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Abstract: Vein detection is an important issue for the medical field. There are some commercial devices for detecting 

veins using infrared radiation. However, most of these commercial solutions are cost-prohibitive. Recently, veins 

detection has attracted much attention from research teams. The main focus is on developing real-time systems with 

low-cost hardware. Systems developed to reduce costs suffer from low frame rates. This, in turn, makes these systems 

not suitable for real-world applications. On the other hand, systems that use powerful processors to produce high frame 

rates suffer from high costs and a lack of mobility. In this paper, a real-time vein mapping prototype using augmented 

reality is proposed. The proposed prototype provides a compromised solution to produce high frame rates with a low-

cost system. It consists of a USB camera attached to an Android smartphone used for real-time detection. Infrared 

radiation is employed to differentiate the veins using 20 Infrared Light Emitting Diodes (LEDs). The captured frames 

are processed to enhance vein detection using light computational algorithms to improve real-time processing and 

increase frame rate. Finally, the enhanced view of veins appears on the smartphone screen. Portability and economic 

cost are taken into consideration while developing the proposed prototype. The proposed prototype is tested with 

people of different ages and gender, as well as using mobile devices of different specifications. The results show a 

high vein detection rate and a high frame rate compared to other existing systems. 

Keywords: Vein mapping, Infrared, Mobile application, Image processing, Augmented reality. 

 

 

1. Introduction 

Biomedical imaging is the way for producing 

visual representations of a body's interior. It reveals 

the hidden structure of tissues and bones for clinical 

diagnosis and medical intervention. Biomedical 

imaging techniques have achieved significant 

progress in the veins detection field. However, in 

general, the solutions produced are high-cost end 

devices in addition to neglecting the portability of the 

device. 

Intravenous puncture is the first step for any 

surgical procedure where the anesthetic is injected, 

and it is also the natural procedure for taking a blood 

sample. All physicians and nurses usually have 

trouble locating the vein accurately from the first trial 

[1]. This problem can occur due to unclear visibility 

of the blood vessels. Many medical situations require 

identifying the accurate location of blood vessels. 

This may include: receiving medicines intravenously, 

contusions and tumefaction, kids and babies, and 

elders, among others [2]. Traditional techniques of 

locating veins such as slapping the skin or pressing 

the vein back and forth are not enough. They make 

the process of vein injection painful and 

uncomfortable [3]. AccuVein [4]and VeinVeiwer [5] 

are the most popular devices that come up to 

overcome these problems. However, they suffer from 

some issues such as their high cost, portability factor, 

ease of use, processing capability, or reliability [6]. 

Infrared imaging is a technique that guarantees to 

deliver systems with economic costs and precise 

results. The physicians have a severe problem in vein 

injection because of the veins are not noticeable 

under the ordinary conditions of visible light. Infrared 

radiation is the best solution to be used for detecting 

human veins. Imaging techniques have two different 

types: Far-InfraRed (FIR) imaging technique and 

Near-InfraRed (NIR) imaging technique.  

These types of imaging techniques are used for 

detecting different parts of the hand's veins. FIR 
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imaging techniques are employed to distinguish the 

significant arteries of the hand. In the electromagnetic 

spectrum, the FIR range is 8-14μm. Still, it is so 

sensitive to external conditions that affect the quality 

of the image captured, so it does not offer an image 

of adequate quality. NIR imaging technique is used 

to detect the small veins on the wrist and palm. It has 

a range of 700-1000nm in the electromagnetic 

spectrum. It is not affected by external conditions, so 

it offers a perfect quality image [7]. 

Visible light has a very narrow range (400 - 

700nm) of the electromagnetic wave range that can 

be observed by human eyes [8]. However, in other 

ranges of the electromagnetic wave, there are more 

details rejected by the objects of interest. Under the 

visible light in normal conditions, the visibility of 

human veins is not clear. Near-InfraRed (NIR) 

imaging techniques can be utilized to resolve this 

poor visibility because the vein vessels absorb all 

infrared radiation. This is due to the existence of 

Deoxidized Haemoglobin (Hb) in the vein vessels. 

The other parts of the hand appear transparent due to 

the presence of Oxidized Haemoglobin (HbO2) in the 

arteries. 

Subsequently, a part of a human body is exposed 

to infrared radiation with a particular wavelength. 

The veins will appear darker than the other parts. Fig. 

1 shows the wavelength of NIR. The near-infrared 

radiation with the range extended from 700 to 1000 

nm approximately is not visible. 

Augmented Reality (AR) technology is one of the 

latest innovations that have a promising future. 

Applying the Augmented Reality technology opens 

up new possibilities in the healthcare sector. It has the 

potential to play a significant role in improving the 

healthcare industry. It is a technology that depends on 

the projection of virtual objects or information in the 

user's real-world to provide augmented information 

[9]. Users can deal with this augmented information 

or virtual objects through several devices, whether 

portable like smartphones or through devices that can 

be worn like glasses or lenses. AR is used for many 

fields such as education, gaming, medicine, etc. By 

integrating augmented reality techniques with 

biomedical imaging technologies, a new user-

friendly system can be developed for vein mapping. 

In this paper, a real-time prototype for detecting and 

visualizing veins is proposed. The prototype 

integrates augmented reality technology and 

biomedical imaging techniques. It employs low-cost 

components: USB-Camera, 20 Infrared LEDs, and an 

Android smartphone for easy portability. Light 

computational algorithms are utilized to detect veins. 

It includes the Contrast Limited Adaptive Histogram 

Equalization (CLAHE) technique, the median filter,  

 
Figure. 1 The wavelength of near-infrared light 

 

the adaptive threshold, and the Scan-Line Filling 

algorithm. The main characteristics of the proposed 

prototype in comparison with other existing work are 

as follows. First, it provides a high frame rate, making 

it suitable for real-time applications. Second, it uses 

low-cost components while providing a high vein 

detection rate. Finally, it employs light computational 

algorithms for vein detection. Thus, the smartphone 

processor can be relied upon to run these algorithms 

to benefit from the mobility advantage.  

The remaining part of this paper is organized as 

follows: Section 2 reviews the state-of-art of vein 

detection systems. The proposed vein mapping 

prototype is presented in Section 3. Section 4 

discusses the experimental results to evaluate the 

proposed prototype. Finally, Section 5 draws 

conclusions and future work. 

2. Related work 

Recently, the improvement of subcutaneous vein 

detection has received much attention from many 

researchers. Due to the existence of commercial 

devices of vein detection at a high cost. Researchers 

focused only on developing real-time systems at a 

lower cost. This led to systems with low efficiency 

and low frame rate. Some researchers have relied on 

more powerful processors to improve real-time 

efficiency and to increase the frame rate. However, 

this increases the cost and produces unportable 

devices. Others tried to rely on smartphones for real-

time processing to solve the problem of portability 

and high cost. Nevertheless, computationally 

intensive algorithms have been used for processing 

veins. This led to a low frame rate due to the limited 

computational power of the smartphone processors. 

Some others use ultrasound to detect veins and 

conduct venous cannula [10]. The related work is 

discussed here: 

Mansoor et al. [2] presented a low-cost system 

that uses a USB-Camera modified with an infrared 

filter. The NIR LEDs are arranged in a ring shape to 

illuminate the desired part of the hand. Continuous 

frames are captured and sent to a computer from the 

camera through a USB cable for further processing. 

Some image pre-processing techniques are applied to 

enhance detected veins. Flood Filling algorithm is 
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used to fill enhanced veins with color for more 

visualization, but this algorithm has a disadvantage 

[11]. It is not efficient for large shapes and it has long 

computational time which affects the frame rate and 

real-time processing. 

In [12], Juric and Zalik proposed a real-time 

prototype for vein visualization using mobile. Images 

are captured through a USB camera modified to be 

sensitive to infrared radiation. Four high-intensity IR 

LEDs (OIS-330-740-X-T) with a peak wavelength of 

740 nm were used for illumination. Two algorithms 

are used: External Camera Management (EXCAM) 

for camera control and NIR Image Processing (NIP). 

The steps of the NIP algorithm are not mentioned to 

determine how detected veins are enhanced. To 

evaluate their system, they enrolled 20 trainees and 

25 people and performed 500 attempts of vein 

detection. The results produced a failure rate of 

35.2% in vein detection which can be improved. 

Bawase and Apte [13] presented a vein detection 

system using a smartphone camera with a resolution 

of 6 megapixels and 36 IR LEDs with a wavelength 

of 850 nm. The image is taken by the mobile camera 

and sent to a personal computer for processing. Pre-

processing is performed by CLAHE, median filter, 

and global thresholding. The main drawback is that 

global thresholding is not a recommended technique 

for NIR images. Some parts of the vein are removed 

because of the illumination variations [14]. 

Moreover, Dan et al. [15] combined anisotropic 

diffusion and multi-scale vessel enhancement 

filtering for the enhancement of the dorsal hand vein 

image. Their system includes two infrared LED light 

source of 850 nm, and two other infrared cameras 

used to capture veins. Every image is captured and 

sent to a microprocessor unit for processing. They 

tested their proposed technique against CLAHE on 

40 samples. Half of which were obtained from a high-

quality dorsal database called Bosphorus and the 

other half were captured from their system. The 

performance shows good results on the Bosphorus 

database in terms of enhancing quality. However, the 

results were supportive of the CLAHE method for 

their low-quality image collected from their system. 

CLAHE is more effective in low-cost systems. The 

main weakness of their study is that their system may 

not be practical in all situations. By inspecting the 

system hardware, it is rather costly and not portable. 

Also, the data captured from their system is offline, 

not in real-time. 

The authors in [16] developed an add-on near-

infrared illumination for hand veins recognition using 

mobile. Google Nexus 5 smartphone is used, and its 

camera is modified to be sensitive to infrared by 

EigenImaging Inc. It is a company specialized in 

smartphone camera modification for applications of 

near-infrared imaging by detaching the original cut-

off filter of near-infrared. The problem with this 

approach is that the modified smartphone price is 

nearly three times its original price. The control board 

(Arduino Nano Board) has 16 IR LEDs with a 

wavelength of 850 nm and is connected to the mobile 

via Bluetooth. The proposed algorithm started with 

the extraction of the Region of Interest (ROI) with a 

size of 512×512 pixels. CLAHE, Circular Gabor 

Filter (CGF), and High-Frequency Emphasis 

Filtering (HFE) are used for image enhancement 

before feature selection and comparison. Spatial 

domain filters have low time complexity over 

frequency domain like HFE and they are a good 

choice for real-time applications [17,18]. Although 

the combination of the spatial domain and the 

frequency domain produces good results, it is not 

suitable for real-time applications. 

Furthermore, a standalone microcomputer for the 

dorsal hand vein imaging system is developed in [19]. 

It uses NIR imaging technology with two 850 nm IR 

(Edison-Opto and Taiwan) power LEDs to light the 

hand surface. A cut-off Kodak 87C Wratten filter is 

attached to an infrared camera connected to a 

Raspberry Pi 3 for processing. The system is 

developed for identification and authentication. To 

evaluate their system, the raw image is compared 

with images recorded in the database using 2D cross-

correlation and pixel to pixel matching algorithm. 

Although the results were promising in matching, 

they have admitted that their system was processing 

in near real-time. They used algorithms with high 

computational time in segmentation like Niblack’ 

threshold method [20]. This is in turn affected the 

frame rate and processing in real-time. 

In [21], Garcia and Sanchez introduced a real-

time biometric system for recognition of wrist veins. 

The hardware device consists of a modified USB 

webcam (Logitech® HD Webcam C525), light 

sources of 8 infrared LEDs (OSRAM© SFH 4715 A) 

with 850nm wavelength, and a small computer 

(Raspberry® Pi 4 B model). Their proposed software 

was divided into two parts: Firstly, Three-Guideline 

Software (TGS) was used for capturing images. This 

algorithm was used to create a database by guiding 

users to position their wrist within fixed three lines 

on the monitor. Secondly, Preprocessing and 

Identification Software (PIS) was used for user 

identification and verification purpose. It employs 

some pre-processing methods such as CLAHE, 

Gaussian, median and average filters of size 11×11 

for enhancing images. Moreover, it uses a new scale-

orientation-invariant algorithm, based on Oriented 

FAST and Rotated BRIEF (ORB), Speeded Up 
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Robust Features (SURF), and Scale-Invariant Feature 

Transform (SIFT) for feature extraction and 

matching. The result for recognition had a lower 

Equal Error Rate (EER) of 0.08% using SIFT over 

other methods but with the lowest frame rate per 

second 2 Fps because the algorithms take too much 

computational time which is not suitable for real-time 

applications. 

The same authors used the same approach in [21], 

but with a modification. They use smartphones for 

capturing and processing their algorithms TGS and 

PIS in [22]. The smartphones used were Xiaomi 

Pocophone f1© and Xiaomi Mi 8©. These types of 

devices were selected because they had a built-in 

near-infrared camera and a near-infrared LED for 

facial recognition. The results showed that the 

recognition accuracy not the best from existing 

systems by EER of 18.72 % with a frame rate of 2-4 

Fps. This is too low for real-time applications. Also, 

their developed system is limited to these two 

smartphones only. 

3. The proposed prototype 

The primary motivation for this research is to 

build a prototype that helps medical teams inject 

veins easily and accurately on the first attempt. Thus, 

it helps to reduce the pain that the patient may feel 

from repeated intravenous injection because the veins 

are not clear due to old age or excessive obesity. Most 

of the solutions presented in this regard suffer from  

 

 
Figure. 2 The proposed prototype hardware 

 

 
Figure. 3 Real-time vein mapping system diagram 

high costs or lack of mobility. Besides, some of the 

presented solutions do not provide real-time 

processing and require complex computations, which 

make their application useless. Systems developed to 

reduce costs suffer from low frame rates. 

Fig. 2 shows the hardware components of the 

proposed prototype. It is used to capture an image of 

the part to be injected and then augment the veins' 

image on this part to appear on the smartphone screen. 

The vein patterns are detected by converting the 

captured frame to a grayscale image. Then, contrast 

enhancement is applied to adjust the frame contrast. 

The noise is removed using median filtering. Then, 

the frame is segmented using adaptive thresholding. 

Finally, the extracted veins are colored. The real-time 

vein mapping system is shown in Fig. 3 and described 

in detail in the next subsection. 

3.1 Frame acquisition  

The proposed prototype consists of a USB camera 

attached to an Android smartphone used for real-time 

detection. Only the camera is directed towards the 

veins of the subject to take a snapshot. The USB-

Camera captures the image of the vein under a source 

of infrared radiation at a specific wavelength. 

Actually, the captured image is affected by many 

physical phenomena as light propagates through 

human tissues. These phenomena include absorption, 

diffusion, and dispersion. The effects of light 

transmission become complicated by a large number 

of substances present in the human body, and the 

dynamics of the blood. All of these reasons made 

detecting veins from images captured in normal light 

extremely difficult. To overcome this issue, an array 

of Infrared LEDs is used. The veins appear in the IR 

image darker than the other human tissues because 

Haemoglobin strongly absorbs infrared wavelengths. 

This process is done in real-time, as shown in Fig. 

4. The camera captures a sequence of images. The 

processing of vein detection is done on every single 

frame. Practically, any part of the body can be 

examined to obtain an image of the vascular pattern, 

yet the hand and the fingers are usually preferred. 

 

 
Figure. 4 Frame acquisition of vein mapping prototype 

Power supply 
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3.2 Grayscale conversion   

The captured frame is converted into a grayscale 

image to allow much quicker processing in the next 

steps than the color frame. The grayscale image is 

more suitable for certain applications, and it merely 

reduces the complexity. The OpenCV library always 

reads images or videos in BGR format. So 

BGR2Gray color space conversion is used to convert 

images into grayscale. Eq. (1) shows the conversion 

process to calculate luminance by multiplying R, G, 

and B color pixels values by constant-coefficient 

resulting in integer values between 0 and 255. The 

coefficients are standardized in ITU-R 

Recommendation BT.601-4 [23].  

 

𝑌 = 0.299 × 𝑅 + 0.587 × 𝐺 +  0.114 × 𝐵  (1) 

 

Where Y is the luminance, R, G and B are stand for 

Red, Green, and Blue color. 

3.3 Contrast enhancement 

The intensities on a given image should be 

accurately distributed. Histogram Equalization is 

used to adjust images contrast. In a biomedical 

imaging system, captured frames contain dark 

regions or low contrast of local regions. Therefore, 

Global Histogram Equalization is not the best method 

to be used [13]. The Contrast Limited Adaptive 

Histogram Equalization (CLAHE) technique 

depends on regional contrast [24]. However, if there 

is a noise in the image, it will be increased. Hence, 

contrast limiting is applied to fix this problem. This 

technique is used widely on biomedical images to 

both reduce noise and eliminate imperfections in the 

borders. CLAHE provides perfect results in a 

biomedical imaging system with low contrast[24, 25]. 

It depends on dividing each frame into small, 

separated regions called tiles. By default, the size of 

tiles is set to 8×8, as it is a valid value to retain 

chromatic data [27]. For each region, the histogram is 

calculated. Then, each histogram bin is changed so 

that its height should not surpass a pre-determined 

threshold value called the clip limit. The pixels 

clipped will be distributed uniformly to other bins of 

the histogram, as illustrated in Eq. (2) [28]. 

 

𝑔 = (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × 𝜌(𝑓) + 𝑔𝑚𝑖𝑛          (2) 

 

Where 𝑔  is the output pixel value, 𝑔𝑚𝑎𝑥  is the 

maximum pixel value, 𝑔𝑚𝑖𝑛  is the minimum pixel 

value, and 𝜌(𝑓)  is the cumulative probability 

distribution. Finally, bilinear interpolation is applied 

for removing imperfections in the border. 

3.4 Noise removal and smoothing  

Smoothing filters are used to enhance noisy 

images. In the proposed prototype, the median filter 

is employed to reduce the noise and perform 

smoothing [29]. It has the advantage of preserving the 

details in the image. The median filter is less likely to 

generate new unrealistic pixel values, particularly 

when the filter operates in transition zones. It 

smooths images while maintaining the edges. The 

median value is calculated by sorting all the pixels 

values in ascending order (see Eq. (3)), then picking 

the middle pixel value to be replaced with the center 

pixel value. 

 
𝑦(𝑚, 𝑛) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑥(𝑖, 𝑗), (𝑖, 𝑗) 𝜖 𝑤}      (3) 

 

where 𝑦(𝑚, 𝑛) is the output pixel's value, and 𝑤 is 

the window size of neighborhood pixels. 

3.5 Segmentation 

This step aims at carrying out a segmentation 

between veins and the background. Thresholding is a 

broadly known segmentation technique used for 

separating an object from its background. Global 

thresholding is not a satisfying technique as it 

depends on a single value for thresholding the whole 

image and produces poor results [14]. Hence, at any 

given threshold, some veins will be removed. In the 

proposed prototype, the adaptive threshold is 

employed to the different parts of the image, see Eq. 

(4). 

 

𝑑𝑠𝑡(𝑥, 𝑦) = {
𝑚𝑎𝑥𝑣𝑎𝑙    𝑖𝑓 𝑠𝑟𝑐(𝑥, 𝑦) > 𝑇(𝑥, 𝑦)

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
 

(4) 

 

Where 𝑑𝑠𝑡(𝑥, 𝑦) is the new pixel value after 

thresholding,  𝑠𝑟𝑐(𝑥, 𝑦)  is the original pixel value, 

and 𝑇(𝑥, 𝑦) is a threshold value, which is calculated 

from the mean value of a window of block-size × 

block-size neighborhood pixels. The block size 

should be an odd value. If the value of the threshold 

is less the center pixel, it is set to 0; else, it is set to 

𝑚𝑎𝑥𝑣𝑎𝑙 which is 255. The dimension of the window 

is defined empirically and can be modified by the 

user from the settings in the Android app. 

3.6 Augmented reality 

In this step, the map of the detected veins is 

augmented and visualized on the mobile phone 

screen. Here, augmented reality uses a display 

(mobile phone screen) to overlay digital information 

(veins map) onto the real world (human body parts  
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Figure. 5 A screenshot of a digital vein map of the wrist. 

 

like hands). First, the contours of detected veins are 

extracted by the contour tracking algorithm used in 

[30]. Contours are consecutive points with the same 

color or intensity used for analyzing shapes and 

object detection. The technique depends on finding a 

change in value between two adjacent points. Second, 

a contour filling process is carried out using the Scan-

Line filling algorithm [31].  Contour filling is one of 

the most widely recognized issues in image 

processing. The execution time of the contour filling 

is crucial, particularly for real-time applications. The 

Scan-Line filling algorithm depends on obtaining the 

intersections between the contour and scan line. The 

points of intersection are sorted in increasing order 

then the algorithm begins the process of filling inside 

the contour. The algorithm has a low computational 

time because it determines the intersections without 

the need to scan the whole image. This makes the 

algorithm more efficient than boundary fill and flood 

fill algorithms [11]. This feature made it a strong 

candidate for augmenting the vein network map. 

After completing this step, the physicians can see the 

augmented veins colored through the smartphone 

mobile screen, as shown in Fig. 5. 

4. Experimental results 

To verify the performance of the proposed 

prototype, a set of experiments are conducted. This 

section reports and discusses the experimental results.  

4.1 Hardware Setup 

When building the hardware for the proposed 

prototype, the Etrain CM-15-0 webcam is used as the 

USB-Camera connected to the Android smartphone. 

It has a resolution of 5 Megapixels with 480×640 

dimensions, and its price is rather low. Most modern 

cameras come with an infrared cut-off filter behind 

the lens to get the maximum amount of visible light 

for high-resolution images. This filter blocks 

wavelength above 700 nm in the electromagnetic 

spectrum, and it must be replaced with a filter that 

allows infrared radiation to be visible to the camera 

[32]. Hence, the camera is modified by replacing the 

infrared cut-off filter with another filter. This new 

filter is made of a magnetic film that came from a 

floppy disk to have access to the infrared light. The 

focus of the USB-Camera was also re-adjusted to 

gain more accurate results [33]. A USB cable called 

On-The-Go (OTG) is used to connect the USB-

Camera with the mobile device. The IR LEDs are 

used for lightening with a wavelength of 940 nm. 

There are 20 IR LED's (TSAL6200) mounted on a 

small breadboard. It is provided with a power supply 

with an output: DC 5.7V/800mA. The target body 

part (such as a hand) is lighted with an infrared light 

source spotted on it, then the captured frames from 

USB-Camera are sent to mobile via (OTG) cable for 

further processing. 

4.2 Mobile app development 

In recent years, the use of smartphones has 

increased dramatically by millions of people. 

Smartphones are equipped with many sensors and 

processors of increasing power. These capabilities, 

along with signal processing algorithms, represent a 

growing platform for providing many smart solutions. 

If we take into account the advantage of mobility and 

portability with the continuous development in 

software and hardware, we find ourselves in front of 

a practical, low-cost, and accessible solution for 

many applications. Hence, we implemented our vein 

mapping system as a mobile app.  

Currently, smartphones are equipped with high-

resolution image sensors of 64 megapixels on some 

phones. These advances in camera sensors and the 

increased computational power of smartphones 

enable images to be captured with pinpoint accuracy 

that shows important image details. Thus, these 

images can be analyzed and used in various mobile 

applications. 

In the proposed prototype, the vein mapping app 

is implemented optimally in Android using the 

Android Studio. Android is very flexible and 

provides a lot of application development tools. The 

(OpenCV4android) library is employed for 

developing the vein mapping app. It is a Computer 

Vision library integrated with Android Studio IDE 

for developing Android applications. This open-

source library is used for computer vision 

applications as well as machine learning. It is the best 

choice for real-time processing. It has an advantage 

that it is an independent platform running on all 

operating systems. The OpenCV library contains a 

huge number of algorithms that can be used for 

augmented reality, image processing, face 

recognition, objects identifying, etc. [34]. Fig. 6 

shows our developed Android app for the real-time  
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(a) 

 
(b) 

 (c)  

Figure. 6 Screenshots of the prototype android app: (a) 

main screen (b) setting screen, (d) view screen 

 

vein mapping system. The app has only three screens. 

The main screen shown in Fig. 6 (a), contains the 

viewing options of detected veins, including normal 

view, CLAHE view, Segmentation view, and color 

view. The settings screen is shown in Fig. 6 (b), 

where users can adjust and control values to achieve 

the best results. In the view screen, enhanced veins 

on the hand are clearly shown in Fig. 6 (c). 

4.3 System evaluation 

To evaluate the proposed prototype, trials were 

conducted on 120 persons (64 females and 56 males), 

all from the same country, aged between 16 and 65 

years with a standard deviation of 15.49 and an 

average age of 29.46. The sample data distribution is 

shown in Table 1. The trials were done in more than 

one session.  The Success Detection Rate of the 

system is measured using Eq. (5). The result is 

reported in Table 2. 

 
Table 1 Sample data distribution 

Age Male Female 

16-30 37 45 

30-55 13 15 

55-65 6 4 

 

Table 2. Test results 

 Trials 
Successful 

Trials 

Failure 

Trials 

Male 56 37 19 

Female 64 48 16 

Total 120 85 35 

Success Detection Rate (%) 70.8% 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒(%) =  
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑟𝑖𝑎𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑖𝑎𝑙𝑠
   

(5) 

 

Fig. 7 and Fig. 8 show the results of the proposed 

vein mapping system for the wrist and dorsal hand, 

respectively. The frame captured by USB-Camera is 

converted to a grayscale level. The grayscale 

conversion result is shown in Fig. 7 (a) and Fig. 8 (a). 

At the next step, CLAHE is applied to the grayscale 

image for contrast enhancement. The result of the 

contrast enhancement operation is shown in Fig. 7 (b) 

and Fig. 8 (b). Thus, the veins appear darker. Then, 

median filtering is applied to eliminate noise. After 

noise removal, the vein pattern is segmented by 

adaptive thresholding to discriminate veins from the 

background (see Fig. 7 (c) and Fig. 8 (c)). In Fig. 7 

(d) and Fig. 8 (d), the result of the last step after 

coloring the veins. 

On another scale, the proposed prototype was 

tested on different mobile devices having different 

specifications in terms of RAM and CPU running on 

different Android versions and compared against the 

current state-of-the-art. The Android smartphones 

used in this test were the Meizu m5 (CPU 1.5Hz and 

RAM 2GB), Motorola G3 (CPU 1.4Hz and RAM 

2GB), Huawei Honor V9 (CPU 2.4Hz and RAM 

4GB), and Realme 5pro (CPU 2.3Hz and RAM 8GB). 

Table 3 shows the average frame rate (fps) after 

implementing the techniques used in previous work 

on the above-mentioned smartphones. In [15], the 

average frame rate was very low, approximately one 

fps. This is because it uses computationally intensive 

algorithms. It takes a long execution time which is not 

suitable for real-time applications. Also in [16], 

frequency domain filters (such as HFE) are used in 

the enhancement process. This resulted in a 

significant drop in the frame rate. In [19], the 

techniques used are similar to those used in the 

proposed prototype except the threshold method. 

They used a local threshold method called Niblack's 

method. It calculates the mean and the standard 

deviation to determine the threshold value within a 

window of size w×w. Hence, it needs more time for 

calculation. This affects the frame rate (an average 

frame rate of 12.75 fps). Furthermore, the techniques 

used in [22] are CLAHE, median, Gaussian, average, 

feature selection, and feature matching. Only pre-

processing was performed to be compared with other 

results. It achieved an average frame rate of 21 fps. 

The use of more than one filtering method with a 

window of size 11×11 size resulted in a slight 

increase in the execution time. Although we could not 

implement the algorithm presented in [12] because 

the details of the algorithm are not clearly explained,  
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(a) (b) 

  

(c) (d)  

Figure. 7 Sample results for a wrist: (a) grayscale frame 

(b) applying contrast enhancement CLAHE (c) adaptive 

thresholding, and (d) color veins 

  
(a)  (b)  

  

(c)  (d)  

Figure. 8 Sample results for a dorsal hand: (a) grayscale 

frame (b) after applying contrast enhancement CLAHE 

(c) adaptive thresholding, and (d) color veins 

 
Table 3. Average frame rate of proposed prototype and previous systems in real-time processing 

 

Table 4. Comparison between the proposed prototype with existing systems 

 

they reported that their system achieves an average 

frame rate of 12.2 fps. It can be seen from Table 2 

that the proposed prototype has the highest average 

frame rate of 23 fps due to its reliance on light and 

fast techniques: CLAHE for enhancing contrast, the 

median filter for smoothing with size 5×5, the 

adaptive threshold for isolating veins map, and the 

fast-fill algorithm scan-line for coloring the detected 

veins. All this makes the proposed prototype superior 

to the existing systems in terms of speed and real-

time processing. 

Table 4 reports the comparative results of the 

proposed prototype with other existing systems 

presented in [12, 13, 16, 19, 22] in terms of hardware 

component used, the number of sample data, 

characteristics of sample data, and the total cost. The 

systems presented in [16, 19, 22] used the hardware 

components for collecting datasets for recognition 

purposes. These systems depend on an external 

processing unit for running their algorithms which 

leads to an increase in cost. Also, the work presented 

in [12] and [13] was mainly developed for vein 

detection. The system presented in [12] achieves a 

detection rate of 64.8%. on the other hand, the work 

presented in [13] depends on a personal computer in 

processing which limits its portability.  As can be 

Study Year Methodology 
Average Frame 

Rate (Fps) 

Dan et al. [15] 2015 anisotropic diffusion+ multi-scale vessel enhancement filtering 1 

Debiasi et al. [16] 2018 
CLAHE+ Circular Gabor Filter+ 

High Frequency Emphasis Filtering 
0.5 

Yildiz and Boyraz [19] 2019 CLAHE+ Median filter+ Niblack’s local thresholding 12.75 

Garcia and Sanchez [22] 2020 CLAHE+ Gaussian, median and average filter 21 

Proposed 2020 CLAHE+ Median Filter+ Adaptive threshold+ Scan line fill algorithm 23 

Study Year Hardware 
Samples 

Data 

Sample Data Characteristics Detection 

Rate (%) 
Cost 

Juric and 

Zalik [12] 
2014 

4 IR (OIS-330-740-X-T) high-intensity LEDs 

of 740 nm wavelength + USB-Camera 

connected to android tablet 

25 N/A 64.8% 
30-80 

USD 

Bawase and 

Apte [13] 
2015 

36 IR LEDs of 850nm + Mobile camera of 6 

megapixel connected to a personal computer 
55  25 males and 30 females N/A N/A 

Debiasi et al. 

 [16] 
2018 

16 IR LEDs of 850nm + Modified smartphone 

Nexus 5 + Arduino Nano Board 
31 N/A N/A 

427.7 

USD 

Yildiz and 

Boyraz [19] 
2019 

Two light source of IR power LEDs of 850 

nm + Kodak cut-off filter attached to mini 

Raspberry Pi IR camera 

72  
32 females and 40 males, age range 

from 18-65 
N/A 

75 

USD 

Garcia and 

Sanchez [22] 
2020 

Built-in near-infrared camera and the near-

infrared LED in Xiaomi Pocophone F1and 

Xiaomi Mi 8 smartphones 

50 

25 females and 25 males, age range 

21-75, Europe (43), America (4), 

Africa (1) and Asia (2) 

N/A N/A 

The Proposed 

Prototype 
2020 

20 IR LEDs of 940nm +USB-Camera of 

5megapixel + connected to android smartphone 
120 

64 females and 56 males, age range 

from 16-65 
70.8% 

20 

USD 
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seen from the table, the proposed prototype shows a 

high success rate of vein detection. The results 

obtained are broadly consistent with the prototype 

objective. It uses light computing algorithms with 

hardware components achieving reliable results at a 

low cost. 

5. Conclusion 

In this paper, a real-time vein mapping prototype 

has been introduced. The proposed prototype can 

help physicians in their work to give an intravenous 

injection to patients from the first trial. While 

developing the proposed prototype, the focus was on 

setting-up a low-cost and easily portable device for 

vein mapping. Augmented reality and biomedical 

imaging technologies are employed in the proposed 

prototype. A modified USB-Camera with an infrared 

filter manually added and an Android smartphone are 

integrated to take advantage of portability. The 

proposed vein mapping process involves six steps: 

frame acquisition, grayscale conversion, contrast 

enhancement, noise removal and smoothing, 

segmentation, and augmented reality. The prototype 

produces reliable imaging and augmented reality 

results in real-time. The performance has been 

evaluated for the frame rate, the successful detection 

rate, and the cost. The evaluation results show that the 

proposed prototype outperforms the other existing 

systems in a high average frame rate of 23 fps, a 

success detection rate of 70.8%, and with a low cost. 

In our future work, we intend to improve the details 

of the vein map produced by studying more the 

images details.  
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