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Abstract: Schema matching is critical for applications that manipulate data across heterogeneous, autonomous and 

scattered data sources. We pick the schema matching approach based on the total number of data sources we wish to 

integrate: holistic matching approaches are ideally used for a big to a huge total number of data sources, while pairwise 

matching approaches are ideally used for a small to a medium total number of data sources. Nonetheless, the state of 

the art matching approaches obtain a very moderate (sometimes poor) matching accuracy. Furthermore, the state of 

the art holistic schema matching approaches proceed in a series of two-way matching steps. In this paper, we present 

hMatcher, an effective approach to holistic schema matching. To perform collective schema matching, hMatcher 

generates frequent schema elements before proceeding with the matching. To reach high matching accuracy, hMatcher 

employs a context-based semantic similarity measure. Experimental results on a real-world domain dataset show that 

hMatcher performs holistic schema matching properly, reaches a high matching accuracy 

(Precision=0.89;Recall=0.66;Overall=0.57), and outperforms the state of the art matching approaches in terms of 

matching accuracy. 
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1. Introduction 

Schema matching aims at finding semantically 

corresponding elements (according to [1-5], they are 

also called semantically similar elements or matches) 

in multiple, autonomous, heterogeneous and 

distributed schemas of data sources. According to [6], 

schema matching is very crucial for applications that 

manipulate data across different data sources, 

examples of areas where these applications are used 

involve bioinformatics, data integration on the World 

Wide Web, e-commerce, data warehousing and 

scientific collaboration. Therefore, schema matching 

got loads of attention from the research community 

over the past decades (and it is still to this day a huge 

area of interest for researchers) (see [7-10]) for 

surveys). 

Schema matching approaches are grouped into 

two major categories: pairwise matching and holistic 

matching. The former aims at finding the 

semantically corresponding elements between two 

schemas at a time, which is insufficient when we wish 

to match a large number of schemas. Therefore, the 

latter was created to overcome the limitations of 

pairwise matching approaches as it matches 

numerous schemas simultaneously. 

Nevertheless, the state of the art holistic schema 

matching approaches (according to [2,3], they are 

also called collective schema matching approaches) 

face two main challenges. First, they often operate in 

a series of two-way matching steps which contradicts 

the main goal of collective schema matching as they 

do not necessarily match multiple schemas at once, 

but instead they operate incrementally: they first 

match two schemas and combine the results into one 

integrated schema, and then matches a third schema 

to the combined schema (e.g. Holontology [11] and 

PORSCHE [12]). Second, they often achieve a very 

moderate (even poor in some cases) matching 

accuracy, which implies a continuous human 

assistance to correct the matches, that is to say: add 

missed matches and remove false matches. 
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In what follows, we present the key challenges we 

faced when working on this research project: 

 

• Create a well-defined semantic similarity 

measure between two words, a word and a set of 

words, or two sets of words. 

• Come up with a well-defined approach to 

generate frequent schema elements. 

• Define an approach to decrease the total number 

of rare schema elements. 

• Create an efficient approach to perform holistic 

schema matching. 

 

The main contribution of this paper is that it 

proposes hMatcher, an effective approach to holistic 

schema matching. The key idea of hMatcher is to (1) 

perform holistic schema matching; and (2) achieve a 

high matching accuracy. To this end, hMatcher uses 

a semantic similarity measure, and a hierarchical 

lexical dictionary along with an abbreviations & 

acronyms database. 

In summary, we make the following concrete 

additions: 

 

• We define a new Context-based Semantic 

Similarity Measure (CSSM) to calculate the 

semantic similarity value between schema 

elements. 

• We propose a new algorithm to generate frequent 

schema elements. 

• We propose a holistic schema matching approach. 

• We evaluate hMatcher on a real-world domain 

dataset and show that it is able to match 

numerous schemas simultaneously and reach a 

very high matching accuracy.  

 

The remaining of this paper is organized as 
follows. Section 2 discusses related work. Section 3 
describes the architecture of hMatcher. Section 4 
presents experimental results. Section 5 concludes 
this paper and discusses future research directions. 

2. Related work 

In this section, we review a variety of the most 

well-known matching approaches that are most 

relevant to our present work. 

ALIN [13] is a human-interactive ontology 

matching approach. According to [13], ALIN takes 

as input two ontologies and delivers as output a set of 

alignments. It proceeds in two key steps. (1) It defines 

the initial mappings. (2) It changes the mappings 

according to human experts’ feedbacks which 

improve the quality of the matches. The second step 

is repeated till experts run out of suggestions.  

ALOD2Vec [14] uses the WebIsALOD database 

of hypernym relations extracted from the Web. 

According to [14], ALOD2Vec also uses both 

element-based information and label-based 

information. To capture the similarity score between 

nodes of the knowledge graph (WebIsALOD is 

viewed as a knowledge graph), ALOD2Vec applies 

RDF2Vec which converts RDFs into vectors. 

AgreementMakerLight (AML) [15] is an 

ontology matching approach. It is an updated version 

of AgreementMaker [16]. According to [15], AML 

comprises two modules: the ontology loading module 

and the ontology matching module. On the one hand, 

the ontology loading module loads the ontologies as 

well as the external resources, and then generates the 

ontology objects. On the other hand, the ontology 

matching module aligns the ontology objects 

generated by the previous module. 

Deep Ontology MatchEr (DOME) [17] uses 

doc2vec and large texts that describe the concepts of 

the ontologies. To deal with the main issue of 

matching similar large texts, DOME uses topic 

modeling for instance Latent Semantic Analysis 

(LSA) and Latent Dirichlet Allocation (LDA).  

LogMap [18] is a scalable and logic-based 

ontology matching approach. According to [18], 

LogMap exploits lexical indexation, logic-based 

module extraction, propositional horn reasoning, 

axiom tracking, local repair and semantic indexation 

to match two given ontologies. LogMapLt is a 

lightweight variant of LogMap. 

FCAMapX [19] is an automated ontology 

alignment system. According to [19], FCAMapX is 

based on Formal Concept Analysis, which is a 

mathematical model for analyzing structuring 

concepts. 

KEPLER [20] is an ontology matching system. 

According to [20], KEPLER takes advantage of the 

expressiveness of the Web Ontology Language 

(OWL) statements using six key steps: parsing, 

partitioning/translation, indexing, candidate 

mappings identification, filtering and recovery, and 

alignment generation. 

Simulated ANnealing-based Ontology Matching 

(SANOM) [21] uses the notorious Simulated 

Annealing (SA) [22] to find out semantically 

corresponding elements between two ontologies, 

which results on a potential intermediate alignment. 

According to [21], the evolution of that alignment 

needs to use both lexical similarity metrics and 

structural similarity metrics.  

Lily [23] is an ontology alignment approach. 

According to [23], Lily’s main advantage is the 
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following: it is able to process normal ontologies, 

weak informative ontologies [24], ontology mapping 

debugging [25] and ontology matching tuning [26]. 

Holontology [11] is a holistic ontology matching 

approach based on the Linear Program for Holistic 

Ontology Matching (LPHOM) approach [27,28]. 

According to [11], Holontology uses many similarity 

measures and dissimilarity distances such as exact 

match, Levenstein, Jaccard and Lin to match two 

ontologies or multiple ontologies at once after it 

converts them into an internal predefined format. 

Then, Holontology converts the results into 

alignments exported by RDF. 

The eXtended Mapping (XMap) algorithm [29] is 

a lexical and structural-based semantic matching 

approach. According to [29], XMap uses WordNet 

[30] and the Unified Medical Language System 

(UMLS) [31] which is a collection of many 

vocabularies, key terminology, classification and 

coding standards related to the biomedical sciences to 

capture semantic similar concepts from the input 

ontologies. 

These schema matching approaches have three 

key limitations. First, they often capture multiple 

possible matches (correct and incorrect matches), 

which means that they require a human expert to 

decide on whether the matches are correct or not. The 

main problem is that the user may not always be 

familiar with these domain-specific terms. Therefore, 

[32-34] introduced a new solution to that issue: 

Single Correspondence Correctness Question (Single 

CCQ) and Multiple Correspondence Correctness 

Question (Multiple CCQ), two new crowdsourcing 

based-approaches. Their main goal is to reduce the 

set of possible matches hence leaving merely the 

most likely to be correct. Both Single CCQ and 

Multiple CCQ formulate simple and non-technical 

Yes/No questions to the user. Single CCQ determines 

the most crucial question to ask; while, Multiple CCQ 

(an extension of Single CCQ) determines the most 

crucial questions to ask based on the previous 

answers. Even though this solution may solve the 

issue of multiple possible matches, it clearly makes 

schema matching much more human-dependent. 

Second, schema matching becomes much more time-

consuming in particular when we wish to match a 

huge number of schemas as they match schemas 

incrementally (rather than simultaneously) in a series 

of two-way matching steps. Third, current matching 

approaches often obtain a very moderate or poor 

matching accuracy. 

In the next section, we will present hMatcher, a 

solution to the schema matching problem (human-

dependency, impracticality when matching a huge 

number schemas, and low matching accuracy) we 

described above. 

3. The hMatcher approach 

The hMatcher architecture (see Fig. 1) comprises 

three key components: frequent elements generator, 

schema matcher and rare elements matcher. (1) Let 𝕊 

be a set of schemas, and let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ∈ 𝕊  be the 

learning schemas (see definition 3.1.), the frequent 

elements generator takes as input 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔, employs 

an abbreviations & acronyms database as well as a 

hierarchical lexical dictionary, and generates as 

output the frequent schema elements 𝔽 . (2) Let 

𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ∈ 𝕊 be the testing schemas (see definition 

3.3.), the schema matcher takes as input 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 , 

exploits the frequent schema elements to identify the 

matches Φ . (3) The rare elements matcher reuses 

previous results to identify new matches in the rare 

schema elements set ℝ . Note that the frequent 

elements generator takes place solely once which is 

at the beginning of the matching process. 

Definition 3.1. (Learning schemas). The learning 

schemas refer to the schemas we use to generate the 

initial set of frequent schema elements. 

Definition 3.2. (Schema element; Frequent 

schema element; Rare schema element). A schema 

element 𝑒 is an element from a schema 𝑆 such that 𝑒 

represents a particular data stored in the data source 

of 𝑆.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure. 1 The hMatcher architecture 
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We say that 𝑒 is a frequent schema element if and 

only if it has duplicates in a certain number of 

schemas describing the same domain. 

A rare schema element is a schema element that 

does not belong to 𝔽. 

Definition 3.3. (Testing schemas). The testing 

schemas refer to the schemas we match using the 

frequent schema elements.  

The rest of this section first describes the frequent 

elements generator (see subsection 3.1), then the 

schema matcher (see subsection 3.2), and finally the 

rare elements matcher (see subsection 3.3). 

3.1 The frequent elements generator 

Let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = {𝑆1, 𝑆2, … , 𝑆𝑝}  be the learning 

schemas. Inspired by the success of the pre-

processing strategy introduced in [35], the frequent 

elements generator first employs that strategy in 

order to generate from every schema element 𝑒 (see 

definition 3.2.) a words set 𝜃 that fully describes its 

meaning. The words sets generated from 𝑆1  are 

denoted by Θ1, the words sets generated from 𝑆2 are 

denoted by Θ2, etc. The frequent elements generator 

then operates in three main steps: 

 

a. Capture the matches 

 

Let 𝑒1 ∈ 𝑆1 and 𝑒2 ∈ 𝑆2 be two schema elements, 

and 𝜃1 = {𝑤1,1, 𝑤1,2, … , 𝑤1,|𝜃1||}  and 𝜃2 =

{𝑤2,1, 𝑤2,2, … , 𝑤2,|𝜃2||} be their respective words sets. 

The frequent elements generator first employs the 

Context-based Semantic Similarity Measure (CSSM) 

Eq. (1) presented below so as to tell whether 𝑒1 and 

𝑒2 are semantically similar or not. 

 

𝐶𝑆𝑆𝑀𝑠𝑒𝑡𝑠(𝜃1, 𝜃2) =
1

min(|𝜃1|,|𝜃2|)
                   ×  

      ∑ max(𝑚𝑖,𝑗)1≤𝑗≤max(|𝜃1|,|𝜃2|)
min (|𝜃1|,|𝜃2|)
𝑖=1    (1) 

 

Where: 

 

• |𝜃1| and |𝜃2| are the cardinalities of 𝜃1 and 𝜃2, 

respectively. 

• 𝑀 = (𝑚𝑖,𝑗)1≤𝑖≤|𝜃1|
1≤𝑗≤|𝜃2|

is the similarity matrix 

whose individual items are defined as follows: 

𝑚𝑖,𝑗 = 𝐶𝑆𝑆𝑀𝑤𝑜𝑟𝑑𝑠(𝑤1,𝑖, 𝑤2,𝑗) (see Eq. (11)). 

 

For every word 𝑤 from the hierarchical lexical 

dictionary entries, we have (1) the hypernyms of 𝑤 

constitute a general definition of 𝑤 ; (2) the direct 

hyponyms of 𝑤 constitute a more specific definition 

of 𝑤; and (3) together form a complete definition of 

𝑤. As a result, given two words 𝑤1, 𝑤2, in order to 

compare 𝑤1  to 𝑤2 , we have to compare 

{𝑤1, 𝑃𝑤1 , 𝐻𝑤1} to {𝑤2, 𝑃𝑤2 , 𝐻𝑤2}, where 𝑃𝑤1and 𝑃𝑤2 

are the hypernyms of 𝑤1and 𝑤2  in the hierarchical 

lexical dictionary, respectively; and 𝐻𝑤1 and 𝐻𝑤2 are 

the direct hyponyms of 𝑤1  and 𝑤2  in the same 

dictionary, respectively. Hence, we calculate the 

similarity between 𝑤1 and 𝑤2 Eq. (2),𝑤1 and 𝑃𝑤2 Eq. 

(3),𝑤1  and 𝐻𝑤2  Eq. (4),𝑃𝑤1  and 𝑤2  Eq. (5), 𝑃𝑤1and 

𝑃𝑤2 Eq. (6), 𝑃𝑤1and 𝐻𝑤2 Eq. (7), 𝐻𝑤1and 𝑤2 Eq. (8), 

𝐻𝑤1 and 𝑃𝑤2 Eq. (9), and 𝐻𝑤1and 𝐻𝑤2Eq.(10). Note 

that we consider solely non-shared hypernyms as a 

result 𝑃𝑤1 ∩ 𝑃𝑤2 = ∅. Below, we present all nine sub-

measures:   
 

𝑆𝑀1(𝑤1, 𝑤2) = |𝑠𝑤1 ∩ 𝑠𝑤2| +                    

|𝑠𝑤1 ∩ (𝑤2 ∪ 𝑆𝑦𝑤2)| + |𝑠𝑤2 ∩ (𝑤1 ∪ 𝑆𝑦𝑤1)|(2) 

 

Where: 

 

• 𝑠𝑤1 and 𝑠𝑤2 are the senses of 𝑤1 and 𝑤2 , 

respectively. 

• 𝑆𝑦𝑤1 and 𝑆𝑦𝑤2 are the synonyms of 𝑤1and 𝑤2 , 

respectively. 

 

𝑆𝑀2(𝑤1, 𝑃𝑤2) = ∑ |𝑠𝑤1 ∩ 𝑠𝑃𝑤2|
|𝑃𝑤2|

𝑖=1
+ |𝑠𝑤1 ∩

(𝑃𝑤2 ∪          𝑆𝑦𝑃𝑤2
)| + |𝑠𝑃𝑤2

∩ (𝑤1 ∪ 𝑆𝑦𝑤1)| (3) 

 

Where: 

 

• 𝑠𝑤1 and 𝑠𝑃𝑤2
are the senses of 𝑤1 and 𝑃𝑤2 , 

respectively. 

• 𝑆𝑦𝑤1and 𝑆𝑦𝑃𝑤2are the synonyms of 𝑤1and 𝑃𝑤2, 

respectively. 

 

SM3(w1, Hw2
) = ∑ card (𝑠𝑤1∩sHw2i

)   

|Hw2|

i=1

 

+card(𝑠w1
∩ (Hw2i

∪ Sy
Hw2i

))       

                          +card(𝑠Hw2i
∩ (w1∪ Sy

w1
))(4) 

 

Where: 

 

• 𝑠𝑤1and 𝑠𝐻𝑤2
are the senses of 𝑤1and 𝐻𝑤2, 

respectively. 
• 𝑆𝑦𝑤1and 𝑆𝑦𝐻𝑤2are the synonyms of 𝑤1and 

𝐻𝑤2, respectively. 
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SM4( Pw1
, w2) = ∑ card (sPw1i

∩sw2
)  +

|Pw1
|

i=1

  

card(sPw1i

∩ (w2∪ Sy
w2
))          

+ card(sw2
∩ (Pw1i

∪ Sy
Pw1i

))   (5) 

 

Where: 

 

• 𝑠𝑤2 and 𝑠𝑃𝑤1
are the senses of 𝑤2 and 𝑃𝑤1 , 

respectively. 

• 𝑆𝑦𝑤2and 𝑆𝑦𝑃𝑤1are the synonyms of 𝑤2and 𝑃𝑤1, 

respectively. 
 

SM5( Pw1
,Pw2

) = ∑∑ card (sPw1i

∩sPw2j

)  

|Pw2
|

j=1

|Pw1
|

i=1

 

+card(sPw1i

 ∩(Pw2j
∪ Sy

Pw2j

))             

+card((P𝑤1i
∪ Sy

Pw1i

)∩sPw2j

)       (6) 

 

Where:  

 

• 𝑠𝑃𝑤1
and 𝑠𝑃𝑤2

are the senses of 𝑃𝑤1 and 𝑃𝑤2 , 

respectively. 

• 𝑆𝑦𝑃𝑤1 and 𝑆𝑦𝑃𝑤2 are the synonyms of 𝑃𝑤1 and 

𝑃𝑤2, respectively. 

 

SM6( Pw1
,Hw2

) = ∑ ∑ card (sPw1i

∩sHw2j

)

|Hw2
|

j=1

|Pw1
|

i=1

 

+card(sPw1i

∩(Hw2j
∪ Sy

Hw2j

))            

+card((Pw1i
∪ Sy

Pw1i

)∩sHw2j

)       (7) 

 

Where: 

 

• 𝑠𝑃𝑤1
and 𝑠𝐻𝑤2

are the senses of 𝑃𝑤1 and 𝐻𝑤2 , 

respectively. 

• 𝑆𝑦𝑃𝑤1 and 𝑆𝑦𝐻𝑤2 are the synonyms of 𝑃𝑤1 and 

𝐻𝑤2, respectively. 

 

 

SM7(Hw1
, w2) = ∑ card (sHw1i

∩ sw2
)

|Hw1
|

i=1

     

+card(sHw1i

∩ (w2∪ Sy
w2
))          

                 +card(sw2
∩ (H𝑤1i

∪ Sy
Hw1i

)) (8) 

 

Where: 

 

• 𝑠𝑤2 and 𝑠𝐻𝑤1
are the senses of 𝑤2 and 𝐻𝑤1 , 

respectively. 

• 𝑆𝑦𝑤2and 𝑆𝑦𝐻𝑤1are the synonyms of 𝑤2and 𝐻𝑤1, 

respectively. 

 

SM8( Hw1
,Pw2

) = ∑ ∑ card (sHw1i

∩sPw2j

)

|Pw2
|

j=1

|Hw1
|

i=1

 

+card(sHw1i

∩(Pw2j
∪ Sy

Pw2j

))             

              +card((Hw1i
∪ Sy

Hw1i

)∩sPw2j

)      (9) 

 

Where:  

 

• 𝑠𝐻𝑤1
and 𝑠𝑃𝑤2

are the senses of 𝐻𝑤1 and 𝑃𝑤2 , 

respectively. 

• 𝑆𝑦𝐻𝑤1 and 𝑆𝑦𝑃𝑤2 are the synonyms of 𝐻𝑤1and 

𝑃𝑤2, respectively. 

 

SM9( Hw1
,Hw2

)= ∑ ∑ card (sHw1i

∩sHw2j

)

|Hw2
|

j=1

|Hw1
|

i=1

 

+card(sHw1i

∩(Hw2j
∪ Sy

Hw2j

))               

+card((Hw1i
∪ Sy

Hw1i

)∩sHw2j

)        (10) 

 

Where: 

 

• 𝑠𝐻𝑤1
and 𝑠𝐻𝑤2

are the senses of 𝐻𝑤1and 𝐻𝑤2 , 

respectively. 

• 𝑆𝑦𝐻𝑤1 and 𝑆𝑦𝐻𝑤2 are the synonyms of 𝐻𝑤1and 

𝐻𝑤2, respectively. 

 

We combine all nine sub-measures into one 

single measure Eq. (11) aimed to calculate the 

semantic similarity between words: 
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    𝐶𝑆𝑆𝑀𝑤𝑜𝑟𝑑𝑠(𝑤1, 𝑤2) = 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
1, 𝑖𝑓 𝑤1 𝑎𝑛𝑑 𝑤2 𝑎𝑟𝑒 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑠 𝑜𝑟 𝑜𝑛𝑒 𝑜𝑓
𝑡ℎ𝑒𝑚 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡 ℎ𝑦𝑝𝑜𝑛𝑦𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟

0, 𝑖𝑓  √
0.8 × (𝑆𝑀1 + 𝑆𝑀5 + 𝑆𝑀9)

+0.2 × ∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

× 𝑒(

 

∑ 19
𝑖=1

𝑆𝑀𝑖≠0

9

)

 

≤ 1

(

 
 
 
 
 
 
 
 
 
 
√
0.8×(𝑆𝑀1+𝑆𝑀5+𝑆𝑀9)

+0.2×∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

×𝑒(

 
 

∑ 19
𝑖=1

𝑆𝑀𝑖≠0
9

)

 
 

−1

√
0.8×(𝑆𝑀1+𝑆𝑀5+𝑆𝑀9)

+0.2×∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

×𝑒(

 
 

∑ 19
𝑖=1

𝑆𝑀𝑖≠0

9

)

 
 

+1 )

 
 
 
 
 
 
 
 
 
 

1
2⁄

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11) 

 

We applied CSSM on the words sets generated 

from the conference schemas (see section 4). The 

findings formed a set of similarity values, each is the 

similarity between two sets. The selection of the 

threshold value was based on the reference matches, 

identified manually by a group of thirty-five Ph.D. 

students from our university. We noticed that almost 

all matched sets have a similarity value ≥ 0.8. Thus, 

CSSM has a threshold of 0.8 which means that the 

pair whose similarity value is greater than or equal to 

0.8  are considered matched; and the pair whose 

similarity value is inferior to 0.8 are not matched. 

 

b. Determine frequent schema elements 

 

Given a schema  𝑆 ∈ 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 , let 𝑒  be an 

element from 𝑆. We use Element Frequency-Schema 

Frequency (EF-SF) defined in Eq. (12) which is 

inspired by the popularity and the success of the Term 

Frequency-Inverse Document Frequency (TF-IDF) 

[36] in order to determine the degree of frequency of 

𝑒. 

 

𝐸𝐹 − 𝑆𝐹𝑒∈𝑆,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = 𝐸𝐹𝑒,𝑆 × 𝑆𝐹𝑒,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔     

     =  𝑒𝑒𝑓𝑒,𝑆 × 𝑒
(

𝑠𝑓𝑒
|𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔|

)
             (12) 

 

Where: 

 

• 𝑒𝑓𝑒,𝑆 is the frequency of 𝑒 in 𝑆, such that 𝑒𝑓𝑒,𝑆 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒 𝑖𝑛 𝑆

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆
 

• 𝑠𝑓𝑒 is the number of schemas containing 𝑒. 

• |𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔| = 𝑝 is the cardinality of 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔. 

 

We say that an element 𝑒 is frequent if and only 

if its degree of frequency satisfies the following: 

 

⌊𝐸𝐹 − 𝑆𝐹𝑒∈𝑆,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔⌋ ≥ 𝑙𝑜𝑔 (
√𝑚4+1
2

√|𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔|
2
−1

2
)(13) 

 

Where:  

 

• 𝑚 is the number of elements in 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔. 

• |𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔| = 𝑝 is the cardinality of 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔. 

 

c. See if there are other frequent elements 

 

If we extend the number of learning schemas 

𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 but we end up having 𝔽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then 

the frequent elements generator stops. Otherwise, it 

repeats step and step b for more schemas. 

 

Algorithm 1 Summarizes these steps: 

Algorithm 1: FrequentElementsGenerator 

(𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑) 

Input: 

𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑 : The words sets generated from 

𝐒𝟏, 𝐒𝟐, … , 𝐒𝒑 

Output: 

𝔽: The frequent schema elements 

 

𝔽 ← ∅ 

Generate the matches 𝚽  between 𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑 

according to CSSM 

For each 𝝋 in 𝚽 

If ( 𝒆 ∈ 𝝋  and ⌊𝑬𝑭 − 𝑺𝑭𝒆∈𝑺,𝕊𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈⌋ ≥

𝒍𝒐𝒈(
√𝒎𝟒+𝟏
𝟐

√|𝕊𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈|
𝟐−𝟏

𝟐
) ) Then 𝔽 ← 𝔽 ∪ 𝒆  /* 𝔽 

stores one element e in 𝝋*/ 

End if 

End for 

Return 𝔽 

3.2 The schema matcher 

Let 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = {𝑆𝑝+1, 𝑆𝑝+2, … , 𝑆𝑛} be the testing 

schemas, and let Θ𝑝+1, Θ𝑝+2, … , Θ𝑛be the words sets 

generated from 𝑆𝑝+1, 𝑆𝑝+2, … , 𝑆𝑛, respectively. The 
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schema matcher uses 𝔽 to generate the matches Φ. 

To do so, it proceeds in two key steps: 

a. Calculate the semantic similarity values 

 

It uses CSSM (Eq. (1) and Eq. (11)) to compare 

the words sets Θ𝑝+1, Θ𝑝+2, … , Θ𝑛  to the frequent 

schema elements 𝔽. 

 

b. Capture new matches 

 

Every words set θi ∈ {Θ𝑝+1, Θ𝑝+2, … , Θ𝑛}  that 

has a semantically corresponding element 𝑓𝑖 ∈ 𝔽, its 

associated element 𝑒𝑖  will be added to the matches 

list Φ such that 𝜑 ← 𝜑 ∪ 𝑒𝑖 , where 𝑓𝑖 ∈ 𝜑  and 𝜑 ∈
Φ. 

 

Algorithm 2 summarizes these steps: 

Algorithm 2: SchemaMatcher 

(𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏) 

Input: 

𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏: The words sets generated 

from 𝐒𝒑+𝟏, 𝐒𝒑+𝟐, … , 𝐒𝒏 

Output: 

𝚽: The matches 

 

For each 𝚯 in {𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏} 

Generate the matches 𝚽 between 𝚯 and 𝔽 

according to CSSM 

End for 

Return 𝚽 

3.3 The rare elements matcher 

The rare elements matcher uses the transitivity 

principle (see theorem 1) to match the rare schema 

elements. 

Theorem 1. (Transitive relation). A binary 

relation ℜ is transitive over a set 𝐵 if and only if it 

satisfies the following: 

 

                ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐵, (𝑥ℜ𝑦 ∧ 𝑦ℜ𝑧) ⇒ 𝑥ℜ𝑧      (14) 

 

The rare elements matcher applies the transitivity 

principle as follows: 

Let 𝑆1  and 𝑆2  be two schemas, let 𝑟1 ∈ ℝ  and 

𝑟2 ∈ ℝ be two rare schema elements from 𝑆1 and 𝑆2, 

respectively; and let 𝔽 = {𝑓1, 𝑓2, … 𝑓𝑞} such that 𝑞 ∈

ℕ∗ be the set of frequent schema elements. We have 

the following: 

 

∀ 𝑖 ∈ {1,2,… , 𝑞}, 𝐶𝑆𝑆𝑀(𝑟1, 𝑓𝑖)                     

                                                           
1 http://oaei.ontologymatching.org/2019/  

= 𝐶𝑆𝑆𝑀(𝑟2, 𝑓𝑖) ± 0.05                                 
 ⇒  𝑟1 𝑎𝑛𝑑 𝑟2 𝑎𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑑                 (15) 

If 𝑟1  (or 𝑟2 ) satisfies Eq. (13), then the set of 

frequent schema elements is updated as follows: 

 

𝔽 ← 𝔽 ∪ 𝑟1 OR 𝔽 ← 𝔽 ∪ 𝑟2 (not both) 

 

And the rare schema elements list is updated as 

follows: 
ℝ ← ℝ ∪ 𝑟1 AND ℝ ← ℝ ∪ 𝑟2 

 

     Algorithm 3 summarizes this: 

Algorithm 3: RareElementsMatcher (𝔽,ℝ) 
Input: 

𝔽: Frequent schema elements 

ℝ: Rare schema elements 

Output: 

𝚽;𝔽;ℝ: The matches; Frequent schema elements; 

Rare schema elements 

 

For each 𝐫𝟏, 𝒓𝟐 ∈ ℝ 

If ( ∀ 𝒇 ∈ 𝔽, 𝑪𝑺𝑺𝑴(𝒓𝟏, 𝒇𝒊) = 𝑪𝑺𝑺𝑴(𝒓𝟐, 𝒇𝒊) ±
𝟎. 𝟎𝟓) Then 

𝝋 ← 𝝋 ∪ 𝒓𝟏  /*𝝋 ∈ 𝚽  contains the matches of 

𝒓𝟏*/ 

𝔽 ← 𝔽 ∪ 𝒓𝟏 OR 𝔽 ← 𝔽 ∪ 𝒓𝟐 (not both) 

ℝ ← ℝ ∪ 𝒓𝟏 AND ℝ ← ℝ∪ 𝒓𝟐 

End if  

End for 

Return (𝔽,𝚽,ℝ) 

4. Experiments and evaluations 

In this section, we first evaluate hMatcher in 

terms of matching accuracy, and then compare the 

findings to the state of the art matching systems. 

4.1 Datasets 

We evaluated hMatcher on the Conference 

dataset which includes sixteen ontologies all 

describing the domain of organizing academic 

conferences. The ontologies were used in OAEI 2019 

and are available for free download on the Web1. It 

has twenty-one reference alignments formed from 

seven out of sixteen ontologies. 

4.2 Measures 

We use the following measures to evaluate the 

matches generated by hMatcher on the Conference. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =                                                
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
  (16) 

 

Eq. (16) is the probability of correct matches 

among all matches returned by the matching system. 

 

        𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑀𝑖𝑠𝑠𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
    (17) 

 

Eq. (17) is the probability of correct matches 

returned by a matching system among the reference 

matches. 

 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑅𝑒𝑐𝑎𝑙𝑙 × (2 −
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
)     (18) 

 

Eq. (18) measures the amount of manual post-

effort required to add missed matches and remove 

false matches. 

 

               𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (19) 

 

Eq. (19) is the harmonic mean of Precision and 

Recall. 

The ideal case scenario is when all four metrics 

reach their largest values: 

Precision =  Recall =  Overall =  F − Measure 
=  1 

We then compare the findings obtained by 

hMatcher on the Conference dataset against 

previously published results of twelve well-known 

ontology matching systems (Holontology [11], AML 

[37], DOME [17], LogMap [18], XMap [29], 

KEPLER [20], ALIN [13], SANOM [21], FCAMapX 

[19], LogMapLt [18], ALOD2Vec [14] and Lily [23]). 

The evaluations are based on nine combinations of 

crisp reference alignments: ra1-M1, ra1-M2, ra1-M3, 

ra2-M1, ra2-M2, ra2-M3, rar2-M1, rar2-M2 and 

rar2-M3 (ra1 is the original reference alignment; ra2 

is an extension of ra1; and rar2 is an updated version 

of ra2 that deals with the violations of conservativity). 

ra1-M1, ra2-M1 and rar2-M1 are used to evaluate 

alignments between classes; ra1-M2, ra2-M2 and 

rar2-M2 are used to evaluate alignments between 

properties; ra1-M3, ra2-M3, and rar2-M3 are used to 

evaluate alignments between both classes and 

properties.  

4.3 Results and discussions 

Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, 

Fig. 9 and Fig. 10 show the new and previously 

published results on the Conference dataset.  

 

 

 
Figure. 2 ra1-M1: matching accuracy and human 

assistance 

 

 
Figure. 3 ra1-M2: matching accuracy and human 

assistance 

 

 
Figure. 4 ra1-M3: matching accuracy and human 

assistance 

 

 
Figure. 5 ra2-M1: matching accuracy and human 

assistance 
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Figure. 6 ra2-M2: matching accuracy and human 

assistance 

 

 
Figure. 7 ra2-M3: matching accuracy and human 

assistance 

 

 
Figure. 8 rar2-M1: matching accuracy and human 

assistance 

 

 
Figure. 9 rar2-M2: matching accuracy and human 

assistance 

 
Figure. 10 rar2-M3: matching accuracy and human 

assistance 

 

First, the previously published results indicate 

visible changes for Precision, Recall, Overall and F-

Measure. They reached a high matching accuracy 

when evaluated based on ra1-M1, ra1-M3, ra2-M1, 

ra2-M3, rar2-M1, and rar2-M3; and low matching 

accuracy (null in some cases for example ALIN and 

Lily) with ra1-M2, ra2-M2, and rar2-M2. Second, 

hMatcher achieved superior matching accuracy 

compared to other matching approaches as it 

surpassed them almost every time except from ra1-

M2 and ra2-M2 where AML surpassed it slightly 

(Precision = 1).  

ALIN and Lily match merely classes. Because of 

that, they did not achieve a high matching accuracy 

with ra1-M2, ra2-M2, and rar2-M2; SANOM, XMap, 

AML and LogMap match few properties which 

justifies their negative Overall with ra1-M2, ra2-M2, 

and rar2-M2; FCAMapX, KEPLER, LogMapLt, 

DOME, ALOD2Vec and Holontology match little 

properties which explains their low Precision, Recall 

and F-Measure with ra1-M2, ra2-M2, and rar2-M2, 

and negative Overall; and hMatcher matches both 

classes and properties which explains its high 

Precision, Recall and F-Measure with ra1-M1, ra1-

M2, ra1-M3, ra2-M1, ra2-M2, ra2-M3, rar2-M1, 

rar2-M2, and rar2-M3, and positive Overall.  

Hence, we conclude that hMatcher obtains better 

matching results than existing matching approaches 

because unlike the latter that often do not match 

properties, hMatcher matches all elements (classes 

and properties). Indeed, on the one hand, we have 

XMap, DOME, Holontology, FCAMapX, LogMapLt, 

Lily, SANOM, AML, LogMap, KEPLER, 

ALOD2Vec and ALIN that reach good results with 

the reference alignments that take into consideration 

either classes or both classes and properties. However, 

they obtain lots of matching errors with the reference 

alignments that take into consideration merely 

properties. On the other hand, we have hMatcher that 

reaches a superior matching accuracy regardless of 

the reference alignments it is used with. This implies 
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that hMatcher requires less human-assistance 

compared to existing matching systems that need 

loads of human assistance in order to correct the final 

matching results.  

5. Conclusions and future work 

We demonstrated that defining a holistic schema 

matching approach is critical to match multiple 

schemas simultaneously and generate accurate 

matches. The state of the art matching approaches 

often obtain a low matching accuracy and hence need 

human assistance to correct the matches; furthermore, 

current matching approaches often match two 

schemas at a time. 

Let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔  be the learning schemas and 

𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔  be the testing schemas, hMatcher first 

generates frequent schema elements 𝔽  from 

𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔. It then uses 𝔽 to identify new matches Φ 

in 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔. Next, hMatcher reuses previous results to 

determine new matches in the rare schema elements 

list. 

We evaluated hMatcher on a real-world domain 

dataset, the results show a high matching accuracy 

achieved by hMatcher (the average metrics on nine 

reference alignments are: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
0.89; 𝑅𝑒𝑐𝑎𝑙𝑙 = 0.66;𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 0.57 ), and an 

inferior (compared to hMatcher) matching accuracy 

obtained by the state of the art matching systems (the 

average metrics on nine reference alignments are 

defined as follows: 0.69 ≤ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≤
0.83; 0.57 ≤ 𝑅𝑒𝑐𝑎𝑙𝑙 ≤ 0.62; 0.37 ≤ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ≤
0.49).  

Future interesting research directions include 

mainly the following: 

• Study the impact of hMatcher on data source 

selection and ordering. Before the system 

answers users queries, it selects a subset of data 

sources that contain a piece of the answer or 

ideally the whole answer to the query, this is 

called source selection; then, the system orders 

data sources in a decreasing order of their 

coverage (source coverage refers to the amount 

of answers to a particular query included in the 

data source), this is called source ordering. So, 

in the future, we will study the impact of 

hMatcher on data source selection and ordering. 

• Take into consideration cases where schemas are 

expressed using different lexical languages. We 

focused on schemas that use the same lexical 

language. In the future, we will improve our 

approach to match schemas regardless of the 

lexical language they are expressed in. 
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