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Abstract: A business process is a set of activities that needs to be considered in organizations or companies. Linear 

temporal logic (LTL) can models relationships of activities; however, the existing LTL does not consider occurrences 

probability of relationships of activities based on the event log. Weighted Linear Temporal Logic (W-LTL) extends 

the existing LTL by giving weights based on the occurrences probabilities. This paper proposes a new similarity 

method that combines Weighted-Linear Temporal Logic (W-LTL) Tree and Weighted Directed Acyclic Graph 

(wDAG) that modifies the original wDAG similarity, so it can distinguish the similarity value of two wDAGs that 

have two branches with opposite weight values. The proposed method (W-LTLDAG) will be verified by comparing 

with the original wDAG similarity, TPED, Cosine-TDP, and WGED. Based on the comparison, wDAG and WGED 

gives similarity value of 1 for all experiments, shows that both cannot distinguish weight between 2 graphs. TPED 

only concerns on relation without giving regards to the number of traces, Cosine-TDP and proposed method are able 

to distinguish parallel relations that have different occurrence probability of activity relations, but proposed method is 

proven to give a better calculation by giving a high similarity value, 0.976 for graphs with a small difference value of 

weights between branches, and low similarity value, 0.327 for graphs with a large difference value of weights between 

branches. 

Keywords: Business process management, Graph database, Linear temporal logic, Similarity method, Weighted 

directed acyclic graph. 

 

 

1. Introduction 

A business process is a set of activities in a 

company that describes their logical order and the 

dependences between activities to produce the 

desired results [1, 2]. For this purpose, process 

models are widely utilized, addressing various issues 

such as fraud [3, 4], economy [5], and environmental 

problems [6]. The construction of a process model 

makes analysing these processes more easy [7]. The 

information in a business process can be analysed 

through a graph database, which is have seen growing 

popularity over the last few years [8]. Information 

inside a graph database can be represented in the form 

of a process model. Business process models can be 

represented in various ways, using for example 

BPMN, Petri net, or a graph [9, 10]. Nowadays, 

organizations or companies need to process hundreds 

or even thousands of process models in its repository. 

Organizing these repositories requires an efficient 

and effective methods to facilitate the business 

process analysis [11]. Doing a manual check on 

hundreds of business process models requires an 

enormous of effort and results in high costs [12]. 

Several techniques can be used for the reconstruction 

of the business processes quickly, such as process 

recommendation, process clustering, and process 

query which are all based on the business process 

similarity [13]. Calculation of similarity on process 

models being an important thing to do in business 

process management such as preventing duplication 

[14], reduce costs in expanding business [15], 

identified processes that no longer comply with the 

company [16], model repository management [17], 

and many more. 

As mentioned above, many similarity 

measurements of business processes have been 
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developed in recent years. Previous research [18] 

proposed a weighted DAG (wDAG) similarity 

algorithm for match-making in e-Business 

environments. The wDAG similarity algorithm 

compared the similarity calculation between 2 arc-

weighted DAGs. [19] proposed Tree Declarative 

Pattern Edit Distance (TPED) and Cosine-Tree 

Declarative Pattern Similarity (Cosine-TDP). TPED 

is a modification of Graph Edit Distance (GED) [15] 

to measure a structural similarity, while Cosine-TDP 

is a modification of an original cosine to measure a 

behavioural similarity. Another previous work 

named Weighted Graph Edit Distance (WGED) [13] 

aimed to calculate minimal costs of transforming a 

graph to the other. The transformation is based on 

node substitution, node insertion/deletion, and edge 

insertion/deletion. However, most of previous 

reseraches are not paying attention in distinguish 

different parallel relations or same parallel relations 

that have different occurrence probability of activity 

relations.  

This paper proposed a new similarity method 

based on Weighted-Linear Temporal Logic (W-LTL) 

Tree and Weighted Directed Acyclic Graph (wDAG). 

A previous research [20] developed a tree model 

based on linear temporal logic (LTL) patterns from 

an ordinary graph database without weight value. In 

this study, a weight is given to the tree on each 

relation between activities. The weights are obtained 

based on the probability of the occurrence of 

activities with the number of its incoming or outgoing 

activities. The major contributions of this paper are 

as follows: 

1) Proposed an algorithm to discover Weighted-

Linear Temporal Logic (W-LTL) Tree patterns 

from an original event log.  

2) Extends the existing LTL by giving weights 

based on the occurrences probability of 

relationships of activities based on the event log. 

3) Proposed a new similarity method based on 

Weighted-Linear Temporal Logic (W-LTL) 

Tree and Weighted Directed Acyclic Graph 

(wDAG) that able to distinguish different 

parallel relations or same parallel relations that 

have different occurrence probability of activity 

relations. 

The proposed similarity method then will be 

compared with the existing similarity methods, i.e. 

wDAG algorithm, Tree Declarative Pattern Edit 

Distance (TPED), Cosine-Tree Declarative Pattern 

(Cosine-TDP), and Weighted Graph Edit Distance 

(WGED). Each method will be used to calculate 

similarity between graphs with parallel relations, 

XOR, OR, and AND. Similarity between graphs with 

the same relation but in different weights is also 

compared. 

This rest of this research consists of several 

sections: Section 2 presents the basic concepts which 

underlie this research. The proposed method is 

discussed in Section 3. The experiment results will be 

discussed in Section 4, and the conclusion is 

presented in Section 5. 

2. Research method 

2.1 Parallel relationship of process model 

A great process model is a process model that has 

no redundant activity and the behaviour of its 

activities is clearly visible. Both of them can be 

applied with control flow patterns and concurrency. 

Control- flow patterns are used to build relations 

between activities, i.e. Sequence, XOR, AND, and 

OR [21]. Sequence is a relation that connects one 

activity to another. XOR occurs when an activity in 

the process model has branches and only one activity 

is executed. The OR relation is used when an activity 

has branches and several branches must be executed. 

AND is a relation that is used when an activity has 

several branches and all branches must be executed. 

If the chosen activity in XOR, OR and AND relations 

is the previous activity of the other activities, then 

‘Split’ will be given in the control- flow pattern of the 

relation. If the chosen activity in the XOR, OR and 

AND relations is the next activity of the other 

activities, then ‘Join’ will be given in the control-flow 

pattern of the relation [21]. 

Examples of Sequence, XOR, OR, and AND 

relations are shown in Fig. 1. The first column of Fig. 

1 describes the relationships between activities, the 

second column describes the log, while the third 

column represents the form of the graph model. 

2.2 Graph model 

A graph model is a database that consists of a 

state of graphs [22]. Graph model is a representation 

of the graph database that already contains one or 

several relations such as Sequence, XOR, OR, or 

AND. Graph models are used to solve problems that 

cannot be handled using tabular databases, such as 

data that have too many relationships. Handling data 

with a large number of relations requires complex 

SQL queries. Graph formation makes it easier for 

users to see the structure of the relations between 

activities in a process model. There are multiple 

places in information systems where data about 

process execution can be stored, i.e. system logs, 

databases, text files, and many more [23]. A graph  
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Figure. 1 Process discovery 

 

 
Figure. 2 Example of graph model 

 

model has two components, namely nodes and arcs. 

Nodes are points that contain information about name 

of the activity, while arcs are lines that show the 

relationships between nodes. In the graph model of 

Fig. 2, Symbols A until D are nodes, while next 

relations are arcs. 

2.3 Linear temporal logic tree model 

Linear temporal logic (LTL) is a formal language 

that describes several temporal logics that refer to 

time [20]. Meanwhile, LTL tree model is a 

representation of a business process that is discovered 

based on patterns in linear temporal logic. A previous 

research [20] discovered control-flow patterns based 

on a declarative model. Each discovered linear 

temporal logic pattern is split into activities and 

symbols that are used in discovering the LTL tree. 

The form of the resulting Linear Temporal Logic 

patterns based on [20] is shown in Table 1. The first 

column describe the relationships between activities, 

meanwhile the second column shows the form of the 

relation in LTL. 
 

Table 1. LTL patterns 

2.4 Weighted-linear temporal logic (W-LTL) 

Each relation between activities in the Linear 

Temporal Logic patterns is given a weight value. The 

value is obtained from the occurrence frequency of a 

sequence of activities in the process model. In 

Weighted-Linear Temporal Logic (W-LTL) model, 

‘p’ is added to represent the weight value of the 

relation between two activities. 

2.5 Similarity calculation using weighted Directed 

acyclic graph (wDAG) 

Several previous research proposed a similarity 

calculation based on weight, for example 

AgentMatcher [24] and weighted Directed Acyclic 

Graphs (wDAG) [18]. Generally speaking, the 

wDAG similarity algorithm is used to traverse the 

two wDAGs (𝑎 and 𝑎′) with a depth-first strategy. It 

calculates their similarity bottom-up [18]. The basis 

of the recursion is that if two nodes (𝑛 and 𝑛′) are leaf 

nodes and they are identical, then the similarity is 1.0. 

Otherwise, the similarity is 0.0. The similarity 

calculation between non-leaf nodes is done by 

summing all similarity values of their sub-wDAGs 

and then multiplying the result by the average value 

of their arc weights. The result of the similarity is in 

the interval [0,1].  Generally speaking, the calculation 

of similarity of wDAG is shown in Eq. (1). 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎, 𝑎′)  is similarity of 2 wDAGs 𝑎 and 𝑎′ 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖, 𝑎𝑗): Intermediate similarity of 𝑖𝑡ℎand 

𝑗𝑡ℎ sub-wDAGs. 

𝑤𝑖 and 𝑤′
𝑗: Arc weights of the 𝑖𝑡ℎand 𝑗𝑡ℎ of the root 

node. 

∈ means an empty wDAG, 𝑖 is increase from 1 to the 

breadth of a, and 𝑗 is increase from 1 to the breadth 

of a’. 

In some cases, Eq. (1) cannot distinguish the 

similarity value of two wDAGs that have two 

branches with opposite weight values. For example, 

there are 2 wDAGs, A and B, with opposite values of 

their branches, as shown as Fig. 3. Using Eq. (1), the 

similarity value of wDAG A and wDAG B of Fig. 3. 

is shown as below: 

Relation Pattern 

Sequence  LTL : act - > O (y) 

   AND Split  LTL : act - > <> ( (  y1 /\ y2 … /\ yn ) ) 

AND Join  LTL : <> ( ( y1 /\ y2 … /\ yn ) ) - > O (act) 

XOR Split  LTL : act - > O ( ( y1 \/ y2 … \/ yn ) ) 

XOR Join   LTL : O ( ( y1 \/ y2 … \/ yn ) ) - > O (act) 

OR Split  LTL : act - > <> ( ( y1 \/ y2 … \/ yn ) ) 

OR Join LTL : <> ( ( y1 \/ y2 … \/ yn ) ) - > O (act) 
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Figure. 3 wDAG A and wDAG B 

 

 
Figure. 4 wDAG A and wDAG C 

 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎, 𝑎′) =                                       
0.0, the root node labels of
 a and a′ are not  identical
1.0, a and a′are leaf nodes   

∑

{
 
 
 
 

 
 
 
 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖 , 𝑎𝑗).

𝑤𝑖+𝑤
′
𝑗

2
,

ai and a
′
j not missing 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖 , ∈).
𝑤𝑖+0

2
,

ai is missing in a
′ 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(∈, 𝑎′𝑗).
0+𝑤′

𝑗

2
,

a′j is missing in a 

∑ 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(∈, 𝑎′𝑗).
0+𝑤′𝑗

2
,

𝑏𝑟𝑒𝑎𝑑𝑡ℎ
𝑜𝑓𝑎
′

𝑗=1

a is a leaf node

∑ 𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝑎𝑖, ∈).
𝑤𝑖+0

2

𝑏𝑟𝑒𝑎𝑑𝑡ℎ𝑜𝑓𝑎
𝑖=1

,

a′ is a leaf node

         (1) 

 

𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1,𝐵. 𝐷𝐴𝐺1) 

     = (
0.6 + 0.4

2
) × 1.0 + (

0.4 + 0.6

2
) × 1.0 = 1       

 

In another case, two wDAGs A and C have the same 

branches with the same weight values, as shown in 

Fig. 4. The similarity of wDAG A and wDAG C of 

Fig. 4 is: 
 

  𝑤𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1, 𝐶. 𝐷𝐴𝐺1)                         

     = (
0.6 + 0.6

2
) × 1.0 + (

0.4 + 0.4

2
) × 1.0 = 1 

 

Using Eq. (1), the similarity between wDAG A, B 

and wDAG A,C are same. To distinguish between the 

similarity of two wDAGs with two branches that have 

opposite weight values, a new similarity method is 

needed, which will be explained in the next section. 

3. Proposed method 

This section presents an algorithm to discover the 

W-LTL tree of a graph-based business process model 

and the new similarity method based on W-LTL Tree 

and wDAG. The first step in discovering the W-LTL 

tree is to convert the information from the execution 

process in the graph database into a graph model. The 

relations between the activities are used to discover 

W-LTL patterns. Each component in the W-LTL 

patterns is used to discover the W-LTL tree model. In 

this study, LTL is used because it uses text so that it 

requires less storage than other process models. 

Whereas W-LTL is applied so that it can be used in 

calculating similarity. In this study, the data used 

always begin and end with a single event, no 

overlapping activities, and no repetitive activities 

(looping). 

3.1 Discovering a graph model based on a graph 

database 

The data from the execution of a retail business 

process are stored in a graph database in .csv format. 

The first step is to convert the information in the 

graph database to a graph model. First, the .csv file is 

imported into Neo4j Graph Platform. Neo4j is a 

network-oriented database that stores data structured 

in networks rather than tables [25]. The basic data 

model in Neo4j consists of nodes, relations, and 

attributes. Nodes are similar to object instances and 

are connected by various relationships. The relations 

used in this research are Sequence, XOR, OR, and 

AND relation.  

All the information of each Case Id in the graph 

database will be merged as an activity. In this step, all 

activities that have been discovered in the previous 

step are merged as case activities. After the case 

activities have been discovered, the next step is to 

specify the relations between the activities. The 

notation ‘Split’ will be added to activities that have 

branches, while the notation ‘Join’ indicates activities 

that were split previously. The Sequence relation is 

used if the number of outgoing values from an 

activity is 1. The AND Split relation is used if there 

is more than 1 outgoing value from an activity and all 

branches are executed. AND Join is used to reunite 

branches in AND Split relations. XOR Split relations 

are formed if there is more than 1 outgoing value 

from an activity and only 1 branch is executed. XOR 

Join is used to reunite branches in XOR Split 

relations. OR Split is a relationship that is formed if 

an activity has 2 or more outgoing values and only 

some branches are executed. OR Join is used to 

reunite branches in OR Split relations. The nodes and 

relations formed from the graph model are exported 
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in the form of a .csv file. This file is then used in 

discovering the W-LTL patterns, which will be 

explained in the next section. 

3.2 Discovering weighted-linear temporal logic 

(W-LTL) patterns from a graph model 

To discover W-LTL patterns, two types of .csv 

files are needed. The first .csv file contains the nodes 

and relations that were exported in the previous step. 

The second file only contains the sequence relations 

between the nodes, which will be used in calculating 

the weight of each relation of the nodes. The two files 

are processed using the Python programming 

language to discover the W-LTL patterns. A step that 

needs to be done first is to calculate the weight of the 

relations of the nodes. The weight is obtained based 

on the probability of occurrence of an activity 

sequence. The calculation of the weight is done in 

two ways. The first pays attention to the outgoing 

value of an activity, while the second pays attention 

to the incoming value of the activity. The outgoing 

value is used in calculating the weight of Sequence or 

Split relations, while the incoming value is used in 

calculating the weight of Join relations. An example 

of calculating the weight of a relation between 

activities is shown in Table 2.  

Hence, before discovering W-LTL, the symbols 

used in Table 2 that are not registered in ASCII are 

converted to ASCII symbols. The converted symbols 

are shown in Table 3. The symbols in the second 

column are the original symbols. All the symbols in 

column 2 are converted to symbols in column 3. 

The weight values for each sequence relation of 

the activities are then used for discovering the W-

LTL patterns. The symbols used in discovering the 

W-LTL patterns are registered in ASCII (American 

Standard Code for Information Interchange), an 

international standard for writing letters and symbols. 

The .csv file that contains the nodes and their 

relations that have been exported in the previous step 

is then used for discovering the W-LTL patterns. 

Each data in that file will be converted to Weighted-

Linear Temporal Logic. The algorithm used to 

discover the W-LTL patterns is shown in Table 4. 

The relations discovered in this W-LTL are NEXT, 

XORSPLIT, XORJOIN, ORSPLIT, ORJOIN, 

ANDSPLIT, and ANDJOIN. For example, act A -> 

_O (act Bp = 1) means B is the next activity of A with 

“NEXT” relation and weight of A-B is 1. act A - > 

_O ((act Bp= weightA, B \/ … \/ act np= weightA, n)) 

means B until n are outgoing activities of A, with Bp= 

weightA, B means the weight value of activity A-B is 

weightA, B and np= weightA, n means the weight 

value of activity A-n is weightA, n. The complexity  

Table 2. Example of calculating weight 
Relation Trace Weight 

Sequence ABCD -5x Target : A-B = 5 

Weight of A-B = 
5

5
= 1 

Split ABCD-3x   

ACBD-2x 

ADBC-4x 

Target : A-B = 3 

outgoing A = (3+2+4) = 9 

weight A-B 
3

9
= 0.33 

Join ABCD-3x 

ACBD-2x 

ADBC-4x 

Target : C-D = 3 

Incoming D = (3+2) = 5 

Weight C-D = 
3

5
= 0.6          

 
Table 3. Conversion of symbols to ASCII 

No Symbol Converted Symbol 

1. <> < > 

2. ∧ / \ 

3. ∨ \ / 

4. O _O 

 

of the algorithm to discover W-LTL is O(n3). The 

general form of the W-LTL patterns is shown in 

Table 5. y1, y2, …, yn are the names of the activities, 

while the notation p = ... represents the weight of the 

relations between activities. 

3.3 Discovering weighted-linear temporal logic 

(W-LTL) tree 

After the W-LTL patterns have been discovered, 

the next step is copying the discovered W-LTL 

patterns to a .txt file adding Firstactivity (Name First 

Activity) and Lastactivity (Name Last Activity) at the 

top of the W-LTL patterns. The format of the wiring 

weight is changed by adding /\ between the name of 

the activity and the weight value. The first step in 

discovering the W-LTL tree model is choosing the 

first W-LTL pattern. This is the W-LTL pattern with 

the activity that is found in FirstActivity (activity). 

This pattern splits into several symbols and activities. 

For example, Login -> O ((Open discount \/ Open 

items data)) can be split as Part LTL = [ Login, ->, O, 

((Open discount, \/, Open items data))]. This part of 

the W-LTL pattern is then used in discovering the W-

LTL tree.  

The algorithm will check every part of the W-

LTL pattern. An open parenthesis is used to make a 

sub-node and a closing parenthesis is used to return 

to the main node. ‘x’ symbol on tree describes XOR 

relations, ‘/\’ for AND relations, ‘\/’ for OR relations, 

and ‘->’ for Sequence relations. The weight value is 

placed after the name of the activity added with the 

relation /\. Suppose the probability of the sequence of 

activities A to B is 0.5, then the name of the node in 

the tree model is B /\𝑝 = 0.5.  
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Table 4. Algorithm to discover weighted-linear temporal 

logic (W-LTL) patterns 

Algorithm 2: Algorithm to discover Weighted-Linear 

Temporal Logic (W-LTL) patterns  

  input   : 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 = data in .csv file with all relations, 

𝑙𝑖𝑠𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒= list of weight values of sequence relation, 

𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ = 𝑑𝑎𝑡𝑎𝑠𝑒𝑡. 
  output : W-LTL patterns   

  

1   foreach 𝑑𝑎𝑡𝑎 in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

2 if the relation of data == ”NEXT” then  

3     print  act A -> _O ( act Bp = 1 ) 

  

4 if the relation of data == ”XORSPLIT” then  

5      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

6            𝑙𝑖𝑠𝑡𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡  = all of XORSPLIT relation    

           with outgoing act of data == outgoing act   

           of 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ 

7           foreach data in 𝑙𝑖𝑠𝑡_𝑥𝑜𝑟𝑠𝑝𝑙𝑖𝑡 do 

8                print act A - > _O ( ( act Bp=   

               weightA,B \/ … \/ act np= weightA,n) ) 

  

9 if the relation of data == ”XORJOIN” then  

10      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

11           𝑙𝑖𝑠𝑡𝑥𝑜𝑟𝑗𝑜𝑖𝑛 = all of XORJOIN relation with  

          incoming act of data == incoming act of     

            𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ 

12           foreach data in 𝑙𝑖𝑠𝑡_𝑥𝑜𝑟𝑗𝑜𝑖𝑛 do 

13                 print _O ( ( act Ap = weightA,B \/ ... \/  

                act np= weightn,B ) ) -> _O ( act B )  

  

14 if the relation of data == ”ANDSPLIT” then  

15      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

16           𝑙𝑖𝑠𝑡𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡  = all of ANDSPLIT relation   

          with outgoing act of data == outgoing act   

          of 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ  

17           foreach data in 𝑙𝑖𝑠𝑡_𝑎𝑛𝑑𝑠𝑝𝑙𝑖𝑡 do 

18                print act A - > < > ( ( act Bp =        

               weightA,B /\ … /\ act np= weightA,n ) ) 

  

19 if the relation of data == ”ANDJOIN” then  

20      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

21      𝑙𝑖𝑠𝑡𝑎𝑛𝑑𝑗𝑜𝑖𝑛 = all of ANDJOIN relation with  

     incoming act of data == incoming act of  

      𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ 

22           foreach data in 𝑙𝑖𝑠𝑡_𝑎𝑛𝑑𝑗𝑜𝑖𝑛 do 

23           print <> ( ( act Ap = weightA,B /\ ... /\     

          act np= weightn,B ) ) -> _O ( act B )  

  

24 if the relation of data == ”ORSPLIT” then  

25      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

26           𝑙𝑖𝑠𝑡𝑜𝑟𝑠𝑝𝑙𝑖𝑡 = all of ORSPLIT relation with  

          outgoing act of data == outgoing act of   

           𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ 

27           foreach data in 𝑙𝑖𝑠𝑡_𝑜𝑟𝑠𝑝𝑙𝑖𝑡 do 

28                print act A - > <> ( ( act Bp=    

               weightA,B \/ .. \/ act np= weightA,n ) ) 

  

29 if the relation of data == ”ORJOIN” then  

30      foreach 𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ in 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 do 

31           𝑙𝑖𝑠𝑡𝑜𝑟𝑗𝑜𝑖𝑛= all of ORJOIN relation with  

          incoming act of data == incoming act of  

           𝑑𝑎𝑡𝑎𝑠𝑒𝑎𝑟𝑐ℎ 

32           foreach data in 𝑙𝑖𝑠𝑡_𝑜𝑟𝑗𝑜𝑖𝑛 do 

33                print <> ( ( act Ap = weightA,B \/ ... \/     

               act np= weightn,B) ) -> _O ( act B  )  

34 end 
 

 

Table 5. Form of weighted-linear temporal logic 

(W-LTL) 

Pattern Weighted-Linear Temporal Logic 

Sequence act -> _O ( yp = ... ) 

AND 

Split 

act -> < > ( ( y1p = ... /\ y2p = ... /\ ynp = ... ) ) 

AND 

Join 

< > ( ( y1p =... /\ y2p =... /\ ynp =... ) ) -> _O   (act) 

XOR 

Split 

act -> _O ( ( y1p = ... \/ y2p = ... \/ ynp = .. ) ) 

XOR 

Join 

_O ( ( y1p =… \/  y2p =… \/ ynp =… ) ) -> O (act) 

OR Split act -> < > ( ( y1p = ... \/ y2p = ... \/ ynp = ... ) ) 

OR Join < > ( ( y1p = … \/ y2p =… \/ ynp = … ) ) -> _O 

(act) 

3.4 Weighted linear temporal logic tree and 

weighted directed acyclic graph (W-LTLDAG) 

similarity calculation 

The original wDAG similarity [18] cannot 

distinguish the similarity value of two wDAGs that 

have two branches with opposite weight values, as 

explained in Section 2.5. This new similarity method 

based on Weighted Linear Temporal Logic tree and 

Weighted Directed Acyclic Graph (W-LTLDAG) 

proposed a modified wDAG similarity calculation 

that able to distinguish different parallel relations or 

same parallel relations that have different occurrence 

probability of activity relations. The general steps of 

calculating similarity between 2 wDAGs using W-

LTLDAG similarity are shown as below: 

1. Deternining the parallel relations between 2 

wDAGs, e.g. AND – AND, AND – OR, etc. 

2. Calculate the distance of the weights 

between each branch of the two wDAGs 

using standard deviation formula as shown in 

Eq. (2).  

 

   𝑆𝐷 = |1 − √
∑  𝑛
𝑖=1 (𝑥𝑖−�̅�)

2

𝑛−1
 |                    (2) 
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  𝑛 is the number of branch of wDAG, 𝑥𝑖 is 

the weight value of branch 𝑖 , and �̅�  is the 

mean of the weight values between 2 

branches of 2 wDAGs. 

3. The calculation of the distance will be done 

on each branch between 2 wDAGs. It 

calculates the distance bottom-up. 

4. After all the distance of each branches of 2 

wDAGs have been calculated, the average of 

distance values of all branches is calculated 

as a final similarity value between 2 wDAGs. 

 

For example, Fig. 3 has 2 wDAGs, A and B, with 

2 branches, b and c. The weight values of the 

branches of wDAG A, B in Fig. 3 are inverse, while 

Fig. 4 has wDAGs, A and C, with 2 branches, b and 

c, with the same value of weights. Using W-

LTLDAG similarity, the first wDAG A, B in Fig. 3 

and the second wDAG A, C in Fig. 4 will have 

different similarity values. The similarity values of 

wDAGs in Fig. 3 and Fig. 4 are shown as below: 

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1,𝐵. 𝐷𝐴𝐺1) = 

1 − √
(0.6 − 0.4)2 + (0.4 − 0.6)2

2 − 1
+ 

√
(0.4−0.6)2+(0.6−0.4)2

2−1
 = 0.84               (3) 

 

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝐴. 𝐷𝐴𝐺1, 𝐶. 𝐷𝐴𝐺1) = 

1 − √
(0.6 − 0.6)2 + (0.4 − 0.4)2

2 − 1
+ 

√
(0.4−0.4)2+(0.6−0.6)2

2−1
= 1                      (4) 

4. Results and analysis 

The dataset used in this study was obtained from 

retail companies with 5000 cases and 700 traces. The 

execution processes of the retail business process 

were stored in a graph database. The start activity is 

user login and the end of activity is logout. The 

information contained in the graph database is case id, 

activity, user id, company id, value, division id, 

created at, and updated at.  

This section shows the discovered graph model, 

the W-LTL model, the W-LTL tree model based on 

the experiment. The discovered W-LTL tree model 

will be converted into wDAG model and compared 

with another wDAG using W-LTLDAG similarity 

calculation. 

 

4.1 Discovering graph model based on graph 

database 

Graph model discovered from the retail graph 

database is shown in Fig. 5. A to T symbols on Fig. 5 

refers to user login, open selling, open discount, open 

purchase, choose item, choose payment method, 

choose customer type, set amount of discount, set 

discount type, set discount end time, set discount 

name, set discount start time, choose supplier, input 

expedition price, buy items, choose expedition, sell 

item, finish discount, finish transaction, and logout.  

The name of the nodes and the relations between 

the activities are exported to a .csv file. The .csv file 

is then imported into Anaconda platform for 

discovering W-LTL patterns. An example of a .csv 

file exported from Neo4j Graph Platform is shown in 

Table 6. Besides that, a graph model that only 

contains sequence relations is also built in Neo4j. The 

nodes and their relations are exported to a .csv file. 

This sequence relation file is then used to calculate 

the weight of each sequence of activities.  

 

 
Figure. 5 Graph model based on graph database 

 
Table 6. Snippet of .csv file with all exported from neo4j 

1 user login, XORSPLIT, open discount 

2 open discount, ANDSPLIT, set discount end time 

3 open discount, ANDSPLIT, set discount name 

4 open discount, ANDSPLIT, set discount type 

5 open discount, ANDSPLIT, set discount start time 

6 open discount, ANDSPLIT, set amount of 

discount 

7 set discount start time, ANDJOIN, finish discount 

8 set discount end time, ANDJOIN, finish discount 

9 set discount name, ANDJOIN, finish discount 

10 set discount type, ANDJOIN, finish discount 
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Table 7. Discovered weighted linear temporal logic (W-

LTL) 

4.2 Discovering weighted-linear temporal logic 

(W-LTL) patterns from graph model 

Both .csv files exported from Neo4j are then 

imported into Anaconda platform. The .csv file with 

only sequence relations is used to calculate the 

weights, while the .csv file with Sequence, AND, 

XOR, and OR relations is used to discover the W-

LTL patterns. The discovered W-LTL patterns are 

shown in Table 7. 

4.3 Discovering weighted-linear temporal logic 

(W-LTL) tree from W-LTL 

Data from W-LTL patterns are copied into a .txt 

file. Firstactivity (Name First Activity) and 

Lastactivity (Name Last Activity) are added at the top 

of the W-LTL patterns. The format of the wiring 

weight is changed by adding /\ before the weight 

value. For example, from finish transaction -> _O 

(logout p = 1.0) to finish transaction -> _O (logout/\p 

= 1.0). Import the .txt file into the Anaconda platform 

to convert it into a W-LTL tree using the Python 

programming language. Each W-LTL pattern is split 

into symbols and activities. The W-LTL tree is shown 

in Fig. 6.  

The discovered W-LTL tree then converted into 

wDAG A as shown in Fig. 7 (a) and will be compared 

with wDAG B as shown in Fig. 7 (b). Relation of 

each branches of both wDAGs can be shown in Fig.  

 
Figure. 6 The discovered W-LTL tree 

 

(a)                                           (b) 

Figure. 7: (a) wDAG A and (b) wDAG B 

 

 
(a) (b) 

Figure. 8: (a) XOR relation - first graph A and (b) XOR 

relation - first graph B 

 

5. Using W-LTLDAG similarity as describes in 

Section 3.4, the similarity of both wDAGs is shown 

as below: 

1. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (wDAG A.T, wDAG B.T) = 0.812 

1 user login -> _O ( ( open discount ᴾ₌₀.₀₃₇ \/ open 

selling ᴾ₌₀.₈₅₂ \/ open purchasing ᴾ₌₀.₁₁₁ ) ) 
2 open discount -> <> ( ( set discount end time ᴾ₌₀.₃₄₆ 

/\ set discount name ᴾ₌₀.₁₉₂ /\ set discount type ᴾ₌₀.₁₅₄ 

/\ set discount start time ᴾ₌₀.₁₅₄ /\ set amount of 

discount ᴾ₌₀.₁₅₄ ) ) 

3 <> ( ( set discount start time ᴾ₌₀.₃₈₅ /\ set discount end 

time ᴾ₌₀.₁₅₄ /\ set discount name ᴾ₌₀.₀₃₈ /\ set discount 

type ᴾ₌₀.₁₅₄ /\ set amount of discount ᴾ₌₀.₂₆₉ ) ) -> _O 

( finish discount ) 

4 open selling -> <> ( ( choose item ᴾ₌₀.₀₃₂ /\ choose 

payment type ᴾ₌₀.₀₁₅ /\ choose customer type ᴾ₌₀.₉₅₃ ) ) 

5 <> ( ( choose customer type ᴾ₌₀.₀₃₂ /\ choose payment 

type ᴾ₌₀.₀₅₀ /\ choose item ᴾ₌₀.₉₁₈ ) ) -> _O ( sell item ) 
6 open purchasing -> <> ( ( choose supplier ᴾ₌₀.₂₁₈ 

/\ choose expedition ᴾ₌₀.₂₃₁ /\ buy items ᴾ₌₀.₂₆₉ /\ input 

expedition price ᴾ₌₀.₂₈₂ ) ) 

7 <> ( ( choose expedition P ₌₀.₂₁₈ /\ choose supplier P ₌₀.₃₃₃ 

/\ input expedition price ᴾ₌₀.₂₆₉ /\ buy items ᴾ₌₀.₁₇₉ ) ) -

> _O ( finish transaction ) 

8 _O ( ( finish discount ᴾ₌₀.₀₃₇ \/ sell item ᴾ₌₀.₈₅₂ \/ finish 

transaction ᴾ₌₀.₁₁₁ ) ) -> _O ( logout ) 
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(a)                                    (b) 

Figure. 9: (a) XOR relation - second graph A and (b) 

XOR relation - second graph B 
 

 
(a)                                   (b) 

Figure. 10: (a) OR relation - first graph A and (b) 

OR relation - first graph B 
 

 
(a) (b) 

Figure. 11: (a) AND relation - first graph A and (b) AND 

relation - first graph B 

 

2. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.Q, wDAG B.Q) = 0.465 

3. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.R, wDAG B.R) = 0.882 

4. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.S, wDAG B.S) = 0.899 

5. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.B, wDAG B.B) = 0.72 

6. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.C, wDAG B.C) = 0.652 

7. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.D, wDAG B.D) = 0.732 

8. 𝑆𝐷𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (wDAG A.A, wDAG B.A) = 0.389 

 

Hence, the similarity between wDAG A, B is 

 

𝑊 − 𝐿𝑇𝐿𝐷𝐴𝐺𝑠𝑖𝑚(𝑤𝐷𝐴𝐺 𝐴, 𝐵) 
     = 0.812 + 0.465 + 0.882 + 0.899 + 0.72 +

0.6 + 0.732 + 0.389 =
5.551

8
= 0.69      (5) 

 

From another event log, we have first graph A and 

graph B showed in Fig. 8 (a) and 8 (b), respectively. 

Then we compared the first graphs with the second  

(a)                                          (b) 

 

 
(c) 

Figure. 12: (a) AND relation – graph A, (b) XOR 

relation - graph B, and (c) OR relation – graph C 

 

graph A and graph B with the same weight value 

but with different order showed in Fig. 9 (a) and 9 (b). 

Graphs in Fig. 8 (a) and 9 (a) are similar graphs 

with the same nodes, relations, and weights. graph A 

and graph B in Fig. 8 (a) and 8 (b) have the same 

nodes and relations, the same weight value but in a 

different order with a small difference value between 

branches on both graphs. While graph A and graph B 

in Fig. 9 (a) and 9 (b) have the same nodes and 

relations, the same weight value but in a different 

order with a large difference weight value. Fig. 10 

and Fig. 11 has the same weights with Fig. 8 but the 

relation of Fig. 10 is OR and the relation of Fig. 11 is 

AND. 

To test the reliability of the algorithm in 

calculating similarity between graphs with different 

relation, we used D-M-N-O-P-S graph with AND 

relations in Fig. 7 and compared with other 2 graphs 

with OR and XOR relations shown in Fig. 12. We 

compared the similarity between graphs with the 

existing methods: wDAG [18], WGED [13], TPED 

[19], and cosine-TDP [19]. The results of the 

similarity of each method are shown in Table 8. 

Based on the test results in Table 8, all algorithms 

give a true similarity value of 1 for graphs with the 

same nodes, relations, and weight (Fig. 8 (a) and 9 

(a)). wDAG algorithm [18] gives similarity value of 

1 for all experiments. For experiment 1-5, wDAG 

algorithm cannot distinguish weight between 2 

graphs, both in graphs with the similar values of 

weight (Fig. 8 (a) and Fig. 9 (a)) and graphs with the  
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Table 8. Similarity result of parallel relationships 

 

same weight values but in a randomize order (Fig. 8 

(a) – Fig. 8 (b), Fig. 9 (a) – Fig. 9 (b), Fig. 10 (a) – 

Fig. 10 (b), and Fig. 11 (a) – Fig. 11 (b)). In 

experiment 6-8 wDAG algorithm also gives 

similarity value of 1, means that in these cases, 

wDAG algorithm cannot distinguish similarity value 

between AND – OR, OR – XOR, and AND - XOR 

relations. wDAG algorithm only gives a different 

similarity value if there are a different node between 

2 graphs, but always give the same similarity value of 

1 for graphs with the same nodes, although it has a 

different weight values. WGED [13] also gives 

similarity value of 1 for all experiments. Since it just 

concerned in inserted/deleted nodes, WGED gives 

the same similarity value for graphs with the same 

nodes, although with the different weight values of 

the branches. The next previous research, TPED [19], 

gives the same similarity value of 0.813 to the first 

graphs (Fig. 8 (a) and 8 (b)) and second graphs (Fig. 

9 (a) and 9 (b)) although both have different values of 

weight. TPED cannot distinguish weight between 

nodes since it just only concerns on relations without 

giving regards to the number of traces. It only 

depends on the structure of the nodes, edges, and the 

relation operator value, make it always provide the 

same similarity value both on graphs with the same 

relation or different relations if the structure of the 

nodes and edges are same, even both have different 

weight values. Cosine-TDP [19] can distinguish two 

graphs with different values of weight by provide a 

different similarity value on graph A, B in Fig. 8 and 

graph A, B in Fig. 9. However, in Fig. 9, Cosine-TDP 

gives a high similarity value of 0.766 or 76% similar 

while the weights of both graphs is showing high 

different. Proposed method gives a more accurate 

calculation with the low similarity value, 0.327 or 

33% similar. If we observe in row 3, 4, and 5 in Table 

8, TPED and Cosine-TDP give different similarity 

values between XOR-XOR, OR-OR, and AND-AND 

relation although both graphs have the same nodes 

and weights. While proposed method can ensure to 

give the same similarity values on XOR-XOR, OR-

OR, and AND-AND relation between graphs with the 

same nodes and weight values. For comparison 

between graphs with different relations in 

experiments 6-8, Cosine-TDP gives the highest 

similarity value in AND-OR. Whereas in Fig. 12, 

AND - XOR has the highest closeness since both 

have the same weight values in all of the split-edges. 

Proposed method proves that AND - XOR gives the 

highest similarity value (0.985) compared to AND – 

OR (0.948) and OR – XOR (0.937). 

The proposed method (W-LTLDAG) calculates 

similarity based on the occurrences probability of 

relationships of activities. The more similar 2 graphs 

are, the higher the similarity value they have. Since it 

calculates the distance between weights of 2 branches 

using standard  deviation, makes it able to distinguish 

2 graphs with the same weight values but in a 

randomized order which cannot handled by wDAG 

similarity algorithm [18]. W-LTLDAG not only 

concern to insertion or deletion nodes, but also the 

occurrence probability of activities so make it able to 

distinguish graphs with the different weights that 

cannot be handled by WGED [13] and TPED [19]. 

Finally, W-LTLDAG is very concerned about the 

closeness of the occurences of activities between 

graphs, so that it can ensure that graphs with adjacent 

weight values will provide a higher similarity 

 

Similarity 

Existing Methods 

W-LTLDAG 
wDAG [18] 

WGED 

[13] 
TPED [19] Cosine-TDP [19] 

1. XOR relation (Fig. 8 (a)) 

and XOR relation (Fig. 9 (a)) 
1 1 1 1 1 

2. XOR relation (Fig. 9 (a)) 

andXOR relation (Fig. 9 (b)) 
1 1 0.813 0.766 0,327 

3. XOR relation (Fig. 8 (a)) 

and XOR relation (Fig. 8 (b)) 
1 1 0.813 0.999 0.976 

4. OR relation (Fig. 10 (a)) 

andOR relation (Fig. 10 (b)) 
1 1 0.875 0.825 0.976 

5. AND relation (Fig. 11 (a)) 

and AND relation (Fig. 11 (b)) 
1 1 0.938 0.691 0.976 

6. AND relation (Fig. 12 (a)) 

and OR relation (Fig. 12 (c)) 
1 1 0.821 0.854 0.948 

7. OR relation (Fig. 12 (c)) 

and XOR relation (Fig. 12 (b)) 
1 1 0.811 0.849 0.937 

8. AND relation (Fig. 12 (a)) 

and XOR relation (Fig. 12 (b)) 1 1 0.78 0.712 0.985 
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compared to graphs with a large difference of weights 

that cannot handled by Cosine-TDP [19]. 

5. Conclusion 

The proposed algorithm for discovering a 

Weighted-Linear Temporal Logic (W-LTL) tree 

from a graph-based business process model is 

implemented using Neo4j Graph Platform and 

Python programming language. The case study 

employed data from a complex retail business 

process containing Sequence, XOR, AND, and OR 

relations. The information from the retail business 

process in the form of a graph database was 

represented in a graph model using the Neo4j Graph 

Platform. The relations from the graph model were 

then processed using Python programming language 

to discover W-LTL patterns. Each W-LTL pattern is 

split into a partial W-LTL pattern containing 

activities and symbols, which is used as the basis for 

discovering the W-LTL tree model. Giving a weight 

to the relations of the activities is expected to be 

useful to obtain and solve various problems, such as 

similarity calculation, anomaly detection, and fraud 

detection.  

The proposed similarity method (W-LTLDAG) is 

compared with other existing methods: wDAG 

algorithm, WGED, TPED, and Cosine-TDP. wDAG 

algorithm only gives a different similarity value if 

there are a different node between 2 graphs, but 

always give the same similarity value of 1 for graphs 

with the same nodes, although it has a different 

weight values. Since it just concerned in inserted or 

deleted nodes, WGED gives the same similarity value 

for graphs with the same node, although with the 

different weight values of the branches. TPED only 

depends on the structure of the nodes, edges, and the 

relation operator value, make it always provide the 

same similarity value both on graphs with the same 

relation or different relations if the structure of the 

nodes and edges are same, even both have different 

weight values. Cosine-TDP can distinguish graphs 

with parallel relationships that have different weight 

values, however proposed method gives more 

accurate in calculating similarity since it gives a 

lower similarity (0.327) between graphs with the 

large difference of weight, and gives a high similarity 

(0.976) on graphs with the small difference in weight. 

While Cosine-TDP gives a very high similarity 

(0.999) which is ≈ 1 although both graphs has 

different weight values, and also gives a high enough 

similarity (0.766) although both graphs have a large 

difference in weight. W-LTLDAG is very concerned 

about the closeness of the occurences of activities 

between graphs, so that it can ensure that graphs with 

adjacent weight values will provide a higher 

similarity compared to graphs with a large difference 

of weights that cannot handled by Cosine-TDP. For 

future works, discovering W-LTL Tree and similarity 

method that able to handle overlapping activities and 

repetitive activities (looping) need to be developed. 
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