
Received: June 17, 2020. Revised: July 17, 2020. 356

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

A New Similarity Method based on Weighted-Linear Temporal Logic Tree and

Weighted Directed Acyclic Graph for Graph-based Business Process Models

Khairiyyah Nur Aisyah1 Kelly R. Sungkono2 Riyanarto Sarno2*

1Department of Informatics Engineering, Institut Teknologi Sepuluh Nopember, Indonesia

* Corresponding author’s Email: riyanarto@if.its.ac.id

Abstract: A business process is a set of activities that needs to be considered in organizations or companies. Linear

temporal logic (LTL) can models relationships of activities; however, the existing LTL does not consider occurrences

probability of relationships of activities based on the event log. Weighted Linear Temporal Logic (W-LTL) extends

the existing LTL by giving weights based on the occurrences probabilities. This paper proposes a new similarity

method that combines Weighted-Linear Temporal Logic (W-LTL) Tree and Weighted Directed Acyclic Graph

(wDAG) that modifies the original wDAG similarity, so it can distinguish the similarity value of two wDAGs that

have two branches with opposite weight values. The proposed method (W-LTLDAG) will be verified by comparing

with the original wDAG similarity, TPED, Cosine-TDP, and WGED. Based on the comparison, wDAG and WGED

gives similarity value of 1 for all experiments, shows that both cannot distinguish weight between 2 graphs. TPED

only concerns on relation without giving regards to the number of traces, Cosine-TDP and proposed method are able

to distinguish parallel relations that have different occurrence probability of activity relations, but proposed method is

proven to give a better calculation by giving a high similarity value, 0.976 for graphs with a small difference value of

weights between branches, and low similarity value, 0.327 for graphs with a large difference value of weights between

branches.

Keywords: Business process management, Graph database, Linear temporal logic, Similarity method, Weighted

directed acyclic graph.

1. Introduction

A business process is a set of activities in a

company that describes their logical order and the

dependences between activities to produce the

desired results [1, 2]. For this purpose, process

models are widely utilized, addressing various issues

such as fraud [3, 4], economy [5], and environmental

problems [6]. The construction of a process model

makes analysing these processes more easy [7]. The

information in a business process can be analysed

through a graph database, which is have seen growing

popularity over the last few years [8]. Information

inside a graph database can be represented in the form

of a process model. Business process models can be

represented in various ways, using for example

BPMN, Petri net, or a graph [9, 10]. Nowadays,

organizations or companies need to process hundreds

or even thousands of process models in its repository.

Organizing these repositories requires an efficient

and effective methods to facilitate the business

process analysis [11]. Doing a manual check on

hundreds of business process models requires an

enormous of effort and results in high costs [12].

Several techniques can be used for the reconstruction

of the business processes quickly, such as process

recommendation, process clustering, and process

query which are all based on the business process

similarity [13]. Calculation of similarity on process

models being an important thing to do in business

process management such as preventing duplication

[14], reduce costs in expanding business [15],

identified processes that no longer comply with the

company [16], model repository management [17],

and many more.

As mentioned above, many similarity

measurements of business processes have been

Received: June 17, 2020. Revised: July 17, 2020. 357

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

developed in recent years. Previous research [18]

proposed a weighted DAG (wDAG) similarity

algorithm for match-making in e-Business

environments. The wDAG similarity algorithm

compared the similarity calculation between 2 arc-

weighted DAGs. [19] proposed Tree Declarative

Pattern Edit Distance (TPED) and Cosine-Tree

Declarative Pattern Similarity (Cosine-TDP). TPED

is a modification of Graph Edit Distance (GED) [15]

to measure a structural similarity, while Cosine-TDP

is a modification of an original cosine to measure a

behavioural similarity. Another previous work

named Weighted Graph Edit Distance (WGED) [13]

aimed to calculate minimal costs of transforming a

graph to the other. The transformation is based on

node substitution, node insertion/deletion, and edge

insertion/deletion. However, most of previous

reseraches are not paying attention in distinguish

different parallel relations or same parallel relations

that have different occurrence probability of activity

relations.

This paper proposed a new similarity method

based on Weighted-Linear Temporal Logic (W-LTL)

Tree and Weighted Directed Acyclic Graph (wDAG).

A previous research [20] developed a tree model

based on linear temporal logic (LTL) patterns from

an ordinary graph database without weight value. In

this study, a weight is given to the tree on each

relation between activities. The weights are obtained

based on the probability of the occurrence of

activities with the number of its incoming or outgoing

activities. The major contributions of this paper are

as follows:

1) Proposed an algorithm to discover Weighted-

Linear Temporal Logic (W-LTL) Tree patterns

from an original event log.

2) Extends the existing LTL by giving weights

based on the occurrences probability of

relationships of activities based on the event log.

3) Proposed a new similarity method based on

Weighted-Linear Temporal Logic (W-LTL)

Tree and Weighted Directed Acyclic Graph

(wDAG) that able to distinguish different

parallel relations or same parallel relations that

have different occurrence probability of activity

relations.

The proposed similarity method then will be

compared with the existing similarity methods, i.e.

wDAG algorithm, Tree Declarative Pattern Edit

Distance (TPED), Cosine-Tree Declarative Pattern

(Cosine-TDP), and Weighted Graph Edit Distance

(WGED). Each method will be used to calculate

similarity between graphs with parallel relations,

XOR, OR, and AND. Similarity between graphs with

the same relation but in different weights is also

compared.

This rest of this research consists of several

sections: Section 2 presents the basic concepts which

underlie this research. The proposed method is

discussed in Section 3. The experiment results will be

discussed in Section 4, and the conclusion is

presented in Section 5.

2. Research method

2.1 Parallel relationship of process model

A great process model is a process model that has

no redundant activity and the behaviour of its

activities is clearly visible. Both of them can be

applied with control flow patterns and concurrency.

Control- flow patterns are used to build relations

between activities, i.e. Sequence, XOR, AND, and

OR [21]. Sequence is a relation that connects one

activity to another. XOR occurs when an activity in

the process model has branches and only one activity

is executed. The OR relation is used when an activity

has branches and several branches must be executed.

AND is a relation that is used when an activity has

several branches and all branches must be executed.

If the chosen activity in XOR, OR and AND relations

is the previous activity of the other activities, then

‘Split’ will be given in the control- flow pattern of the

relation. If the chosen activity in the XOR, OR and

AND relations is the next activity of the other

activities, then ‘Join’ will be given in the control-flow

pattern of the relation [21].

Examples of Sequence, XOR, OR, and AND

relations are shown in Fig. 1. The first column of Fig.

1 describes the relationships between activities, the

second column describes the log, while the third

column represents the form of the graph model.

2.2 Graph model

A graph model is a database that consists of a

state of graphs [22]. Graph model is a representation

of the graph database that already contains one or

several relations such as Sequence, XOR, OR, or

AND. Graph models are used to solve problems that

cannot be handled using tabular databases, such as

data that have too many relationships. Handling data

with a large number of relations requires complex

SQL queries. Graph formation makes it easier for

users to see the structure of the relations between

activities in a process model. There are multiple

places in information systems where data about

process execution can be stored, i.e. system logs,

databases, text files, and many more [23]. A graph

Received: June 17, 2020. Revised: July 17, 2020. 358

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

Figure. 1 Process discovery

Figure. 2 Example of graph model

model has two components, namely nodes and arcs.

Nodes are points that contain information about name

of the activity, while arcs are lines that show the

relationships between nodes. In the graph model of

Fig. 2, Symbols A until D are nodes, while next

relations are arcs.

2.3 Linear temporal logic tree model

Linear temporal logic (LTL) is a formal language

that describes several temporal logics that refer to

time [20]. Meanwhile, LTL tree model is a

representation of a business process that is discovered

based on patterns in linear temporal logic. A previous

research [20] discovered control-flow patterns based

on a declarative model. Each discovered linear

temporal logic pattern is split into activities and

symbols that are used in discovering the LTL tree.

The form of the resulting Linear Temporal Logic

patterns based on [20] is shown in Table 1. The first

column describe the relationships between activities,

meanwhile the second column shows the form of the

relation in LTL.

Table 1. LTL patterns

2.4 Weighted-linear temporal logic (W-LTL)

Each relation between activities in the Linear

Temporal Logic patterns is given a weight value. The

value is obtained from the occurrence frequency of a

sequence of activities in the process model. In

Weighted-Linear Temporal Logic (W-LTL) model,

‘p’ is added to represent the weight value of the

relation between two activities.

2.5 Similarity calculation using weighted Directed

acyclic graph (wDAG)

Several previous research proposed a similarity

calculation based on weight, for example

AgentMatcher [24] and weighted Directed Acyclic

Graphs (wDAG) [18]. Generally speaking, the

wDAG similarity algorithm is used to traverse the

two wDAGs (𝑎 and 𝑎′) with a depth-first strategy. It

calculates their similarity bottom-up [18]. The basis

of the recursion is that if two nodes (𝑛 and 𝑛′) are leaf

nodes and they are identical, then the similarity is 1.0.

Otherwise, the similarity is 0.0. The similarity

calculation between non-leaf nodes is done by

summing all similarity values of their sub-wDAGs

and then multiplying the result by the average value

of their arc weights. The result of the similarity is in

the interval [0,1]. Generally speaking, the calculation

of similarity of wDAG is shown in Eq. (1).

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎, 𝑎′) is similarity of 2 wDAGs 𝑎 and 𝑎′

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖, 𝑎𝑗): Intermediate similarity of 𝑖𝑡ℎand

𝑗𝑡ℎ sub-wDAGs.

𝑤𝑖 and 𝑤′
𝑗: Arc weights of the 𝑖𝑡ℎand 𝑗𝑡ℎ of the root

node.

∈ means an empty wDAG, 𝑖 is increase from 1 to the

breadth of a, and 𝑗 is increase from 1 to the breadth

of a’.

In some cases, Eq. (1) cannot distinguish the

similarity value of two wDAGs that have two

branches with opposite weight values. For example,

there are 2 wDAGs, A and B, with opposite values of

their branches, as shown as Fig. 3. Using Eq. (1), the

similarity value of wDAG A and wDAG B of Fig. 3.

is shown as below:

Relation Pattern

Sequence LTL : act - > O (y)

 AND Split LTL : act - > <> ((y1 /\ y2 … /\ yn))

AND Join LTL : <> ((y1 /\ y2 … /\ yn)) - > O (act)

XOR Split LTL : act - > O ((y1 \/ y2 … \/ yn))

XOR Join LTL : O ((y1 \/ y2 … \/ yn)) - > O (act)

OR Split LTL : act - > <> ((y1 \/ y2 … \/ yn))

OR Join LTL : <> ((y1 \/ y2 … \/ yn)) - > O (act)

Received: June 17, 2020. Revised: July 17, 2020. 359

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

Figure. 3 wDAG A and wDAG B

Figure. 4 wDAG A and wDAG C

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎, 𝑎′) =
0.0, the root node labels of
 a and a′ are not identical
1.0, a and a′are leaf nodes

∑

{

 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖 , 𝑎𝑗).

𝑤𝑖+𝑤
′
𝑗

2
,

ai and a
′
j not missing

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖 , ∈).
𝑤𝑖+0

2
,

ai is missing in a
′

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(∈, 𝑎′𝑗).
0+𝑤′

𝑗

2
,

a′j is missing in a

∑ 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(∈, 𝑎′𝑗).
0+𝑤′𝑗

2
,

𝑏𝑟𝑒𝑎𝑑𝑡ℎ
𝑜𝑓𝑎
′

𝑗=1

a is a leaf node

∑ 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖, ∈).
𝑤𝑖+0

2

𝑏𝑟𝑒𝑎𝑑𝑡ℎ𝑜𝑓𝑎
𝑖=1

,

a′ is a leaf node

 (1)

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1,𝐵. 𝐷𝐴𝐺1)

 = (
0.6 + 0.4

2
) × 1.0 + (

0.4 + 0.6

2
) × 1.0 = 1

In another case, two wDAGs A and C have the same

branches with the same weight values, as shown in

Fig. 4. The similarity of wDAG A and wDAG C of

Fig. 4 is:

 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1, 𝐶. 𝐷𝐴𝐺1)

 = (
0.6 + 0.6

2
) × 1.0 + (

0.4 + 0.4

2
) × 1.0 = 1

Using Eq. (1), the similarity between wDAG A, B

and wDAG A,C are same. To distinguish between the

similarity of two wDAGs with two branches that have

opposite weight values, a new similarity method is

needed, which will be explained in the next section.

3. Proposed method

This section presents an algorithm to discover the

W-LTL tree of a graph-based business process model

and the new similarity method based on W-LTL Tree

and wDAG. The first step in discovering the W-LTL

tree is to convert the information from the execution

process in the graph database into a graph model. The

relations between the activities are used to discover

W-LTL patterns. Each component in the W-LTL

patterns is used to discover the W-LTL tree model. In

this study, LTL is used because it uses text so that it

requires less storage than other process models.

Whereas W-LTL is applied so that it can be used in

calculating similarity. In this study, the data used

always begin and end with a single event, no

overlapping activities, and no repetitive activities

(looping).

3.1 Discovering a graph model based on a graph

database

The data from the execution of a retail business

process are stored in a graph database in .csv format.

The first step is to convert the information in the

graph database to a graph model. First, the .csv file is

imported into Neo4j Graph Platform. Neo4j is a

network-oriented database that stores data structured

in networks rather than tables [25]. The basic data

model in Neo4j consists of nodes, relations, and

attributes. Nodes are similar to object instances and

are connected by various relationships. The relations

used in this research are Sequence, XOR, OR, and

AND relation.

All the information of each Case Id in the graph

database will be merged as an activity. In this step, all

activities that have been discovered in the previous

step are merged as case activities. After the case

activities have been discovered, the next step is to

specify the relations between the activities. The

notation ‘Split’ will be added to activities that have

branches, while the notation ‘Join’ indicates activities

that were split previously. The Sequence relation is

used if the number of outgoing values from an

activity is 1. The AND Split relation is used if there

is more than 1 outgoing value from an activity and all

branches are executed. AND Join is used to reunite

branches in AND Split relations. XOR Split relations

are formed if there is more than 1 outgoing value

from an activity and only 1 branch is executed. XOR

Join is used to reunite branches in XOR Split

relations. OR Split is a relationship that is formed if

an activity has 2 or more outgoing values and only

some branches are executed. OR Join is used to

reunite branches in OR Split relations. The nodes and

relations formed from the graph model are exported

Received: June 17, 2020. Revised: July 17, 2020. 360

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

in the form of a .csv file. This file is then used in

discovering the W-LTL patterns, which will be

explained in the next section.

3.2 Discovering weighted-linear temporal logic

(W-LTL) patterns from a graph model

To discover W-LTL patterns, two types of .csv

files are needed. The first .csv file contains the nodes

and relations that were exported in the previous step.

The second file only contains the sequence relations

between the nodes, which will be used in calculating

the weight of each relation of the nodes. The two files

are processed using the Python programming

language to discover the W-LTL patterns. A step that

needs to be done first is to calculate the weight of the

relations of the nodes. The weight is obtained based

on the probability of occurrence of an activity

sequence. The calculation of the weight is done in

two ways. The first pays attention to the outgoing

value of an activity, while the second pays attention

to the incoming value of the activity. The outgoing

value is used in calculating the weight of Sequence or

Split relations, while the incoming value is used in

calculating the weight of Join relations. An example

of calculating the weight of a relation between

activities is shown in Table 2.

Hence, before discovering W-LTL, the symbols

used in Table 2 that are not registered in ASCII are

converted to ASCII symbols. The converted symbols

are shown in Table 3. The symbols in the second

column are the original symbols. All the symbols in

column 2 are converted to symbols in column 3.

The weight values for each sequence relation of

the activities are then used for discovering the W-

LTL patterns. The symbols used in discovering the

W-LTL patterns are registered in ASCII (American

Standard Code for Information Interchange), an

international standard for writing letters and symbols.

The .csv file that contains the nodes and their

relations that have been exported in the previous step

is then used for discovering the W-LTL patterns.

Each data in that file will be converted to Weighted-

Linear Temporal Logic. The algorithm used to

discover the W-LTL patterns is shown in Table 4.

The relations discovered in this W-LTL are NEXT,

XORSPLIT, XORJOIN, ORSPLIT, ORJOIN,

ANDSPLIT, and ANDJOIN. For example, act A ->

_O (act Bp = 1) means B is the next activity of A with

“NEXT” relation and weight of A-B is 1. act A - >

_O ((act Bp= weightA, B \/ … \/ act np= weightA, n))

means B until n are outgoing activities of A, with Bp=

weightA, B means the weight value of activity A-B is

weightA, B and np= weightA, n means the weight

value of activity A-n is weightA, n. The complexity

Table 2. Example of calculating weight
Relation Trace Weight

Sequence ABCD -5x Target : A-B = 5

Weight of A-B =
5

5
= 1

Split ABCD-3x

ACBD-2x

ADBC-4x

Target : A-B = 3

outgoing A = (3+2+4) = 9

weight A-B
3

9
= 0.33

Join ABCD-3x

ACBD-2x

ADBC-4x

Target : C-D = 3

Incoming D = (3+2) = 5

Weight C-D =
3

5
= 0.6

Table 3. Conversion of symbols to ASCII

No Symbol Converted Symbol

1. <> < >

2. ∧ / \

3. ∨ \ /

4. O _O

of the algorithm to discover W-LTL is O(n3). The

general form of the W-LTL patterns is shown in

Table 5. y1, y2, …, yn are the names of the activities,

while the notation p = ... represents the weight of the

relations between activities.

3.3 Discovering weighted-linear temporal logic

(W-LTL) tree

After the W-LTL patterns have been discovered,

the next step is copying the discovered W-LTL

patterns to a .txt file adding Firstactivity (Name First

Activity) and Lastactivity (Name Last Activity) at the

top of the W-LTL patterns. The format of the wiring

weight is changed by adding /\ between the name of

the activity and the weight value. The first step in

discovering the W-LTL tree model is choosing the

first W-LTL pattern. This is the W-LTL pattern with

the activity that is found in FirstActivity (activity).

This pattern splits into several symbols and activities.

For example, Login -> O ((Open discount \/ Open

items data)) can be split as Part LTL = [Login, ->, O,

((Open discount, \/, Open items data))]. This part of

the W-LTL pattern is then used in discovering the W-

LTL tree.

The algorithm will check every part of the W-

LTL pattern. An open parenthesis is used to make a

sub-node and a closing parenthesis is used to return

to the main node. ‘x’ symbol on tree describes XOR

relations, ‘/\’ for AND relations, ‘\/’ for OR relations,

and ‘->’ for Sequence relations. The weight value is

placed after the name of the activity added with the

relation /\. Suppose the probability of the sequence of

activities A to B is 0.5, then the name of the node in

the tree model is B /\𝑝 = 0.5.

Received: June 17, 2020. Revised: July 17, 2020. 361

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

Table 4. Algorithm to discover weighted-linear temporal

logic (W-LTL) patterns

Algorithm 2: Algorithm to discover Weighted-Linear

Temporal Logic (W-LTL) patterns

 input : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = data in .csv file with all relations,

𝑙𝑖𝑠𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒= list of weight values of sequence relation,

𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.
 output : W-LTL patterns

1 foreach 𝑑𝑎𝑡𝑎 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

2 if the relation of data == ”NEXT” then

3 print act A -> _O (act Bp = 1)

4 if the relation of data == ”XORSPLIT” then

5 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

6 𝑙𝑖𝑠𝑡𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡 = all of XORSPLIT relation

 with outgoing act of data == outgoing act

 of 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

7 foreach data in 𝑙𝑖𝑠𝑡_𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡 do

8 print act A - > _O ((act Bp=

 weightA,B \/ … \/ act np= weightA,n))

9 if the relation of data == ”XORJOIN” then

10 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

11 𝑙𝑖𝑠𝑡𝑥𝑜𝑟𝑗𝑜𝑖𝑛 = all of XORJOIN relation with

 incoming act of data == incoming act of

 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

12 foreach data in 𝑙𝑖𝑠𝑡_𝑥𝑜𝑟𝑗𝑜𝑖𝑛 do

13 print _O ((act Ap = weightA,B \/ ... \/

 act np= weightn,B)) -> _O (act B)

14 if the relation of data == ”ANDSPLIT” then

15 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

16 𝑙𝑖𝑠𝑡𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡 = all of ANDSPLIT relation

 with outgoing act of data == outgoing act

 of 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

17 foreach data in 𝑙𝑖𝑠𝑡_𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡 do

18 print act A - > < > ((act Bp =

 weightA,B /\ … /\ act np= weightA,n))

19 if the relation of data == ”ANDJOIN” then

20 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

21 𝑙𝑖𝑠𝑡𝑎𝑛𝑑𝑗𝑜𝑖𝑛 = all of ANDJOIN relation with

 incoming act of data == incoming act of

 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

22 foreach data in 𝑙𝑖𝑠𝑡_𝑎𝑛𝑑𝑗𝑜𝑖𝑛 do

23 print <> ((act Ap = weightA,B /\ ... /\

 act np= weightn,B)) -> _O (act B)

24 if the relation of data == ”ORSPLIT” then

25 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

26 𝑙𝑖𝑠𝑡𝑜𝑟𝑠𝑝𝑙𝑖𝑡 = all of ORSPLIT relation with

 outgoing act of data == outgoing act of

 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

27 foreach data in 𝑙𝑖𝑠𝑡_𝑜𝑟𝑠𝑝𝑙𝑖𝑡 do

28 print act A - > <> ((act Bp=

 weightA,B \/ .. \/ act np= weightA,n))

29 if the relation of data == ”ORJOIN” then

30 foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do

31 𝑙𝑖𝑠𝑡𝑜𝑟𝑗𝑜𝑖𝑛= all of ORJOIN relation with

 incoming act of data == incoming act of

 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ

32 foreach data in 𝑙𝑖𝑠𝑡_𝑜𝑟𝑗𝑜𝑖𝑛 do

33 print <> ((act Ap = weightA,B \/ ... \/

 act np= weightn,B)) -> _O (act B)

34 end

Table 5. Form of weighted-linear temporal logic

(W-LTL)

Pattern Weighted-Linear Temporal Logic

Sequence act -> _O (yp = ...)

AND

Split

act -> < > ((y1p = ... /\ y2p = ... /\ ynp = ...))

AND

Join

< > ((y1p =... /\ y2p =... /\ ynp =...)) -> _O (act)

XOR

Split

act -> _O ((y1p = ... \/ y2p = ... \/ ynp = ..))

XOR

Join

_O ((y1p =… \/ y2p =… \/ ynp =…)) -> O (act)

OR Split act -> < > ((y1p = ... \/ y2p = ... \/ ynp = ...))

OR Join < > ((y1p = … \/ y2p =… \/ ynp = …)) -> _O

(act)

3.4 Weighted linear temporal logic tree and

weighted directed acyclic graph (W-LTLDAG)

similarity calculation

The original wDAG similarity [18] cannot

distinguish the similarity value of two wDAGs that

have two branches with opposite weight values, as

explained in Section 2.5. This new similarity method

based on Weighted Linear Temporal Logic tree and

Weighted Directed Acyclic Graph (W-LTLDAG)

proposed a modified wDAG similarity calculation

that able to distinguish different parallel relations or

same parallel relations that have different occurrence

probability of activity relations. The general steps of

calculating similarity between 2 wDAGs using W-

LTLDAG similarity are shown as below:

1. Deternining the parallel relations between 2

wDAGs, e.g. AND – AND, AND – OR, etc.

2. Calculate the distance of the weights

between each branch of the two wDAGs

using standard deviation formula as shown in

Eq. (2).

 𝑆𝐷 = |1 − √
∑ 𝑛
𝑖=1 (𝑥𝑖−�̅�)

2

𝑛−1
 | (2)

Received: June 17, 2020. Revised: July 17, 2020. 362

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

 𝑛 is the number of branch of wDAG, 𝑥𝑖 is

the weight value of branch 𝑖 , and �̅� is the

mean of the weight values between 2

branches of 2 wDAGs.

3. The calculation of the distance will be done

on each branch between 2 wDAGs. It

calculates the distance bottom-up.

4. After all the distance of each branches of 2

wDAGs have been calculated, the average of

distance values of all branches is calculated

as a final similarity value between 2 wDAGs.

For example, Fig. 3 has 2 wDAGs, A and B, with

2 branches, b and c. The weight values of the

branches of wDAG A, B in Fig. 3 are inverse, while

Fig. 4 has wDAGs, A and C, with 2 branches, b and

c, with the same value of weights. Using W-

LTLDAG similarity, the first wDAG A, B in Fig. 3

and the second wDAG A, C in Fig. 4 will have

different similarity values. The similarity values of

wDAGs in Fig. 3 and Fig. 4 are shown as below:

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1,𝐵. 𝐷𝐴𝐺1) =

1 − √
(0.6 − 0.4)2 + (0.4 − 0.6)2

2 − 1
+

√
(0.4−0.6)2+(0.6−0.4)2

2−1
 = 0.84 (3)

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1, 𝐶. 𝐷𝐴𝐺1) =

1 − √
(0.6 − 0.6)2 + (0.4 − 0.4)2

2 − 1
+

√
(0.4−0.4)2+(0.6−0.6)2

2−1
= 1 (4)

4. Results and analysis

The dataset used in this study was obtained from

retail companies with 5000 cases and 700 traces. The

execution processes of the retail business process

were stored in a graph database. The start activity is

user login and the end of activity is logout. The

information contained in the graph database is case id,

activity, user id, company id, value, division id,

created at, and updated at.

This section shows the discovered graph model,

the W-LTL model, the W-LTL tree model based on

the experiment. The discovered W-LTL tree model

will be converted into wDAG model and compared

with another wDAG using W-LTLDAG similarity

calculation.

4.1 Discovering graph model based on graph

database

Graph model discovered from the retail graph

database is shown in Fig. 5. A to T symbols on Fig. 5

refers to user login, open selling, open discount, open

purchase, choose item, choose payment method,

choose customer type, set amount of discount, set

discount type, set discount end time, set discount

name, set discount start time, choose supplier, input

expedition price, buy items, choose expedition, sell

item, finish discount, finish transaction, and logout.

The name of the nodes and the relations between

the activities are exported to a .csv file. The .csv file

is then imported into Anaconda platform for

discovering W-LTL patterns. An example of a .csv

file exported from Neo4j Graph Platform is shown in

Table 6. Besides that, a graph model that only

contains sequence relations is also built in Neo4j. The

nodes and their relations are exported to a .csv file.

This sequence relation file is then used to calculate

the weight of each sequence of activities.

Figure. 5 Graph model based on graph database

Table 6. Snippet of .csv file with all exported from neo4j

1 user login, XORSPLIT, open discount

2 open discount, ANDSPLIT, set discount end time

3 open discount, ANDSPLIT, set discount name

4 open discount, ANDSPLIT, set discount type

5 open discount, ANDSPLIT, set discount start time

6 open discount, ANDSPLIT, set amount of

discount

7 set discount start time, ANDJOIN, finish discount

8 set discount end time, ANDJOIN, finish discount

9 set discount name, ANDJOIN, finish discount

10 set discount type, ANDJOIN, finish discount

Received: June 17, 2020. Revised: July 17, 2020. 363

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

Table 7. Discovered weighted linear temporal logic (W-

LTL)

4.2 Discovering weighted-linear temporal logic

(W-LTL) patterns from graph model

Both .csv files exported from Neo4j are then

imported into Anaconda platform. The .csv file with

only sequence relations is used to calculate the

weights, while the .csv file with Sequence, AND,

XOR, and OR relations is used to discover the W-

LTL patterns. The discovered W-LTL patterns are

shown in Table 7.

4.3 Discovering weighted-linear temporal logic

(W-LTL) tree from W-LTL

Data from W-LTL patterns are copied into a .txt

file. Firstactivity (Name First Activity) and

Lastactivity (Name Last Activity) are added at the top

of the W-LTL patterns. The format of the wiring

weight is changed by adding /\ before the weight

value. For example, from finish transaction -> _O

(logout p = 1.0) to finish transaction -> _O (logout/\p

= 1.0). Import the .txt file into the Anaconda platform

to convert it into a W-LTL tree using the Python

programming language. Each W-LTL pattern is split

into symbols and activities. The W-LTL tree is shown

in Fig. 6.

The discovered W-LTL tree then converted into

wDAG A as shown in Fig. 7 (a) and will be compared

with wDAG B as shown in Fig. 7 (b). Relation of

each branches of both wDAGs can be shown in Fig.

Figure. 6 The discovered W-LTL tree

(a) (b)

Figure. 7: (a) wDAG A and (b) wDAG B

(a) (b)

Figure. 8: (a) XOR relation - first graph A and (b) XOR

relation - first graph B

5. Using W-LTLDAG similarity as describes in

Section 3.4, the similarity of both wDAGs is shown

as below:

1. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.T, wDAG B.T) = 0.812

1 user login -> _O ((open discount ᴾ₌₀.₀₃₇ \/ open

selling ᴾ₌₀.₈₅₂ \/ open purchasing ᴾ₌₀.₁₁₁))
2 open discount -> <> ((set discount end time ᴾ₌₀.₃₄₆

/\ set discount name ᴾ₌₀.₁₉₂ /\ set discount type ᴾ₌₀.₁₅₄

/\ set discount start time ᴾ₌₀.₁₅₄ /\ set amount of

discount ᴾ₌₀.₁₅₄))

3 <> ((set discount start time ᴾ₌₀.₃₈₅ /\ set discount end

time ᴾ₌₀.₁₅₄ /\ set discount name ᴾ₌₀.₀₃₈ /\ set discount

type ᴾ₌₀.₁₅₄ /\ set amount of discount ᴾ₌₀.₂₆₉)) -> _O

(finish discount)

4 open selling -> <> ((choose item ᴾ₌₀.₀₃₂ /\ choose

payment type ᴾ₌₀.₀₁₅ /\ choose customer type ᴾ₌₀.₉₅₃))

5 <> ((choose customer type ᴾ₌₀.₀₃₂ /\ choose payment

type ᴾ₌₀.₀₅₀ /\ choose item ᴾ₌₀.₉₁₈)) -> _O (sell item)
6 open purchasing -> <> ((choose supplier ᴾ₌₀.₂₁₈

/\ choose expedition ᴾ₌₀.₂₃₁ /\ buy items ᴾ₌₀.₂₆₉ /\ input

expedition price ᴾ₌₀.₂₈₂))

7 <> ((choose expedition P ₌₀.₂₁₈ /\ choose supplier P ₌₀.₃₃₃

/\ input expedition price ᴾ₌₀.₂₆₉ /\ buy items ᴾ₌₀.₁₇₉)) -

> _O (finish transaction)

8 _O ((finish discount ᴾ₌₀.₀₃₇ \/ sell item ᴾ₌₀.₈₅₂ \/ finish

transaction ᴾ₌₀.₁₁₁)) -> _O (logout)

Received: June 17, 2020. Revised: July 17, 2020. 364

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

(a) (b)

Figure. 9: (a) XOR relation - second graph A and (b)

XOR relation - second graph B

(a) (b)

Figure. 10: (a) OR relation - first graph A and (b)

OR relation - first graph B

(a) (b)

Figure. 11: (a) AND relation - first graph A and (b) AND

relation - first graph B

2. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.Q, wDAG B.Q) = 0.465

3. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.R, wDAG B.R) = 0.882

4. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.S, wDAG B.S) = 0.899

5. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.B, wDAG B.B) = 0.72

6. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.C, wDAG B.C) = 0.652

7. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.D, wDAG B.D) = 0.732

8. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.A, wDAG B.A) = 0.389

Hence, the similarity between wDAG A, B is

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝑤𝐷𝐴𝐺 𝐴, 𝐵)
 = 0.812 + 0.465 + 0.882 + 0.899 + 0.72 +

0.6 + 0.732 + 0.389 =
5.551

8
= 0.69 (5)

From another event log, we have first graph A and

graph B showed in Fig. 8 (a) and 8 (b), respectively.

Then we compared the first graphs with the second

(a) (b)

(c)

Figure. 12: (a) AND relation – graph A, (b) XOR

relation - graph B, and (c) OR relation – graph C

graph A and graph B with the same weight value

but with different order showed in Fig. 9 (a) and 9 (b).

Graphs in Fig. 8 (a) and 9 (a) are similar graphs

with the same nodes, relations, and weights. graph A

and graph B in Fig. 8 (a) and 8 (b) have the same

nodes and relations, the same weight value but in a

different order with a small difference value between

branches on both graphs. While graph A and graph B

in Fig. 9 (a) and 9 (b) have the same nodes and

relations, the same weight value but in a different

order with a large difference weight value. Fig. 10

and Fig. 11 has the same weights with Fig. 8 but the

relation of Fig. 10 is OR and the relation of Fig. 11 is

AND.

To test the reliability of the algorithm in

calculating similarity between graphs with different

relation, we used D-M-N-O-P-S graph with AND

relations in Fig. 7 and compared with other 2 graphs

with OR and XOR relations shown in Fig. 12. We

compared the similarity between graphs with the

existing methods: wDAG [18], WGED [13], TPED

[19], and cosine-TDP [19]. The results of the

similarity of each method are shown in Table 8.

Based on the test results in Table 8, all algorithms

give a true similarity value of 1 for graphs with the

same nodes, relations, and weight (Fig. 8 (a) and 9

(a)). wDAG algorithm [18] gives similarity value of

1 for all experiments. For experiment 1-5, wDAG

algorithm cannot distinguish weight between 2

graphs, both in graphs with the similar values of

weight (Fig. 8 (a) and Fig. 9 (a)) and graphs with the

Received: June 17, 2020. Revised: July 17, 2020. 365

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

Table 8. Similarity result of parallel relationships

same weight values but in a randomize order (Fig. 8

(a) – Fig. 8 (b), Fig. 9 (a) – Fig. 9 (b), Fig. 10 (a) –

Fig. 10 (b), and Fig. 11 (a) – Fig. 11 (b)). In

experiment 6-8 wDAG algorithm also gives

similarity value of 1, means that in these cases,

wDAG algorithm cannot distinguish similarity value

between AND – OR, OR – XOR, and AND - XOR

relations. wDAG algorithm only gives a different

similarity value if there are a different node between

2 graphs, but always give the same similarity value of

1 for graphs with the same nodes, although it has a

different weight values. WGED [13] also gives

similarity value of 1 for all experiments. Since it just

concerned in inserted/deleted nodes, WGED gives

the same similarity value for graphs with the same

nodes, although with the different weight values of

the branches. The next previous research, TPED [19],

gives the same similarity value of 0.813 to the first

graphs (Fig. 8 (a) and 8 (b)) and second graphs (Fig.

9 (a) and 9 (b)) although both have different values of

weight. TPED cannot distinguish weight between

nodes since it just only concerns on relations without

giving regards to the number of traces. It only

depends on the structure of the nodes, edges, and the

relation operator value, make it always provide the

same similarity value both on graphs with the same

relation or different relations if the structure of the

nodes and edges are same, even both have different

weight values. Cosine-TDP [19] can distinguish two

graphs with different values of weight by provide a

different similarity value on graph A, B in Fig. 8 and

graph A, B in Fig. 9. However, in Fig. 9, Cosine-TDP

gives a high similarity value of 0.766 or 76% similar

while the weights of both graphs is showing high

different. Proposed method gives a more accurate

calculation with the low similarity value, 0.327 or

33% similar. If we observe in row 3, 4, and 5 in Table

8, TPED and Cosine-TDP give different similarity

values between XOR-XOR, OR-OR, and AND-AND

relation although both graphs have the same nodes

and weights. While proposed method can ensure to

give the same similarity values on XOR-XOR, OR-

OR, and AND-AND relation between graphs with the

same nodes and weight values. For comparison

between graphs with different relations in

experiments 6-8, Cosine-TDP gives the highest

similarity value in AND-OR. Whereas in Fig. 12,

AND - XOR has the highest closeness since both

have the same weight values in all of the split-edges.

Proposed method proves that AND - XOR gives the

highest similarity value (0.985) compared to AND –

OR (0.948) and OR – XOR (0.937).

The proposed method (W-LTLDAG) calculates

similarity based on the occurrences probability of

relationships of activities. The more similar 2 graphs

are, the higher the similarity value they have. Since it

calculates the distance between weights of 2 branches

using standard deviation, makes it able to distinguish

2 graphs with the same weight values but in a

randomized order which cannot handled by wDAG

similarity algorithm [18]. W-LTLDAG not only

concern to insertion or deletion nodes, but also the

occurrence probability of activities so make it able to

distinguish graphs with the different weights that

cannot be handled by WGED [13] and TPED [19].

Finally, W-LTLDAG is very concerned about the

closeness of the occurences of activities between

graphs, so that it can ensure that graphs with adjacent

weight values will provide a higher similarity

Similarity

Existing Methods

W-LTLDAG
wDAG [18]

WGED

[13]
TPED [19] Cosine-TDP [19]

1. XOR relation (Fig. 8 (a))

and XOR relation (Fig. 9 (a))
1 1 1 1 1

2. XOR relation (Fig. 9 (a))

andXOR relation (Fig. 9 (b))
1 1 0.813 0.766 0,327

3. XOR relation (Fig. 8 (a))

and XOR relation (Fig. 8 (b))
1 1 0.813 0.999 0.976

4. OR relation (Fig. 10 (a))

andOR relation (Fig. 10 (b))
1 1 0.875 0.825 0.976

5. AND relation (Fig. 11 (a))

and AND relation (Fig. 11 (b))
1 1 0.938 0.691 0.976

6. AND relation (Fig. 12 (a))

and OR relation (Fig. 12 (c))
1 1 0.821 0.854 0.948

7. OR relation (Fig. 12 (c))

and XOR relation (Fig. 12 (b))
1 1 0.811 0.849 0.937

8. AND relation (Fig. 12 (a))

and XOR relation (Fig. 12 (b)) 1 1 0.78 0.712 0.985

Received: June 17, 2020. Revised: July 17, 2020. 366

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

compared to graphs with a large difference of weights

that cannot handled by Cosine-TDP [19].

5. Conclusion

The proposed algorithm for discovering a

Weighted-Linear Temporal Logic (W-LTL) tree

from a graph-based business process model is

implemented using Neo4j Graph Platform and

Python programming language. The case study

employed data from a complex retail business

process containing Sequence, XOR, AND, and OR

relations. The information from the retail business

process in the form of a graph database was

represented in a graph model using the Neo4j Graph

Platform. The relations from the graph model were

then processed using Python programming language

to discover W-LTL patterns. Each W-LTL pattern is

split into a partial W-LTL pattern containing

activities and symbols, which is used as the basis for

discovering the W-LTL tree model. Giving a weight

to the relations of the activities is expected to be

useful to obtain and solve various problems, such as

similarity calculation, anomaly detection, and fraud

detection.

The proposed similarity method (W-LTLDAG) is

compared with other existing methods: wDAG

algorithm, WGED, TPED, and Cosine-TDP. wDAG

algorithm only gives a different similarity value if

there are a different node between 2 graphs, but

always give the same similarity value of 1 for graphs

with the same nodes, although it has a different

weight values. Since it just concerned in inserted or

deleted nodes, WGED gives the same similarity value

for graphs with the same node, although with the

different weight values of the branches. TPED only

depends on the structure of the nodes, edges, and the

relation operator value, make it always provide the

same similarity value both on graphs with the same

relation or different relations if the structure of the

nodes and edges are same, even both have different

weight values. Cosine-TDP can distinguish graphs

with parallel relationships that have different weight

values, however proposed method gives more

accurate in calculating similarity since it gives a

lower similarity (0.327) between graphs with the

large difference of weight, and gives a high similarity

(0.976) on graphs with the small difference in weight.

While Cosine-TDP gives a very high similarity

(0.999) which is ≈ 1 although both graphs has

different weight values, and also gives a high enough

similarity (0.766) although both graphs have a large

difference in weight. W-LTLDAG is very concerned

about the closeness of the occurences of activities

between graphs, so that it can ensure that graphs with

adjacent weight values will provide a higher

similarity compared to graphs with a large difference

of weights that cannot handled by Cosine-TDP. For

future works, discovering W-LTL Tree and similarity

method that able to handle overlapping activities and

repetitive activities (looping) need to be developed.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Khairiyyah Nur Aisyah and Kelly R. Sungkono

contributed in the formulation of methods, the

implementation of algorithm, conduct of experiments,

and the formation of the paper. Riyanarto Sarno as

supervisors propose ideas of problems, supervised

problem ideas and proposed the novelty contribution

of the paper.

Acknowledgments

The authors would like to sincerely thank Institut

Teknologi Sepuluh Nopember, the Directorate

General of Higher Education, Indonesian Ministry of

Education and Culture, and LPDP through RISPRO

Invitation Program for funding the research.

References

[1] R. S. Aguilar-Savén, “Business process

modelling: Review and framework,”

International Journal of Production Economics,

Vol. 90, No. 2, pp. 129–149, 2004.

[2] R. Sarno, Y. A. Effendi, and F. Haryadita,

“Modified Time-Based Heuristics Miner for

Parallel Business Processes”, International

Review on Computers and Software, Vol. 11, No.

3, pp. 249, 2016.

[3] D. Rahmawati, M. A. Yaqin, and R. Sarno,

“Fraud detection on event logs of goods and

services procurement business process using

Heuristics Miner algorithm”, In: Proc. of 2016

International Conf. on Information and

Communication Technology and Systems (ICTS),

pp. 249–254, 2017.

[4] R. Sarno, R. D. Dewandono, T. Ahmad, M.

Naufal, and F. Sinaga, “Hybrid Association Rule

Learning and Process Mining for Fraud

Detection”, IAENG International Journal of

Computer Science, Vol. 42, No. 2, pp. 59-72,

2015.

[5] D. Huang, D. Mu, L. Yang, and X. Cai,

“CoDetect: Financial Fraud Detection with

Anomaly Feature Detection”, IEEE Access, Vol.

6, pp. 19161–19174, 2018.

Received: June 17, 2020. Revised: July 17, 2020. 367

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020 DOI: 10.22266/ijies2020.1031.32

[6] A. Sanaa, S. B. Abid, A. Boulila, C. Messaoud,

M. Boussaid, and N. B. Fadhel, “Modeling

hydrochory effects on the Tunisian island

populations of Pancratium maritimum L. using

colored Petri nets”, BioSystems, Vol. 129, pp.

19–24, 2015.

[7] R. Sarno and K. R. Sungkono, “Coupled Hidden

Markov Model for Process Discovery of Non-

Free Choice and Invisible Prime Tasks”,

Procedia Computer Science, Vol. 124, pp. 134–

141, 2017.

[8] K. Rabuzin and M. Šestak, “Towards

Inheritance in Graph Databases,” In: Proc. of

International Conf. on Information Management

and Processing (ICIMP), pp. 115–119, 2018.

[9] M. Weske, “Business Process Management:

Concepts, Languages, Architectures”, Berlin:

Springer, 2007.

[10] R. Sarno, B. A. Sanjoyo, I. Mukhlash, and H.

Maria, “Petri Net model of ERP business

process variation for Small and Medium

Enterprises”, Vol. 54, No. 1, pp. 31-38, 2013.

[11] A. Schoknecht, T. Thaler, P. Fettke, A.

Oberweis, and R. Laue, “Similarity of business

process models - A state-of-the-art analysis”,

ACM Computing Surveys, Vol. 50, No. 4, pp. 1–

33, 2017.

[12] J. Becker, P. Delfmann, H. A. Dietrich, M.

Steinhorst, and M. Eggert, “Business process

compliance checking – Applying and evaluating

a generic pattern matching approach for

conceptual models in the financial sector”,

Information Systems Frontiers, Vol. 18, No. 2,

pp. 359–405, 2016.

[13] C. Zhou, C. Liu, Q. Zeng, Z. Lin, and H. Duan,

“A Comprehensive Process Similarity Measure

Based on Models and Logs”, IEEE Access, Vol.

7, pp. 69257–69273, 2019.

[14] M. J. Amiri, S. Barbara, M. Koupaee, and S.

Barbara, “Data-driven Business Process

Similarity Data-driven Business Process

Similarity”, IET Software, Vol. 11, No. 6, 2017.

[15] R. Dijkman, M. Dumas, B. V. Dongen, R. Krik,

and J. Mendling, “Similarity of business process

models: Metrics and evaluation”, Information

Systems, Vol. 36, No. 2, pp. 498–516, 2011.

[16] B. van Dongen, R. Dijkman, and J. Mendling,

“Measuring Similarity between Business

Process Models”, In: Proc. of International Conf.

on Advanced Information Systems Engineering,

pp. 450–464, 2008.

[17] Z. Dong, L. Wen, H. Huang, and J. Wang, “CFS:

A behavioral similarity algorithm for process

models based on complete firing sequences”, In:

Proc. of OTM Conf, pp. 202–219, 2014.

[18] J. Jin, B. Virendra, K. P. Sushil, K. S. Biplap,

“Similarity of weighted directed acyclic graphs”,

University of New Brunswick, 2006.

[19] C. S. Wahyuni, K. R. Sungkono, and R. Sarno,

“Novel parallel business process similarity

methods based on weighted-tree declarative

pattern models”, International Journal of

Intelligent Engineering and Systems, Vol. 13,

No. 1, pp. 65-77, 2019.

[20] K. R. Sungkono and R. Sarno, “Constructing

control-flow patterns containing invisible task

and non-free choice based on declarative model”,

International Journal of Innovative Computing,

Information and Control, Vol. 14, No. 4, pp.

1285–1299, 2018.

[21] V. Huser, “Process Mining: Discovery,

Conformance and Enhancement of Business

Processes”, Journal of Biomedical Informatics,

Vol. 42, 2012.

[22] J. Joishi, A. Sureka, and N. Delhi, “Graph or

Relational Databases : A Speed Comparison for

process mining algorithm”, ArXiv, pp. 1–22,

2017.

[23] T. Savickas and O. Vasilecas, “Business process

event log use for activity sequence analysis”, In:

Proc. of 2015 Open Conf. of Electrical,

Electronic and Information Sciences (eStream),

pp. 1–4, 2015.

[24] R. Sarno, L. Yang, V. C. Bhavsar, and H. Boley,

“The AgentMatcher Architecture Applied to

Power Grid Transactions”, In: Proc. of the First

International Workshop on Knowledge Grid and

Grid Intelligence, Halifax, pp. 92-99, 2003.

[25] H. Lu, Z. Hong, and M. Shi, “Analysis of film

data based on Neo4j”, In: Proc. of 16th

IEEE/ACIS International Conf. on Computer

and Information Science, ICIS 2017, pp. 675–

677, 2017.

