or µ0 − δσ occurs. 

Process monitoring occurs through an x¯ 

chart with a central line in µ0 and µ0 ± kσ/√n 

control limits. The samples must be extracted 

in intervals of h hours, and only when a point 

surpasses control limits the µ0 ± kσ/√n 

searches begin. Posteriorly, studies such as 

Panagos et al. (1985), modeled the system 

with a stop as soon as an attributable cause 

signalized. 

In Duncan’s (1956) model, adjustment costs 

or repairs not considered in this search of net 

income process. It is supposed that the µ0, δ, 

and σ parameters are known and sample size 

n, amplitude of control interval k, and interval 

between samples h (in hours) must be 

determined so as to minimize control chart 

operational costs, investigation costs of 

attributable cause as well as eventual costs 

associated with the non-detection of process 

anomalies. 

The model proposed by Duncan (1956) is 

detailed as follows. According to the author, 

the attributable cause expected time (τ) might 

define as in Equation (1). 
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𝜏 =
∫ 𝑒−𝜆𝑡𝜆(𝑡−𝑗ℎ)𝑑𝑡
(𝑗+1)ℎ
𝑗ℎ

∫ 𝑒−𝜆𝑡𝜆𝑑𝑡
(𝑗+1)ℎ
𝑗ℎ

=
1−(1+𝜆ℎ)𝑒−𝜆ℎ

𝜆(1−𝑒−𝜆ℎ)
 (1) 

Where 𝜆 is the attributable cause expected 

frequency per hour, h is the interval between 

samples and j e (j+1) determine the interval 

between samples when there is an occurrence 

of an attributable cause. The probability of a 

false alarm (𝜆) obtained in Equation (2). 

 

𝛼 = 2∫ φ(𝑧)𝑑𝑧
∞

𝑘
     (2) 

where k is the distribution probability value 

which defines control limits, and φ(z) is the 

standard average density.  The probability of 

an attributable cause detected, when it occurs, 

is determined by Equation (3). 

1 − 𝛽 = ∫ φ(𝑧)𝑑𝑧 + ∫ φ(𝑧)𝑑𝑧
∞

𝑘−𝛿√𝑛

−𝑘−𝛿√𝑛

−∞
 

         (3) 

where β is the probability of a type II error, δ  

is the size of the deviation to be detected,  n is 

the sample size adopted in-process 

monitoring, and φ(z) is the density of standard 

normal distribution, defined as 

φ(z) = (2π)−1/2exp(
−𝑧2

2
) 

The interval between the beginning of the 

production and the adjustment for the 

detection and elimination of an attributable 

cause defined as a production cycle. This 

cycle classified in four periods:  a) under 

control period; b) out-of-control period; c) 

time for sample extraction and analysis and d) 

time to find the attributable cause.  Thus, the 

objective function with (n, k, and h) decision 

variables defined as in Equation (4). 

𝐸(𝐿) =
𝑎1+𝑎2𝑛

ℎ
+

𝑎4[
ℎ

1−𝛽
−𝜏+𝑔𝑛+𝐷]+𝑎3+

𝑎′3𝛼𝑒
−
𝜆
ℎ

1−𝑒−𝜆/ℎ

1

𝜆
+

ℎ

1−𝛽
−𝜏+𝑔𝑛+𝐷

 

         (4) 

where: 

α depends on k according to equation (2); 

E(L) = expected wasted time incurred in the 

process; 

 

a1 = sampling cost fixed component; 

a2 = sampling cost variable component; 

a3 = cost of determining an attributable cost; 

a'3 = cost of investigation of a false alarm; 

a4 = hourly cost of the penalty associated with 

the out-of-control production state; 

g = required time for sampling and 

interpretation of results; and 

D = required time to find the attributable 

cause after an action signal. 

Tannock (1997) notes that control charts may 

be relatively ineffective due to the use of 

incorrect parameters, leading to an 

insensibility to process alterations. Another 

possible issue which may occur is when a 

stable process (but with insufficient capacity) 

results in manufacturing non-conforming 

items due to the excessive variety of common 

causes, and these items may not be detected 

and still delivered to the client. These 

scenarios have adverse economic outcomes 

and may generate a false sense of safety, 

while changes in the process are occurring, or 

waste time and money through signaling false 

alarms. Based on this, Tannock (1997) makes 

an economic comparison of control charts 

with other control quality methods, 

presenting a simulation model which proves 

to be capable of providing a view of the 

standard comparative costs associated with 

control charts for variables and alternative 

inspection strategies. 

Due to the preoccupation with the difficulty 

in estimating model parameters and to avoid 

unnecessary costs in the process, several 

authors utilized metaheuristics as an 

optimization method for x¯ control charts.  

Shiau et al. (2006) utilized the Genetic 

Algorithm, while Yu and Low (2005) utilized 

Simulated Annealing, in which numeric 

examples demonstrate more precise and 

reliable optimal values in comparison to 

published values. Ganguly and Patel (2012) 

developed an application of Simulated 

Annealing for Duncan’s (1956) control chart 

optimization method, comparing its results 

with the ones proposed by Montgomery 
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(2009). Sultana et al. (2014) performed this 

same comparison with their version of this 

algorithm with the option of (n) sample 

number as a continuous variable. The same 

authors even present a version of a Genetic 

Algorithm for the optimization of control 

charts. It was opted to use Simulated 

Annealing for the optimization in this study 

due to its simplicity in implementation, with 

applications to the issue of control chart 

optimization, which allows the validation of 

the utilized method to be more consistent. 

 

2.2. Simulated Annealing 

 

Simulated annealing is a local search 

metaheuristic algorithm, developed to solve 

several optimization issues, mainly 

combinatory ones, through the simulation of 

the annealing process. Its main advantages 

are the capacity for escaping from optimal 

locals and easy application (Chibante, 2010; 

Soares et al., 2013). 

Annealing is the metallurgical process of 

altering physical material properties, obtained 

through heating the material until its fusion 

temperature followed by slow cooling until 

the crystallization of its structure. Since the 

heating allows the atoms to move randomly, 

the cooling process must be sufficiently slow 

to allow the atoms to move to positions with 

the lowest energy possible inside the 

structure. Considering this procedure as an 

optimization issue, if the atom arrangement 

obtained in the process is the lowest energy 

possible one, such arrangement is an optimal 

solution for the issue of minimizing energy in 

the structure (Soares et al., 2013).  Simulated 

annealing uses this analogy in the search for 

an optimal solution for a determined 

optimization issue (Michalewicz & Fogel, 

2013).    Kirkpatrick et al. (1983) and Černý 

(1985) demonstrated this analogy between 

combinatory optimization issues and large 

physical systems studied in statistical 

mechanics. These authors demonstrated that 

the statistical mechanics model to simulate 

annealing processes, initially proposed by 

Metropolis et al. (1953), could be extended to 

resolve statistical optimization problems in 

general, mainly those of combinatory origin. 

Simulated annealing utilizes Metropolis’ 

(1953) algorithm to simulate the search for 

thermal equilibrium. An analogy assumed 

between the physical process and 

combinatory optimization process based on 

the following equivalences (KORST, 1990): 

 The value of the optimization 

problem objective function is 

equivalent to the energy of the solid 

in the cooling, physical process 

towards thermal equilibrium; 

 Intermediate solutions for a 

combinatory optimization problem 

are equivalent to the matter cooling 

stages; 

 The selection of a neighbor solution 

in an optimization problem is 

equivalent to the disturbance of a 

physical state; 

 The global optimum of a 

combinatory problem is equivalent 

to the fundamental state of a particle 

system; 

 An optimal local location of a 

combinatory problem is equivalent 

to a fast cooling of a physical 

system, maintaining atoms in high 

energy positions. 

The algorithm, when applied to a discrete 

optimization problem, compare in each 

iteration the values for both solutions (the 

current solution and a recently selected 

neighbor solution. The acceptance of 

solutions which worsen the objective function 

is tolerated, in the hopes of escaping from 

optimal locations during the search for the 

global optimum. The probability of accepting 

worse solutions depends on a temperature 

parameter, which normally undergoes a 

decrease in every algorithm iteration, to 

enable the exit of local optima. As the 

temperature parameter is reduced, reaching 

close to zero, the ”mountain climbing” 

(acceptance of worse solutions) occurs with 

less frequency, concentrating the search on 

the globally optimal solution (Gendreau & 
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Potvin, 2010). The pseudocode of Simulated 

Annealing demonstrated in Algorithm 

(Figure 1), where 

T0 = Initial temperature;  

Tf = Final temperature;  

α = Cooling speed; 

L = Temperature cycles; 

nbsc = Number of best solutions found;  

nic = Number of consecutive iterations;  

f oc = best local solution; and 

f o∗ = optimal solution. 

 

 

Figure 1. Algorithm – Simulated Annealing 

 

3. Method 
 

For the validation of the proposed algorithm, 

an instance proposed in example 9-5 of 

(Montgomery, 2009, p.309) was used, which 

was also used by Ganguly and Patel (2012) 

and Sultana et al. (2014) for the validation of 

their algorithm proposals for Duncan’s 

(1956) optimization model of control charts. 

The results obtained by the algorithm were 

compared to the ones obtained by the two 

authors, validating the efficacy of the 

algorithm. 

Later, the algorithm applied in a real setting - 

a metal mechanic factory located in Southern 

Brazil. This company had been dealing with 

considerable variability in the process, which 

caused it to opt for a 100% inspection in the 

production of a specific production line. The 

company made several investments and is 

conducting a series of improvements in its 

process, recently reducing its failure rates 

from 60,000 ppm to 5,000 ppm. Due to this 

improvement and the continuous effort in this 

sense, quality managers began to deal with 

the following questions: (i) In what moment 

100% inspection should be replaced by a 

sample inspection, in order to avoid losses by 

an excess of inspections? (ii) Moreover, once 

the sample inspection is adopted, what are the 

(n, h, k) parameters which must use to 

guarantee quality security, minimizing 

inspection costs? 
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The algorithm set with data originated from a 

real instance, being them a1 = $30.00, a2 = 

$0.004, a3 = $1000.00, aj3 = $1000.00, a4 = 

$450, g = 0.083, D = 2, δ = 2 e λ = 4.205. The 

fixed sampling cost (a1), was obtained by 

dividing the monthly fixed cost by the 

number of hours worked. In the fixed cost, 

costs of the inspection control structure 

considered, which includes labor and 

infrastructure. Dividing this value by the 

number of monthly worked hours, on an 

average of 357 hours, equals a1 = $30. The 

variable sampling costs (a2), are those related 

to energy and material consumed during the 

sampling, inspection, and interpretation of 

results, were related without $3,61, dividing 

this value by the production of the factory of 

841 per hour, obtaining a2 = $0.004. 

To determine the investigation costs of (a3) 

attributable cause, it was taken into 

consideration the average hourly cost of the 

team comprised of people working in the 

quality and engineering departments - 

responsible for performing the investigation 

of detected out-of-control points - reaching a 

value of $1000,00. Once that in this context, 

the investigations do not involve destructive 

tests; only labor costs considered in this 

study. According to the procedure performed 

in the company, the investigation of an 

attributable cause and a false alarm present 

insignificant differences concerning labor. 

Therefore, it assumed that both have the same 

cost (aj3 = a3). 

The costs of not detecting a failure, (a4) out-

of-control operation, were estimated based on 

the costs of rework to correct the out-of-

specification produced items, obtaining a cost 

of $450,00. In these contexts, opportunity 

costs due to lost sales as a consequence of 

unavailability of conforming items not 

considered. Although it is known that these 

costs may be significant to businesses that 

operate with small inventories, this was not 

the case of the company studied here, and 

therefore they were not considered at that 

moment. 

 

The required time for sampling and result 

interpretation (g) obtained through the 

analysis of the company’s inspection records, 

with an average of 5 minutes for the complete 

operation. This time, expressed as a fraction 

of an hour, results in g = 0,083.  These same 

company records contributed to obtaining the 

average time for concluding an investigation 

which points to an attributable after a sign of 

action, with an approximate time of two hours 

(D = 2). The magnitude of the deviances 

which must be detected is δ = 2. 

The production volumes of defective items 

were utilized to obtain the λ parameter. Once 

λ is the expected frequency of occurring 

attributable causes per hour, from the 

proportion in ppm and the production volume 

per hour, the frequency of the occurrence of 

defective items may be estimated, which is 

the last analysis, must be pointed as 

attributable by the control chart. Thus, the λ 

value was determined, in ppm, by the 

Equation (5). 

𝜆 = 𝑃𝑃𝐻 ×
𝑝𝑝𝑚

1.00.0000
 

Where PPH is the production per hour, the 

determination of the hourly cost of the 100% 

inspection was performed using the total 

monthly cost of inspection operation and 

quality control, divided by the average 

quantity of working hours in a month (357 

hours/month), reaching a cost of $33.61 per 

hour. 

After defining the cost parameters for the 

optimization, a sensitivity analysis in ppm 

performed in order to analyze how its 

behavior impacts on the parameters, and, as a 

consequence, on SPC operating costs.  This 

procedure also allowed the identification of 

the maximum ppm value, which allows 

management to utilize sampling inspection, 

which in turn will allow cost reductions 

without generating losses due to out-of-

specification production. The defective items 

rate varied approximately from  0 ppm to 

1,500  ppm,  in 50 ppm intervals. It permitted 

the evolution of the evaluation of the E(L) 

cost function. In the analysis of the results, a 
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direct relationship between the out-of-control 

operating cost (a4) and the λ observed. 

Because of this, we proceeded a scanning of 

out-of-control operating costs seeking to 

identify in which λ values the convergence of 

the objective function value for out-of-control 

operating costs occur. It enabled a calibration 

model to identify, based on the PPM, in which 

out-of-control operating cost the SPC 

implantation is more advantageous from an 

economic perspective. 

The analysis was performed based on the 

company’s current situation, repeating this 

procedure with the data from Montgomery’s 

(2009) study (example 9-5, p.309), in order to 

corroborate with the results found. The 

validated algorithm applied in the actual ppm 

instance (5,000 ppm), to obtain the (n, h, k) 

decision values to begin the SPC 

implantation. The following section presents 

a detailed description of the company’s data 

in addition to the results found in this study. 

 

4. Results 
 

In order to answer the questions regarding the 

right moment of change from 100% 

inspection to SPC use, a sensibility analysis 

was performed in the optimization method 

adopted in this study and applied in the 

company’s data. The proportion of defective 

manufactured items varied in this procedure 

in order to evaluate the behavior of SPC 

operating costs. Note that, the alteration of the 

defective items proportion values (ppm) 

directly affects the λ value, as demonstrated 

in Equation (5). 

The first results point to the fact that, as the 

proportion of defective items increases, the 

inspection costs through SPC converges to 

out-of-control production costs, according to 

Figure 2. This convergence may be noted 

starting from 500ppm. 

 

 

 

Figure 2. Inspection hourly cost in function of ppm 

 

Once there is a proportion of defective items 

higher than 500 ppm, the hourly costs to 

maintain a 100% inspection program against 

the out-of-control operating cost must be 

evaluated (OC Cost in the figure). Note that a 

proportion of defective items higher than 

500ppm is equivalent to a Performance Index 

of Pp ≈ 1.16. The implementation of 

improvement strategies suggested in order 

reducing the variability of the process. 

However, in case the proportion of defective 

items is lower than 500ppm, which is 

equivalent to an index of Pp ≥ 1.16, the SPC 

hourly operating cost must compare with the 

100% inspection cost for the decision-making 

process of which quality monitoring system is 

better to be adopted. 
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These results have several relevant practical 

implications, since the correct decision 

concerning the inspection type to be adopted 

based on the proportion of defective items 

allows its operation with lower costs, 

eliminating wastes in unnecessary 

inspections. The optimization of resources 

also contributes to focusing efforts on 

continuous process improvement. 

The tendency to convert SPC operating 

values in higher levels of defective items 

confirmed with the data from Montgomery’s 

(2009) study (example 9-5, p.309). The same 

analysis procedure repeated in this instance. 

Figure 3 presents the behavior of the cost 

function converging to the out-of-control 

operating cost when the λ value is above 3.50.  

It may observed in Figure 3 that the λ value 

obtained through Equation 2 - where such 

convergence occurs - is not the same as the 

company’s current instance   (λ ≈ 0.46). This 

is because the λ is dependent not only on the 

manufactured volume but also on the ppm 

value of defective units. The example 9.5 of 

Mongomery’s (2009) study describes a 

process of bottle production which presents a 

higher production volume in comparison to 

the situation in this study, due to its high 

automation degree, which directly reflects on 

the λ value. 

 

 
Figure 3. Inspection hourly cost in function of 𝜆 

 

At last, according to the results presented in 

this study, the decision to implement SPC 

must follow the criteria shown on the flow 

chart in Figure 4, so that such implantation 

occurs in an economical and safe manner, 

which guarantees the rationalization of the 

company’s resources and security in 

exchange for product quality warranty. The fl 

describes the function from the calculation of 

the Pp indicator, and in case the index is 

higher than 1.16, we must evaluate if the SPC 

operating costs are higher than 100% 

inspection costs. If negative, SPC 

implementation must ow proceed and start 

monitoring the quality level of the productive 

system.  In cases where 100% inspection are 

lower costs, it adopted rand; an improvement 

program must become a priority in this 

process with the aim tor reducing operating 

costs of a future SPC implantation. In cases 

where the Pp index presents lower levels than 

1.16 ones, we must evaluate if the out-of-

control operating costs are lower than 100% 

inspection costs. In case it is negative, 100% 

inspection must be implemented and give 

priority to an improvement program in the 

system to turn the index into Pp > 1.16. If 

positive, where out-of-control operating costs 

are lower than inspection ones, SPC must be 

adopted to maintain the monitoring of the (λ) 

frequency of defective items, since the out-of-

control operating cost depends on this 
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variable. Under these conditions, the 

prioritization of measures to promote 

improvements in the productive system 

becomes urgent, in order to reduce inspection 

costs and elevate the Pp value. 

 

 

Figure 4. Decision fluxogram for SPC implantation 

 

The decision made based on the proposed 

flow chart must have a continuous aspect 

since improvement programs cause 

alterations in the variables involved, which 

may cause further alterations on the decision 

to be made. Eventual system worsening, 

independently of its origin, must also induce 

this type of alteration. Furthermore, the 

decision making the process at the right 

moment will incur in lower costs related to 

excessive or insufficient inspections. 

 

5. Conclusion 
 

Quality improvement in organizations has a 

long way to go, with economic sustainability 

being a critical factor for the maintenance of 

the obtained improvements throughout this 

process and its continuous amelioration. The 

optimization of the efforts, as well as the 

adequation of a quality control strategy and 

the selection of adequate tools to the reality of 

the company, are factors which may strongly 

influence the economic sustainability of a 

continuous improvement process. In this 

sense, this paper presented Duncan’s (1956) 

model as an option for the optimization of 

control parameters for monitoring quality 

through SPC. Due to the combinatory nature 

of this issue and with the aim of obtain-    ing 

better results, the model was optimized 

through Simulated Annealing metaheuristics 

based on the studies of Ganguly and Patel 

(2012) and Sultana et al. (2014). The 

sensitivity analysis, based on the model 

applied in a real instance and example 9.5 in 

page 309 of Montgomery (2009), revealed 
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that as the frequency of (λ) defective item 

production level increases, SPC operating 

cost converges to an out-of-control operating 

cost. This type of behavior enables the 

decision-maker to opt for a 100% inspection 

in case its cost is lower or strategically 

irrelevant if compared to the out-of-control 

operating cost producing defective items with 

a (λ) frequency. This convergence point 

reveals itself as a crucial factor in the 

decision-making process for which inspection 

type adopted by the company. Based on the 

results, the flow chart presented in figure 4 

enables decision-makers to comprehend 

quickly and analyze fast when opting for a 

product quality inspection strategy. The 

constant evaluation of this decision through 

the proposed flow allows the company to 

utilize the adequate strategy under its 

circumstances in regards to quality levels. It 

also allows the elimination of unnecessary 

costs with 100% inspection as the frequency 

of defective item production decreased. Right 

below the point where the SPC operating cost 

converges to an out-of-control cost, 100% 

inspection abandoned and the 

company may begin to operate with exclusive 

monitoring through SPC. 

Even though the flow indicates 100% 

inspection not being adopted in cases where 

the costs of this inspection are higher than an 

out-of-control operation, it indicates the 

prioritization to improvements in the 

production process for all cases, except when    

Pp > 1.16 and SPC costs are not superior to 

100% inspection costs. It understood that in 

only this situation the productive system is 

mature enough in the quality system to fully 

operate using an SPC without the need of 

other interventions, and in all the other cases 

efforts must be performed in the process 

aiming to reach this same condition. 

The incorporation of strategic elements to the 

decision-making process may provide higher 

robustness in practical applications in other 

market segments. The incorporation of 

related variables to the environmental impact 

due to rework might be a considerable 

contribution to the optimization model when 

uniting environmental sustainability factors 

to economic sustainability ones in the 

evaluation of companies’ quality levels.
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