
Received: July 2, 2020. Revised: July 28, 2020. 490

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

hMatcher: Matching Schemas Holistically

Aola Yousfi1* Moulay Hafid El Yazidi1 Ahmed Zellou1

1Software Projects Management Research Team Ecole Nationale Supérieure d’Informatique et d’Analyse des

Systèmes Mohammed V University in Rabat, Morocco

* Corresponding author’s Email: aola.yousfi@gmail.com

Abstract: Schema matching is critical for applications that manipulate data across heterogeneous, autonomous and

scattered data sources. We pick the schema matching approach based on the total number of data sources we wish to

integrate: holistic matching approaches are ideally used for a big to a huge total number of data sources, while pairwise

matching approaches are ideally used for a small to a medium total number of data sources. Nonetheless, the state of

the art matching approaches obtain a very moderate (sometimes poor) matching accuracy. Furthermore, the state of

the art holistic schema matching approaches proceed in a series of two-way matching steps. In this paper, we present

hMatcher, an effective approach to holistic schema matching. To perform collective schema matching, hMatcher

generates frequent schema elements before proceeding with the matching. To reach high matching accuracy, hMatcher

employs a context-based semantic similarity measure. Experimental results on a real-world domain dataset show that

hMatcher performs holistic schema matching properly, reaches a high matching accuracy

(Precision=0.89;Recall=0.66;Overall=0.57), and outperforms the state of the art matching approaches in terms of

matching accuracy.

Keywords: Holistic schema matching, Matching accuracy, Semantic similarity.

1. Introduction

Schema matching aims at finding semantically

corresponding elements (according to [1-5], they are

also called semantically similar elements or matches)

in multiple, autonomous, heterogeneous and

distributed schemas of data sources. According to [6],

schema matching is very crucial for applications that

manipulate data across different data sources,

examples of areas where these applications are used

involve bioinformatics, data integration on the World

Wide Web, e-commerce, data warehousing and

scientific collaboration. Therefore, schema matching

got loads of attention from the research community

over the past decades (and it is still to this day a huge

area of interest for researchers) (see [7-10]) for

surveys).

Schema matching approaches are grouped into

two major categories: pairwise matching and holistic

matching. The former aims at finding the

semantically corresponding elements between two

schemas at a time, which is insufficient when we wish

to match a large number of schemas. Therefore, the

latter was created to overcome the limitations of

pairwise matching approaches as it matches

numerous schemas simultaneously.

Nevertheless, the state of the art holistic schema

matching approaches (according to [2,3], they are

also called collective schema matching approaches)

face two main challenges. First, they often operate in

a series of two-way matching steps which contradicts

the main goal of collective schema matching as they

do not necessarily match multiple schemas at once,

but instead they operate incrementally: they first

match two schemas and combine the results into one

integrated schema, and then matches a third schema

to the combined schema (e.g. Holontology [11] and

PORSCHE [12]). Second, they often achieve a very

moderate (even poor in some cases) matching

accuracy, which implies a continuous human

assistance to correct the matches, that is to say: add

missed matches and remove false matches.

Received: July 2, 2020. Revised: July 28, 2020. 491

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

In what follows, we present the key challenges we

faced when working on this research project:

• Create a well-defined semantic similarity

measure between two words, a word and a set of

words, or two sets of words.

• Come up with a well-defined approach to

generate frequent schema elements.

• Define an approach to decrease the total number

of rare schema elements.

• Create an efficient approach to perform holistic

schema matching.

The main contribution of this paper is that it

proposes hMatcher, an effective approach to holistic

schema matching. The key idea of hMatcher is to (1)

perform holistic schema matching; and (2) achieve a

high matching accuracy. To this end, hMatcher uses

a semantic similarity measure, and a hierarchical

lexical dictionary along with an abbreviations &

acronyms database.

In summary, we make the following concrete

additions:

• We define a new Context-based Semantic

Similarity Measure (CSSM) to calculate the

semantic similarity value between schema

elements.

• We propose a new algorithm to generate frequent

schema elements.

• We propose a holistic schema matching approach.

• We evaluate hMatcher on a real-world domain

dataset and show that it is able to match

numerous schemas simultaneously and reach a

very high matching accuracy.

The remaining of this paper is organized as
follows. Section 2 discusses related work. Section 3
describes the architecture of hMatcher. Section 4
presents experimental results. Section 5 concludes
this paper and discusses future research directions.

2. Related work

In this section, we review a variety of the most

well-known matching approaches that are most

relevant to our present work.

ALIN [13] is a human-interactive ontology

matching approach. According to [13], ALIN takes

as input two ontologies and delivers as output a set of

alignments. It proceeds in two key steps. (1) It defines

the initial mappings. (2) It changes the mappings

according to human experts’ feedbacks which

improve the quality of the matches. The second step

is repeated till experts run out of suggestions.

ALOD2Vec [14] uses the WebIsALOD database

of hypernym relations extracted from the Web.

According to [14], ALOD2Vec also uses both

element-based information and label-based

information. To capture the similarity score between

nodes of the knowledge graph (WebIsALOD is

viewed as a knowledge graph), ALOD2Vec applies

RDF2Vec which converts RDFs into vectors.

AgreementMakerLight (AML) [15] is an

ontology matching approach. It is an updated version

of AgreementMaker [16]. According to [15], AML

comprises two modules: the ontology loading module

and the ontology matching module. On the one hand,

the ontology loading module loads the ontologies as

well as the external resources, and then generates the

ontology objects. On the other hand, the ontology

matching module aligns the ontology objects

generated by the previous module.

Deep Ontology MatchEr (DOME) [17] uses

doc2vec and large texts that describe the concepts of

the ontologies. To deal with the main issue of

matching similar large texts, DOME uses topic

modeling for instance Latent Semantic Analysis

(LSA) and Latent Dirichlet Allocation (LDA).

LogMap [18] is a scalable and logic-based

ontology matching approach. According to [18],

LogMap exploits lexical indexation, logic-based

module extraction, propositional horn reasoning,

axiom tracking, local repair and semantic indexation

to match two given ontologies. LogMapLt is a

lightweight variant of LogMap.

FCAMapX [19] is an automated ontology

alignment system. According to [19], FCAMapX is

based on Formal Concept Analysis, which is a

mathematical model for analyzing structuring

concepts.

KEPLER [20] is an ontology matching system.

According to [20], KEPLER takes advantage of the

expressiveness of the Web Ontology Language

(OWL) statements using six key steps: parsing,

partitioning/translation, indexing, candidate

mappings identification, filtering and recovery, and

alignment generation.

Simulated ANnealing-based Ontology Matching

(SANOM) [21] uses the notorious Simulated

Annealing (SA) [22] to find out semantically

corresponding elements between two ontologies,

which results on a potential intermediate alignment.

According to [21], the evolution of that alignment

needs to use both lexical similarity metrics and

structural similarity metrics.

Lily [23] is an ontology alignment approach.

According to [23], Lily’s main advantage is the

Received: July 2, 2020. Revised: July 28, 2020. 492

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

following: it is able to process normal ontologies,

weak informative ontologies [24], ontology mapping

debugging [25] and ontology matching tuning [26].

Holontology [11] is a holistic ontology matching

approach based on the Linear Program for Holistic

Ontology Matching (LPHOM) approach [27,28].

According to [11], Holontology uses many similarity

measures and dissimilarity distances such as exact

match, Levenstein, Jaccard and Lin to match two

ontologies or multiple ontologies at once after it

converts them into an internal predefined format.

Then, Holontology converts the results into

alignments exported by RDF.

The eXtended Mapping (XMap) algorithm [29] is

a lexical and structural-based semantic matching

approach. According to [29], XMap uses WordNet

[30] and the Unified Medical Language System

(UMLS) [31] which is a collection of many

vocabularies, key terminology, classification and

coding standards related to the biomedical sciences to

capture semantic similar concepts from the input

ontologies.

These schema matching approaches have three

key limitations. First, they often capture multiple

possible matches (correct and incorrect matches),

which means that they require a human expert to

decide on whether the matches are correct or not. The

main problem is that the user may not always be

familiar with these domain-specific terms. Therefore,

[32-34] introduced a new solution to that issue:

Single Correspondence Correctness Question (Single

CCQ) and Multiple Correspondence Correctness

Question (Multiple CCQ), two new crowdsourcing

based-approaches. Their main goal is to reduce the

set of possible matches hence leaving merely the

most likely to be correct. Both Single CCQ and

Multiple CCQ formulate simple and non-technical

Yes/No questions to the user. Single CCQ determines

the most crucial question to ask; while, Multiple CCQ

(an extension of Single CCQ) determines the most

crucial questions to ask based on the previous

answers. Even though this solution may solve the

issue of multiple possible matches, it clearly makes

schema matching much more human-dependent.

Second, schema matching becomes much more time-

consuming in particular when we wish to match a

huge number of schemas as they match schemas

incrementally (rather than simultaneously) in a series

of two-way matching steps. Third, current matching

approaches often obtain a very moderate or poor

matching accuracy.

In the next section, we will present hMatcher, a

solution to the schema matching problem (human-

dependency, impracticality when matching a huge

number schemas, and low matching accuracy) we

described above.

3. The hMatcher approach

The hMatcher architecture (see Fig. 1) comprises

three key components: frequent elements generator,

schema matcher and rare elements matcher. (1) Let 𝕊

be a set of schemas, and let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 ∈ 𝕊 be the

learning schemas (see definition 3.1.), the frequent

elements generator takes as input 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔, employs

an abbreviations & acronyms database as well as a

hierarchical lexical dictionary, and generates as

output the frequent schema elements 𝔽 . (2) Let

𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ∈ 𝕊 be the testing schemas (see definition

3.3.), the schema matcher takes as input 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 ,

exploits the frequent schema elements to identify the

matches Φ . (3) The rare elements matcher reuses

previous results to identify new matches in the rare

schema elements set ℝ . Note that the frequent

elements generator takes place solely once which is

at the beginning of the matching process.

Definition 3.1. (Learning schemas). The learning

schemas refer to the schemas we use to generate the

initial set of frequent schema elements.

Definition 3.2. (Schema element; Frequent

schema element; Rare schema element). A schema

element 𝑒 is an element from a schema 𝑆 such that 𝑒

represents a particular data stored in the data source

of 𝑆.

Figure. 1 The hMatcher architecture

Pre-processing Module

Matching Module

Words

sets

Learning

schemas/

Testing

schemas

Sense Identifier Lexical

Dictionary

Schema

Matcher
Matches

Rare Elements

Matcher

Acronyms &

Abbreviations
Sets of Words

Generator

Frequent

Elements

Rare

Elements

Frequent

Elements

Generator

Received: July 2, 2020. Revised: July 28, 2020. 493

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

We say that 𝑒 is a frequent schema element if and

only if it has duplicates in a certain number of

schemas describing the same domain.

A rare schema element is a schema element that

does not belong to 𝔽.

Definition 3.3. (Testing schemas). The testing

schemas refer to the schemas we match using the

frequent schema elements.

The rest of this section first describes the frequent

elements generator (see subsection 3.1), then the

schema matcher (see subsection 3.2), and finally the

rare elements matcher (see subsection 3.3).

3.1 The frequent elements generator

Let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = {𝑆1, 𝑆2, … , 𝑆𝑝} be the learning

schemas. Inspired by the success of the pre-

processing strategy introduced in [35], the frequent

elements generator first employs that strategy in

order to generate from every schema element 𝑒 (see

definition 3.2.) a words set 𝜃 that fully describes its

meaning. The words sets generated from 𝑆1 are

denoted by Θ1, the words sets generated from 𝑆2 are

denoted by Θ2, etc. The frequent elements generator

then operates in three main steps:

a. Capture the matches

Let 𝑒1 ∈ 𝑆1 and 𝑒2 ∈ 𝑆2 be two schema elements,

and 𝜃1 = {𝑤1,1, 𝑤1,2, … , 𝑤1,|𝜃1||} and 𝜃2 =

{𝑤2,1, 𝑤2,2, … , 𝑤2,|𝜃2||} be their respective words sets.

The frequent elements generator first employs the

Context-based Semantic Similarity Measure (CSSM)

Eq. (1) presented below so as to tell whether 𝑒1 and

𝑒2 are semantically similar or not.

𝐶𝑆𝑆𝑀𝑠𝑒𝑡𝑠(𝜃1, 𝜃2) =
1

min(|𝜃1|,|𝜃2|)
 ×

 ∑ max(𝑚𝑖,𝑗)1≤𝑗≤max(|𝜃1|,|𝜃2|)
min (|𝜃1|,|𝜃2|)
𝑖=1 (1)

Where:

• |𝜃1| and |𝜃2| are the cardinalities of 𝜃1 and 𝜃2,

respectively.

• 𝑀 = (𝑚𝑖,𝑗)1≤𝑖≤|𝜃1|
1≤𝑗≤|𝜃2|

is the similarity matrix

whose individual items are defined as follows:

𝑚𝑖,𝑗 = 𝐶𝑆𝑆𝑀𝑤𝑜𝑟𝑑𝑠(𝑤1,𝑖, 𝑤2,𝑗) (see Eq. (11)).

For every word 𝑤 from the hierarchical lexical

dictionary entries, we have (1) the hypernyms of 𝑤

constitute a general definition of 𝑤 ; (2) the direct

hyponyms of 𝑤 constitute a more specific definition

of 𝑤; and (3) together form a complete definition of

𝑤. As a result, given two words 𝑤1, 𝑤2, in order to

compare 𝑤1 to 𝑤2 , we have to compare

{𝑤1, 𝑃𝑤1 , 𝐻𝑤1} to {𝑤2, 𝑃𝑤2 , 𝐻𝑤2}, where 𝑃𝑤1and 𝑃𝑤2

are the hypernyms of 𝑤1and 𝑤2 in the hierarchical

lexical dictionary, respectively; and 𝐻𝑤1 and 𝐻𝑤2 are

the direct hyponyms of 𝑤1 and 𝑤2 in the same

dictionary, respectively. Hence, we calculate the

similarity between 𝑤1 and 𝑤2 Eq. (2),𝑤1 and 𝑃𝑤2 Eq.

(3),𝑤1 and 𝐻𝑤2 Eq. (4),𝑃𝑤1 and 𝑤2 Eq. (5), 𝑃𝑤1and

𝑃𝑤2 Eq. (6), 𝑃𝑤1and 𝐻𝑤2 Eq. (7), 𝐻𝑤1and 𝑤2 Eq. (8),

𝐻𝑤1 and 𝑃𝑤2 Eq. (9), and 𝐻𝑤1and 𝐻𝑤2Eq.(10). Note

that we consider solely non-shared hypernyms as a

result 𝑃𝑤1 ∩ 𝑃𝑤2 = ∅. Below, we present all nine sub-

measures:

𝑆𝑀1(𝑤1, 𝑤2) = |𝑠𝑤1 ∩ 𝑠𝑤2| +

|𝑠𝑤1 ∩ (𝑤2 ∪ 𝑆𝑦𝑤2)| + |𝑠𝑤2 ∩ (𝑤1 ∪ 𝑆𝑦𝑤1)|(2)

Where:

• 𝑠𝑤1 and 𝑠𝑤2 are the senses of 𝑤1 and 𝑤2 ,

respectively.

• 𝑆𝑦𝑤1 and 𝑆𝑦𝑤2 are the synonyms of 𝑤1and 𝑤2 ,

respectively.

𝑆𝑀2(𝑤1, 𝑃𝑤2) = ∑ |𝑠𝑤1 ∩ 𝑠𝑃𝑤2|
|𝑃𝑤2|

𝑖=1
+ |𝑠𝑤1 ∩

(𝑃𝑤2 ∪ 𝑆𝑦𝑃𝑤2
)| + |𝑠𝑃𝑤2

∩ (𝑤1 ∪ 𝑆𝑦𝑤1)| (3)

Where:

• 𝑠𝑤1 and 𝑠𝑃𝑤2
are the senses of 𝑤1 and 𝑃𝑤2 ,

respectively.

• 𝑆𝑦𝑤1and 𝑆𝑦𝑃𝑤2are the synonyms of 𝑤1and 𝑃𝑤2,

respectively.

SM3(w1, Hw2
) = ∑ card (𝑠𝑤1∩sHw2i

)

|Hw2|

i=1

+card(𝑠w1
∩ (Hw2i

∪ Sy
Hw2i

))

 +card(𝑠Hw2i
∩ (w1∪ Sy

w1
))(4)

Where:

• 𝑠𝑤1and 𝑠𝐻𝑤2
are the senses of 𝑤1and 𝐻𝑤2,

respectively.
• 𝑆𝑦𝑤1and 𝑆𝑦𝐻𝑤2are the synonyms of 𝑤1and

𝐻𝑤2, respectively.

Received: July 2, 2020. Revised: July 28, 2020. 494

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

SM4(Pw1
, w2) = ∑ card (sPw1i

∩sw2
) +

|Pw1
|

i=1

card(sPw1i

∩ (w2∪ Sy
w2
))

+ card(sw2
∩ (Pw1i

∪ Sy
Pw1i

)) (5)

Where:

• 𝑠𝑤2 and 𝑠𝑃𝑤1
are the senses of 𝑤2 and 𝑃𝑤1 ,

respectively.

• 𝑆𝑦𝑤2and 𝑆𝑦𝑃𝑤1are the synonyms of 𝑤2and 𝑃𝑤1,

respectively.

SM5(Pw1
,Pw2

) = ∑∑ card (sPw1i

∩sPw2j

)

|Pw2
|

j=1

|Pw1
|

i=1

+card(sPw1i

 ∩(Pw2j
∪ Sy

Pw2j

))

+card((P𝑤1i
∪ Sy

Pw1i

)∩sPw2j

) (6)

Where:

• 𝑠𝑃𝑤1
and 𝑠𝑃𝑤2

are the senses of 𝑃𝑤1 and 𝑃𝑤2 ,

respectively.

• 𝑆𝑦𝑃𝑤1 and 𝑆𝑦𝑃𝑤2 are the synonyms of 𝑃𝑤1 and

𝑃𝑤2, respectively.

SM6(Pw1
,Hw2

) = ∑ ∑ card (sPw1i

∩sHw2j

)

|Hw2
|

j=1

|Pw1
|

i=1

+card(sPw1i

∩(Hw2j
∪ Sy

Hw2j

))

+card((Pw1i
∪ Sy

Pw1i

)∩sHw2j

) (7)

Where:

• 𝑠𝑃𝑤1
and 𝑠𝐻𝑤2

are the senses of 𝑃𝑤1 and 𝐻𝑤2 ,

respectively.

• 𝑆𝑦𝑃𝑤1 and 𝑆𝑦𝐻𝑤2 are the synonyms of 𝑃𝑤1 and

𝐻𝑤2, respectively.

SM7(Hw1
, w2) = ∑ card (sHw1i

∩ sw2
)

|Hw1
|

i=1

+card(sHw1i

∩ (w2∪ Sy
w2
))

 +card(sw2
∩ (H𝑤1i

∪ Sy
Hw1i

)) (8)

Where:

• 𝑠𝑤2 and 𝑠𝐻𝑤1
are the senses of 𝑤2 and 𝐻𝑤1 ,

respectively.

• 𝑆𝑦𝑤2and 𝑆𝑦𝐻𝑤1are the synonyms of 𝑤2and 𝐻𝑤1,

respectively.

SM8(Hw1
,Pw2

) = ∑ ∑ card (sHw1i

∩sPw2j

)

|Pw2
|

j=1

|Hw1
|

i=1

+card(sHw1i

∩(Pw2j
∪ Sy

Pw2j

))

 +card((Hw1i
∪ Sy

Hw1i

)∩sPw2j

) (9)

Where:

• 𝑠𝐻𝑤1
and 𝑠𝑃𝑤2

are the senses of 𝐻𝑤1 and 𝑃𝑤2 ,

respectively.

• 𝑆𝑦𝐻𝑤1 and 𝑆𝑦𝑃𝑤2 are the synonyms of 𝐻𝑤1and

𝑃𝑤2, respectively.

SM9(Hw1
,Hw2

)= ∑ ∑ card (sHw1i

∩sHw2j

)

|Hw2
|

j=1

|Hw1
|

i=1

+card(sHw1i

∩(Hw2j
∪ Sy

Hw2j

))

+card((Hw1i
∪ Sy

Hw1i

)∩sHw2j

) (10)

Where:

• 𝑠𝐻𝑤1
and 𝑠𝐻𝑤2

are the senses of 𝐻𝑤1and 𝐻𝑤2 ,

respectively.

• 𝑆𝑦𝐻𝑤1 and 𝑆𝑦𝐻𝑤2 are the synonyms of 𝐻𝑤1and

𝐻𝑤2, respectively.

We combine all nine sub-measures into one

single measure Eq. (11) aimed to calculate the

semantic similarity between words:

Received: July 2, 2020. Revised: July 28, 2020. 495

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

 𝐶𝑆𝑆𝑀𝑤𝑜𝑟𝑑𝑠(𝑤1, 𝑤2) =

{

1, 𝑖𝑓 𝑤1 𝑎𝑛𝑑 𝑤2 𝑎𝑟𝑒 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝑠 𝑜𝑟 𝑜𝑛𝑒 𝑜𝑓
𝑡ℎ𝑒𝑚 𝑖𝑠 𝑎 𝑑𝑖𝑟𝑒𝑐𝑡 ℎ𝑦𝑝𝑜𝑛𝑦𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟

0, 𝑖𝑓 √
0.8 × (𝑆𝑀1 + 𝑆𝑀5 + 𝑆𝑀9)

+0.2 × ∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

× 𝑒(

∑ 19
𝑖=1

𝑆𝑀𝑖≠0

9

)

≤ 1

(

√
0.8×(𝑆𝑀1+𝑆𝑀5+𝑆𝑀9)

+0.2×∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

×𝑒(

∑ 19
𝑖=1

𝑆𝑀𝑖≠0
9

)

−1

√
0.8×(𝑆𝑀1+𝑆𝑀5+𝑆𝑀9)

+0.2×∑ 𝑆𝑀𝑖
8
𝑖=2
𝑖≠5

4

×𝑒(

∑ 19
𝑖=1

𝑆𝑀𝑖≠0

9

)

+1)

1
2⁄

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

We applied CSSM on the words sets generated

from the conference schemas (see section 4). The

findings formed a set of similarity values, each is the

similarity between two sets. The selection of the

threshold value was based on the reference matches,

identified manually by a group of thirty-five Ph.D.

students from our university. We noticed that almost

all matched sets have a similarity value ≥ 0.8. Thus,

CSSM has a threshold of 0.8 which means that the

pair whose similarity value is greater than or equal to

0.8 are considered matched; and the pair whose

similarity value is inferior to 0.8 are not matched.

b. Determine frequent schema elements

Given a schema 𝑆 ∈ 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 , let 𝑒 be an

element from 𝑆. We use Element Frequency-Schema

Frequency (EF-SF) defined in Eq. (12) which is

inspired by the popularity and the success of the Term

Frequency-Inverse Document Frequency (TF-IDF)

[36] in order to determine the degree of frequency of

𝑒.

𝐸𝐹 − 𝑆𝐹𝑒∈𝑆,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 = 𝐸𝐹𝑒,𝑆 × 𝑆𝐹𝑒,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔

 = 𝑒𝑒𝑓𝑒,𝑆 × 𝑒
(

𝑠𝑓𝑒
|𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔|

)
 (12)

Where:

• 𝑒𝑓𝑒,𝑆 is the frequency of 𝑒 in 𝑆, such that 𝑒𝑓𝑒,𝑆 =
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒 𝑖𝑛 𝑆

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑆

• 𝑠𝑓𝑒 is the number of schemas containing 𝑒.

• |𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔| = 𝑝 is the cardinality of 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔.

We say that an element 𝑒 is frequent if and only

if its degree of frequency satisfies the following:

⌊𝐸𝐹 − 𝑆𝐹𝑒∈𝑆,𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔⌋ ≥ 𝑙𝑜𝑔 (
√𝑚4+1
2

√|𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔|
2
−1

2
)(13)

Where:

• 𝑚 is the number of elements in 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔.

• |𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔| = 𝑝 is the cardinality of 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔.

c. See if there are other frequent elements

If we extend the number of learning schemas

𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 but we end up having 𝔽 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then

the frequent elements generator stops. Otherwise, it

repeats step and step b for more schemas.

Algorithm 1 Summarizes these steps:

Algorithm 1: FrequentElementsGenerator

(𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑)

Input:

𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑 : The words sets generated from

𝐒𝟏, 𝐒𝟐, … , 𝐒𝒑

Output:

𝔽: The frequent schema elements

𝔽 ← ∅

Generate the matches 𝚽 between 𝚯𝟏, 𝚯𝟐, … , 𝚯𝒑

according to CSSM

For each 𝝋 in 𝚽

If (𝒆 ∈ 𝝋 and ⌊𝑬𝑭 − 𝑺𝑭𝒆∈𝑺,𝕊𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈⌋ ≥

𝒍𝒐𝒈(
√𝒎𝟒+𝟏
𝟐

√|𝕊𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈|
𝟐−𝟏

𝟐
)) Then 𝔽 ← 𝔽 ∪ 𝒆 /* 𝔽

stores one element e in 𝝋*/

End if

End for

Return 𝔽

3.2 The schema matcher

Let 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 = {𝑆𝑝+1, 𝑆𝑝+2, … , 𝑆𝑛} be the testing

schemas, and let Θ𝑝+1, Θ𝑝+2, … , Θ𝑛be the words sets

generated from 𝑆𝑝+1, 𝑆𝑝+2, … , 𝑆𝑛, respectively. The

Received: July 2, 2020. Revised: July 28, 2020. 496

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

schema matcher uses 𝔽 to generate the matches Φ.

To do so, it proceeds in two key steps:

a. Calculate the semantic similarity values

It uses CSSM (Eq. (1) and Eq. (11)) to compare

the words sets Θ𝑝+1, Θ𝑝+2, … , Θ𝑛 to the frequent

schema elements 𝔽.

b. Capture new matches

Every words set θi ∈ {Θ𝑝+1, Θ𝑝+2, … , Θ𝑛} that

has a semantically corresponding element 𝑓𝑖 ∈ 𝔽, its

associated element 𝑒𝑖 will be added to the matches

list Φ such that 𝜑 ← 𝜑 ∪ 𝑒𝑖 , where 𝑓𝑖 ∈ 𝜑 and 𝜑 ∈
Φ.

Algorithm 2 summarizes these steps:

Algorithm 2: SchemaMatcher

(𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏)

Input:

𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏: The words sets generated

from 𝐒𝒑+𝟏, 𝐒𝒑+𝟐, … , 𝐒𝒏

Output:

𝚽: The matches

For each 𝚯 in {𝚯𝒑+𝟏, 𝚯𝒑+𝟐, … , 𝚯𝒏}

Generate the matches 𝚽 between 𝚯 and 𝔽

according to CSSM

End for

Return 𝚽

3.3 The rare elements matcher

The rare elements matcher uses the transitivity

principle (see theorem 1) to match the rare schema

elements.

Theorem 1. (Transitive relation). A binary

relation ℜ is transitive over a set 𝐵 if and only if it

satisfies the following:

 ∀ 𝑥, 𝑦, 𝑧 ∈ 𝐵, (𝑥ℜ𝑦 ∧ 𝑦ℜ𝑧) ⇒ 𝑥ℜ𝑧 (14)

The rare elements matcher applies the transitivity

principle as follows:

Let 𝑆1 and 𝑆2 be two schemas, let 𝑟1 ∈ ℝ and

𝑟2 ∈ ℝ be two rare schema elements from 𝑆1 and 𝑆2,

respectively; and let 𝔽 = {𝑓1, 𝑓2, … 𝑓𝑞} such that 𝑞 ∈

ℕ∗ be the set of frequent schema elements. We have

the following:

∀ 𝑖 ∈ {1,2,… , 𝑞}, 𝐶𝑆𝑆𝑀(𝑟1, 𝑓𝑖)

1 http://oaei.ontologymatching.org/2019/

= 𝐶𝑆𝑆𝑀(𝑟2, 𝑓𝑖) ± 0.05
 ⇒ 𝑟1 𝑎𝑛𝑑 𝑟2 𝑎𝑟𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 (15)

If 𝑟1 (or 𝑟2) satisfies Eq. (13), then the set of

frequent schema elements is updated as follows:

𝔽 ← 𝔽 ∪ 𝑟1 OR 𝔽 ← 𝔽 ∪ 𝑟2 (not both)

And the rare schema elements list is updated as

follows:
ℝ ← ℝ ∪ 𝑟1 AND ℝ ← ℝ ∪ 𝑟2

 Algorithm 3 summarizes this:

Algorithm 3: RareElementsMatcher (𝔽,ℝ)
Input:

𝔽: Frequent schema elements

ℝ: Rare schema elements

Output:

𝚽;𝔽;ℝ: The matches; Frequent schema elements;

Rare schema elements

For each 𝐫𝟏, 𝒓𝟐 ∈ ℝ

If (∀ 𝒇 ∈ 𝔽, 𝑪𝑺𝑺𝑴(𝒓𝟏, 𝒇𝒊) = 𝑪𝑺𝑺𝑴(𝒓𝟐, 𝒇𝒊) ±
𝟎. 𝟎𝟓) Then

𝝋 ← 𝝋 ∪ 𝒓𝟏 /*𝝋 ∈ 𝚽 contains the matches of

𝒓𝟏*/

𝔽 ← 𝔽 ∪ 𝒓𝟏 OR 𝔽 ← 𝔽 ∪ 𝒓𝟐 (not both)

ℝ ← ℝ ∪ 𝒓𝟏 AND ℝ ← ℝ∪ 𝒓𝟐

End if

End for

Return (𝔽,𝚽,ℝ)

4. Experiments and evaluations

In this section, we first evaluate hMatcher in

terms of matching accuracy, and then compare the

findings to the state of the art matching systems.

4.1 Datasets

We evaluated hMatcher on the Conference

dataset which includes sixteen ontologies all

describing the domain of organizing academic

conferences. The ontologies were used in OAEI 2019

and are available for free download on the Web1. It

has twenty-one reference alignments formed from

seven out of sixteen ontologies.

4.2 Measures

We use the following measures to evaluate the

matches generated by hMatcher on the Conference.

Received: July 2, 2020. Revised: July 28, 2020. 497

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 (16)

Eq. (16) is the probability of correct matches

among all matches returned by the matching system.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑀𝑖𝑠𝑠𝑒𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠+𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 (17)

Eq. (17) is the probability of correct matches

returned by a matching system among the reference

matches.

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑅𝑒𝑐𝑎𝑙𝑙 × (2 −
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
) (18)

Eq. (18) measures the amount of manual post-

effort required to add missed matches and remove

false matches.

 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (19)

Eq. (19) is the harmonic mean of Precision and

Recall.

The ideal case scenario is when all four metrics

reach their largest values:

Precision = Recall = Overall = F − Measure
= 1

We then compare the findings obtained by

hMatcher on the Conference dataset against

previously published results of twelve well-known

ontology matching systems (Holontology [11], AML

[37], DOME [17], LogMap [18], XMap [29],

KEPLER [20], ALIN [13], SANOM [21], FCAMapX

[19], LogMapLt [18], ALOD2Vec [14] and Lily [23]).

The evaluations are based on nine combinations of

crisp reference alignments: ra1-M1, ra1-M2, ra1-M3,

ra2-M1, ra2-M2, ra2-M3, rar2-M1, rar2-M2 and

rar2-M3 (ra1 is the original reference alignment; ra2

is an extension of ra1; and rar2 is an updated version

of ra2 that deals with the violations of conservativity).

ra1-M1, ra2-M1 and rar2-M1 are used to evaluate

alignments between classes; ra1-M2, ra2-M2 and

rar2-M2 are used to evaluate alignments between

properties; ra1-M3, ra2-M3, and rar2-M3 are used to

evaluate alignments between both classes and

properties.

4.3 Results and discussions

Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8,

Fig. 9 and Fig. 10 show the new and previously

published results on the Conference dataset.

Figure. 2 ra1-M1: matching accuracy and human

assistance

Figure. 3 ra1-M2: matching accuracy and human

assistance

Figure. 4 ra1-M3: matching accuracy and human

assistance

Figure. 5 ra2-M1: matching accuracy and human

assistance

0

0.5

1

Q
u
al

it
y
 v

al
u
es

ra1-M1

Precision Recall Overall F-Measure

-2

-1

0

1

Q
u
al

it
y
 v

al
u
es

ra1-M2

Precision Recall Overall F-Measure

0

0.5

1

Q
u
al

it
y
 v

al
u
es

ra1-M3

Precision Recall Overall F-Measure

0

0.5

1

Q
u
al

it
y
 v

al
u
es

ra2-M1

Precision Recall Overall F-Measure

Received: July 2, 2020. Revised: July 28, 2020. 498

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

Figure. 6 ra2-M2: matching accuracy and human

assistance

Figure. 7 ra2-M3: matching accuracy and human

assistance

Figure. 8 rar2-M1: matching accuracy and human

assistance

Figure. 9 rar2-M2: matching accuracy and human

assistance

Figure. 10 rar2-M3: matching accuracy and human

assistance

First, the previously published results indicate

visible changes for Precision, Recall, Overall and F-

Measure. They reached a high matching accuracy

when evaluated based on ra1-M1, ra1-M3, ra2-M1,

ra2-M3, rar2-M1, and rar2-M3; and low matching

accuracy (null in some cases for example ALIN and

Lily) with ra1-M2, ra2-M2, and rar2-M2. Second,

hMatcher achieved superior matching accuracy

compared to other matching approaches as it

surpassed them almost every time except from ra1-

M2 and ra2-M2 where AML surpassed it slightly

(Precision = 1).

ALIN and Lily match merely classes. Because of

that, they did not achieve a high matching accuracy

with ra1-M2, ra2-M2, and rar2-M2; SANOM, XMap,

AML and LogMap match few properties which

justifies their negative Overall with ra1-M2, ra2-M2,

and rar2-M2; FCAMapX, KEPLER, LogMapLt,

DOME, ALOD2Vec and Holontology match little

properties which explains their low Precision, Recall

and F-Measure with ra1-M2, ra2-M2, and rar2-M2,

and negative Overall; and hMatcher matches both

classes and properties which explains its high

Precision, Recall and F-Measure with ra1-M1, ra1-

M2, ra1-M3, ra2-M1, ra2-M2, ra2-M3, rar2-M1,

rar2-M2, and rar2-M3, and positive Overall.

Hence, we conclude that hMatcher obtains better

matching results than existing matching approaches

because unlike the latter that often do not match

properties, hMatcher matches all elements (classes

and properties). Indeed, on the one hand, we have

XMap, DOME, Holontology, FCAMapX, LogMapLt,

Lily, SANOM, AML, LogMap, KEPLER,

ALOD2Vec and ALIN that reach good results with

the reference alignments that take into consideration

either classes or both classes and properties. However,

they obtain lots of matching errors with the reference

alignments that take into consideration merely

properties. On the other hand, we have hMatcher that

reaches a superior matching accuracy regardless of

the reference alignments it is used with. This implies

-2

-1

0

1

Q
u
al

it
y
 v

al
u
es

ra2-M2

Precision Recall Overall F-Measure

0

0.5

1

Q
u
al

it
y
 v

al
u
es

ra2-M3

Precision Recall Overall F-Measure

0

0.5

1

Q
u
al

it
y
 v

al
u
es

rar2-M1

Precision Recall Overall F-Measure

-2

-1

0

1

Q
u
al

it
y
 v

al
u
es

rar2-M2

Precision Recall Overall F-Measure

0

0.5

1

Q
u
al

it
y
 v

al
u
es

rar2-M3

Precision Recall Overall F-Measure

Received: July 2, 2020. Revised: July 28, 2020. 499

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

that hMatcher requires less human-assistance

compared to existing matching systems that need

loads of human assistance in order to correct the final

matching results.

5. Conclusions and future work

We demonstrated that defining a holistic schema

matching approach is critical to match multiple

schemas simultaneously and generate accurate

matches. The state of the art matching approaches

often obtain a low matching accuracy and hence need

human assistance to correct the matches; furthermore,

current matching approaches often match two

schemas at a time.

Let 𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 be the learning schemas and

𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔 be the testing schemas, hMatcher first

generates frequent schema elements 𝔽 from

𝕊𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔. It then uses 𝔽 to identify new matches Φ

in 𝕊𝑇𝑒𝑠𝑡𝑖𝑛𝑔. Next, hMatcher reuses previous results to

determine new matches in the rare schema elements

list.

We evaluated hMatcher on a real-world domain

dataset, the results show a high matching accuracy

achieved by hMatcher (the average metrics on nine

reference alignments are: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
0.89; 𝑅𝑒𝑐𝑎𝑙𝑙 = 0.66;𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = 0.57), and an

inferior (compared to hMatcher) matching accuracy

obtained by the state of the art matching systems (the

average metrics on nine reference alignments are

defined as follows: 0.69 ≤ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ≤
0.83; 0.57 ≤ 𝑅𝑒𝑐𝑎𝑙𝑙 ≤ 0.62; 0.37 ≤ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 ≤
0.49).

Future interesting research directions include

mainly the following:

• Study the impact of hMatcher on data source

selection and ordering. Before the system

answers users queries, it selects a subset of data

sources that contain a piece of the answer or

ideally the whole answer to the query, this is

called source selection; then, the system orders

data sources in a decreasing order of their

coverage (source coverage refers to the amount

of answers to a particular query included in the

data source), this is called source ordering. So,

in the future, we will study the impact of

hMatcher on data source selection and ordering.

• Take into consideration cases where schemas are

expressed using different lexical languages. We

focused on schemas that use the same lexical

language. In the future, we will improve our

approach to match schemas regardless of the

lexical language they are expressed in.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, Aola Yousfi; methodology,

Aola Yousfi, Moulay Hafid El Yazidi and Ahmed

Zellou; software, Aola Yousfi; validation, Moulay

Hafid El Yazidi and Ahmed Zellou; formal analysis,

Aola Yousfi, Moulay Hafid El Yazidi and Ahmed

Zellou; resources, Aola Yousfi, Moulay Hafid El

Yazidi and Ahmed Zellou; data curation, Aola Yousfi,

Moulay Hafid El Yazidi; writing—original draft

preparation, Aola Yousfi; writing—review and

editing, Aola Yousfi, Moulay Hafid El Yazidi and

Ahmed Zellou; visualization, Aola Yousfi;

supervision, Moulay Hafid El Yazidi and Ahmed

Zellou; project administration, Aola Yousfi, Moulay

Hafid El Yazidi and Ahmed Zellou.

References

[1] Y. Lee, M. Sayyadian, A. Doan, and A.

Rosenthal, “etuner: tuning schema matching

software using synthetic scenarios”, VLDB

Journal, Vol. 16, No. 1, pp. 97–122, 2007.

[2] E. Rahm and E. Peukert, “Holistic schema

matching”, Encyclopedia of Big Data

Technologies, 2019.

[3] E. Rahm and E. Peukert, “Large-scale schema

matching”, Encyclopedia of Big Data

Technologies, 2019.

[4] M. H. El Yazidi, A. Zellou, and A. Idri,

“FMAMS: fuzzy mapping approach for

mediation systems”, IJAEC, Vol. 4, No. 3, pp.

34–46, 2013.

[5] M. H. El Yazidi, A. Zellou, and A. Idri, “Fgav

(fuzzy global as views)”, In: Proc. of AIP Conf.,

Vol. 1644, No. 1, pp. 236–243, 2015.

[6] E. Rahm and P. A. Bernstein, “On matching

schemas automatically”, VLDB Journal, Vol. 10,

No. 4, pp. 334–350, 2001.

[7] E. Sutanta, R. Wardoyo, K. Mustofa, and E.

Winarko, “Survey: Models and prototypes of

schema matching”, International Journal of

Electrical and Computer Engineering, Vol. 6,

No. 3, pp. 2088-8708, 2016.

[8] P. Shvaiko and J. Euzenat, “A survey of schema-

based matching approaches”, Journal on data

semantics, Vol. 4, pp. 146–171, 2005.

[9] E. Rahm and P. A. Bernstein, “A survey of

approaches to automatic schema matching”,

VLDB Journal, Vol. 10, No. 4, pp. 334–350,

2001.

Received: July 2, 2020. Revised: July 28, 2020. 500

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

[10] J. Köpke, “Annotation paths for matching xml-

schemas”, Data Knowledge Engineering, Vol.

122, pp. 25–54, 2019.

[11] P. Roussille, I. Megdiche, O. Teste, and C.

Trojahn, “Holontology: results of the 2018

OAEI evaluation campaign”, In: Proc. of the

13th International Workshop on Ontology

Matching Co-located with the 17th International

Semantic Web Conf., Monterey, CA, USA, pp.

167–172, 2018.

[12] K. Saleem, Z. Bellahsene, and E. Hunt,

“PORSCHE: performance oriented schema

mediation”, Information Systems, Vol. 33, No.

7-8, pp. 637–657, 2008.

[13] J. da Silva, K. Revoredo, and F. A. Baião,

“ALIN results for OAEI 2018”, In: Proc. of the

13th International Workshop on Ontology

Matching co-located with the 17th International

Semantic Web Conf., Monterey, CA, USA, pp.

117–124, 2018.

[14] J. Portisch and H. Paulheim, “Alod2vec

matcher”, In: Proc. of the 13th International

Workshop on Ontology Matching Co-located

with the 17th International Semantic Web Conf.,

Monterey, CA, USA, pp. 132–137, 2018.

[15] D. Faria, C. Pesquita, E. Santos, M. Palmonari,

I. F. Cruz, and F. M. Couto, “The

agreementmakerlight ontology matching

system”, In: Proc. of On the Move to Meaningful

Internet Systems: OTM 2013 Conferences -

Confederated International Conf.: CoopIS,

DOA-Trusted Cloud, and ODBASE, Graz,

Austria, pp. 527–541, 2013.

[16] I. F. Cruz, F. P. Antonelli, and C. Stroe,

“Agreementmaker: Efficient matching for large

real-world schemas and ontologies”, PVLDB,

Vol. 2, No. 2, pp. 1586–1589, 2009.

[17] S. Hertling and H. Paulheim, “DOME results for

OAEI 2018”, In: Proc. of the 13th International

Workshop on Ontology Matching co-located

with the 17th International Semantic Web Conf.,

Monterey, CA, USA, pp. 144–151, 2018.

[18] E. Jiménez-Ruiz, B. C. Grau, and V. Cross.

“Logmap: family participation in the OAEI

2018”, In: Proc. of the 13th International

Workshop on Ontology Matching co-located

with the 17th International Semantic Web Conf.,

Monterey, CA, USA, pp. 187–191, 2018.

[19] G. Chen and S. Zhang, “Fcamapx: results for

OAEI 2018”, In: Proc. of the 13th International

Workshop on Ontology Matching co-located

with the 17th International Semantic Web Conf.,

Monterey, CA, USA, pp. 160–166, 2018.

[20] M. Kachroudi, G. Diallo, and S. Ben Yahia,

“KEPLER at OAEI 2018”, In: Proc. of the 13th

International Workshop on Ontology Matching

co-located with the 17th International Semantic

Web Conf., Monterey, CA, USA, pp. 173–178,

2018.

[21] M. Mohammadi, W. Hofman, and Y.-H. Tan,

“SANOM results for OAEI 2018”, In: Proc. of

the 13th International Workshop on Ontology

Matching Co-located with the 17th International

Semantic Web Conf., Monterey, CA, USA, pp.

205–209, 2018.

[22] M. Mohammadi, W. Hofman, and Y.-H. Tan,

“Simulated annealing-based ontology

matching”, ACM Trans. Management Inf. Syst.,

Vol. 10, No. 1, pp. 1-24, 2019.

[23] Y. Tang, P. Wang, Z. Pan, and H. Liu, “Lily

results for OAEI 2018”, In: Proc. of the 13th

International Workshop on Ontology Matching

co-located with the 17th International Semantic

Web Conf., Monterey, CA, USA, pp. 179–186,

2018.

[24] P. Wang and B. Xu, “An effective similarity

propagation model for matching ontologies

without sufficient or regular linguistic

information”, In: Proc. of the 4th Asian Semantic

Web Conf. (ASWC2009), Shanghai, China,

2009.

[25] P. Wang and B. Xu, “Debugging ontology

mappings: A static approach”, Computing and

Informatics, Vol. 27, No. 1, pp. 21–36, 2008.

[26] P. Yang, P. Wang, L. Ji, X. Chen, K. Huang, and

B. Yu, “Ontology matching tuning based on

particle swarm optimization: Preliminary

results”, In: Proc. of the Semantic Web and Web

Science - 8th Chinese Conf., Wuhan, China, pp.

146–155, 2014.

[27] I. Megdiche, O. Teste, and C. T. dos Santos,

“LPHOM results for OAEI 2016”, In: Proc. of

the 11th International Workshop on Ontology

Matching co-located with the 15th International

Semantic Web Conf., Kobe, Japan, pp. 190–195,

2016.

[28] Megdiche, O. Teste, and C. T. dos Santos, “An

extensible linear approach for holistic ontology

matching”, In: Proc. of The Semantic Web -

ISWC 2016 - 15th International Semantic Web

Conf., Kobe, Japan, Part I, pp. 393–410, 2016.

[29] W. E. Djeddi, S. Ben Yahia, and M. T. Khadir,

“Xmap: results for OAEI 2018”, In: Proc. of the

13th International Workshop on Ontology

Matching co-located with the 17th International

Semantic Web Conf., Monterey, CA, USA, pp.

210–215, 2018.

[30] C. Leacock and M. Chodorow, “Combining

local context and wordnet similarity for word

sense identification”, WordNet: An electronic

Received: July 2, 2020. Revised: July 28, 2020. 501

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.43

Lexical Database, Vol. 49, No. 2, pp. 265–283,

1998.

[31] Bodenreider, “The unified medical language

system (UMLS): integrating biomedical

terminology”, Nucleic Acids Research, Vol. 32,

No. 1, pp. 267–270, 2004.

[32] C. J. Zhang, L. Chen, H. V. Jagadish, and C. C.

Cao, “Reducing uncertainty of schema matching

via crowdsourcing”, PVLDB, Vol. 6, No. 9,

pp.757–768, 2013.

[33] C. J. Zhang, L. Chen, H. V. Jagadish, M. Zhang,

and Y. Tong, “Reducing uncertainty of schema

matching via crowdsourcing with accuracy

rates”, IEEE Trans. Knowledge Data

Engineering, Vol. 32, No. 1, pp. 135–151, 2020.

[34] M. H. El Yazidi, A. Zellou, and A. Idri,

“Towards a fuzzy mapping for systems”,

In: Proc. of IEEE International Conf. on

Complex Systems (ICCS), pp. 1-4, 2012.

[35] A. Yousfi, M. H. El Yazidi, and A. Zellou,

“Assessing the performance of a new semantic

similarity measure designed for schema

matching for mediation systems”, In: Proc. of

the Computational Collective Intelligence - 10th

International Conf., Bristol, UK, Part I, pp. 64–

74, 2018.

[36] L. Havrlant and V. Kreinovich, “A simple

probabilistic explanation of term frequency

inverse document frequency (tf-idf) heuristic

(and variations motivated by this explanation)”,

International Journal General Systems, Vol. 46,

No. 1, pp. 27–36, 2017.

[37] D. Faria, C. Pesquita, B. S. Balasubramani, T.

Tervo, D. Carriço, R. Garrilha, F. M. Couto, and

I. F. Cruz, “Results of AML participation in

OAEI 2018”, In: Proc. of the 13th International

Workshop on Ontology Matching co-located

with the 17th International Semantic Web Conf.,

Monterey, CA, USA, pp. 125–131, 2018.

