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Abstract: Large distributed generation (DG) penetration into the power system needs to be accompanied by proper 

planning to maximize the benefits and minimize the negative effects that may arise on the system. Determining the 

location and size of DGs in power systems is a complex issue because it involves hundreds or even thousands of 

buses and lines distribution. Various studies have been conducted to overcome these problems, including by 

developing existing methods or even discovering new methods. This study deals with location optimization and 

sizing DG in the radial distribution system to minimize power loss and voltage deviation. The location of the DG is 

identified using a loss reduction sensitivity factor (LRSF) while the size of the DG is determined using the improved 

method of symbiotic organisms search (SOS) called New Enhanced SOS (NeSOS). There are two methods 

developed in the NeSOS, namely random weighted inverse vector (RWIV) and dual-phase parasitism (DPP). DPP 

consists of classic parasitism (CP) and random weight parasitism (RWP). The NeSOS is programmed under 

MATLAB software and validated using 26 mathematical benchmark functions.  NeSOS also tested on IEEE 33 and 

IEEE 69 bus test system and compared with other methods. The simulation results show that the convergence rate of 

NeSOS is 30% faster than SOS. NeSOS also provides an average power loss of 1.53% lower than other methods. 

Keywords: Benchmark function, Classic parasitism, Dual-phase parasitism, Random weight parasitism, Random 

weighted inverse vector. 

 

 

1. Introduction 

A large DG penetration into the power system 

provides various technical, economic, and 

environmental benefits. On the other hand, non-

optimal DG can lead to various new problems such 

as difficulty in voltage control, reactive power flow 

management, reduced protection sensitivity, 

negative effects on power quality, or even reliability 

and stability problems [1]. The challenge of finding 

the proper DG location and size has long been the 

center of attention of researchers and engineers. 

An analytical method based on power stability 

and voltage sensitivity index is proposed in [2]. 

Optimal size and DG location based on the voltage 

stability index and continuation power flow are 

presented in [3].  Zero bus load flow and current 

injection approaches are proposed in [4]. The 

analytical formula based iteration method is 

presented in [5]. Although analytical methods easily 

handle differentiable functions, they are not capable 

of solving complex problems that contain non-

differentiable functions which are representing real-

times problems [6, 7].  

The drawbacks of analytical methods accelerate 

the development of heuristic methods. Various 

heuristics methods have been developed to address 

this problem, such as genetic algorithms (GA) [8], 

particle swarm optimization (PSO) [9], artificial bee 

colony (ABC) [10], etc. Those well-recognized 

algorithms have been successful in solving complex 

optimization problems. 

No free lunch theory (NFL) [11] shows that 

there is no heuristic method that can solve all 

optimization problems effectively. The NFL theory 
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opens opportunities for researchers to improve 

existing algorithms to solve different problems or 

propose new algorithms that are more competitive 

than existing algorithms. In the past few years, 

several heuristic methods were introduced including 

the Flower pollination algorithm (FPA) [12]; Firefly 

algorithm (FA) [13]; Grey wolf optimizer (GWO) 

[14]; Ant lion optimizer (ALO) [15]; Crow search 

algorithm (CSA) [16]; In addition, improved and 

modified versions of these methods have also been 

developed. 

SOS was first developed by Cheng and Prayogo 

for complex numerical optimization [17]. Various 

studies show that SOS has the robustness and good 

convergent speed [18, 19]. Despite its many 

advantages, this algorithm still has shortcomings 

such as lack of organisms variability [20, 21], over 

exploration [22-24], inefficient in computational 

time [22, 23, 25], and imbalance between 

exploration and exploitation [7, 23, 24]. To 

overcome this problem, various improvements have 

been performed to the original SOS. Selection and 

assignment strategies are proposed in [21] to 

overcome the low diversification of organisms. 

Panda and Pani [22] proposed orthogonal parallel 

SOS with an augmented Lagrange multiplier. An 

orthogonal array is used to increase exploration 

capability, while parallelism is used to reduce the 

computational time of the algorithm. Augmented 

Lagrange multiplier guarantees an optimal solution 

is achieved. The adaptive benefit factor and the 

modified parasitic vector are proposed in [23] to set 

the balance between exploration and exploitation. A 

Quasi-oppositional based learning and chaotic local 

search are introduced by Truong [7] to improve the 

balance between exploration and exploitation of 

original SOS. A similar method is proposed by 

Celik [24]. To improve exploration capability, a new 

parasitism strategy is also utilized in the algorithm. 

The parasitic vector consists of two random 

organisms with a probability of 0.5. Elitism, random 

coefficients, and modified benefit factors are 

introduced in [25]. Elitism and random coefficient 

are applied to the commensalism phase. Elitism is 

utilized to filter the best organisms for the next 

generation, while the random coefficient is used to 

improve the convergence speed of the algorithm. 

The random coefficient is limited to a range of 0.4 - 

0.9. The parasitism phase is also eliminated to 

simplify and to reduce the computational time.  

In this paper, a new enhanced SOS (NeSOS) is 

proposed for optimal placement and sizing of DG in 

the radial distribution system (RDS). Many studies 

have shown that the most crucial problems with the 

original SOS are poor in the exploration rates [22-

24]. Inspired by the parasitism strategy proposed in 

[23, 24], this study proposes dual-phase parasitism 

(DPP) to increase the exploration capabilities in the 

parasitism phase. DPP consists of classic parasitism 

(CP) and random weight parasitism (RWP). Another 

original SOS problem is inefficient in computational 

time [7, 23, 24]. To overcome this problem, the 

search space in the phase of mutualism and 

commensalism is limited, as indicated in [25] by 

using a random weighted inverse vector (RWIV). 

The main contributions of this research are: 1. Using 

RWIV and DPP to improve SOS performance; 2. 

Comparing NeSOS with several methods using 26 

benchmark functions. 3. Using NeSOS for two real 

engineering problems. 

The rest of this paper is organized as follows: 

The SOS and NeSOS algorithms are explained in 

section 2. Section 3 presents NeSOS validation 

using 26 benchmark functions and two real 

engineering problems. Finally, section 4 proposes 

the research conclusions and future work. 

2. Methodology  

2.1 Overview of the SOS algorithm 

SOS is an algorithm that mimics the symbiotic 

relationship of living things in an ecosystem [17]. 

The most popular symbiotic relationships are 

mutualism, commensalism, and parasitism. The 

mutualism phase describes the relationship between 

two organisms (Xi and Xj) in the ecosystem, which 

are mutually beneficial. The relationship between 

organisms in the phase of mutualism can be 

formulated as follows:  

 

Xi_new =Xi + rand (0,1) x (Xbest - µ x bf1)            (1) 

 

Xj_new =Xj + rand (0,1) x (Xbest - µ x bf2)   (2) 

 

i and j are integers 1,2, 3,…, where i ≠ j. Xbest is the 

organism with the best fitness in the ecosystem. µ is 

a mutual vector, which is defined as: 

 

µ = (Xi+Xj)/2     (3) 

 

bf1 and bf2 are benefit factors that can be calculated 

using: 

 

bf1=1+round [rand (0,1)]    (4) 

 

bf2=1+round [rand (0,1)]    (5) 
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Figure.1 SOS algorithm 

 

In the commensalism phase, the Xi organism tries to 

benefit from Xj. The new organism results from the 

interaction between Xi and Xj as shown in Eq. (6). 

 

Xi_new=Xi + rand (-1,1)x(Xbest  - Xj)   (6) 

 

The parasitism phase describes the relationship 

of two organisms, where one gets the advantage, 

while the other gets a loss. Parasitic vector (P_V) is 

formed from the cloning of Xi organisms that 

function as parasites. Xj is randomly selected to 

function as hosts of parasitic vectors. If parasitic 

vector fitness is higher than Xj, then Xj will be 

replaced by parasitic vector and vice versa. Fig. 1 

shows the detail of the SOS algorithm. 

2.2 New enhanced SOS (NeSOS) 

NeSOS in this study is a development version of 

the original SOS. Modifications are performed in the 

phase of mutualism, commensalism, and parasitism. 

In the phase of mutualism and commensalism, 

modifications are performed to increase the SOS 

search ability by adopting random weighted 

differential vector (RWDV) [26] which has been 

used successfully to improve the performance of the 

teaching-learning-based optimization algorithm 

(TLBO). RWDV is defined as follows: 

 

RWDV= 0.5 x [1+rand (1, D)]     (7) 

 

This paper proposes an RWDV modification called 

random weighted inverse vector (RWIV): 

 

RWIV=1 - 0.5 x [1 - rand (1, D)]      (8) 

 

RWIV is a random number (0.5:1). D is a dimension. 

Using Eq. (8), then Eq. (1) and (2) in the phase of 

mutualism are formulated as follows: 

 

Xi_new =Xi + RWIV x (Xbest - µ x bf1)     (9) 

 

Xj_new =Xj + RWIV x (Xbest - µ x bf2)                 (10) 

 

Adopting RWIV in Eq. (8), then Eq. (6) in the phase 

of commensalism is formulated as follows: 

 

Xi_new=Xi+RWIV x (Xbest - Xj)              (11) 

 

Modifications in the parasitism phase were 

carried out to narrow the search space by adopting 

random weight (RW) from the crow search 

algorithm (CSA) [16]. Askarzadeh uses RW to 

determine individual distances in m and 

m+1iterations. The RW is formulated as follows:   

 

RW=rand (0 1) x rand (a, b)               (12) 

 

a and b in Eq. (12) are specified by the user. In this 

paper, a = -2 and b = 2. Using Eq. (12), the new 

position of the organism in the parasitism phase can 

be written as follows: 

 

Xi_new=Xi + RW x (Xbest - Xi)                           (13) 

 

Pseudocode of parasitism phase 

1: Generate a random number  

2: if rand < 0.5 % classic parasitism sub-phase 

3:  Generate parasitic_vector 

4:  Evaluate parasitic_vector fitness 

5:  Select the fittest organism 

6: else            % random weight sub-phase 

7:  Generate random weight_vector using (13) 

8:  Evaluate the fitness of random weight_vector 

9:  Select the fittest organism 

10: end if 

Figure 2. Pseudocode of parasitism phase 

 

 

- Select organisms Xj, randomly where (Xj ≠ Xi)  

- Calculate mutual vector using Eq. (3) 

- Calculate benefit factor using Eq. (4) and (5) 

- Modify organism Xi and Xj using Eq. (1) and (2) 

- Calculate fitness value f(X) of the modified organisms 

- Replace Xi with Xi_new if f(Xi_new) > f(Xi) and vice versa 

- Replace Xj with Xj_new if f(Xj_new) > f(Xj) and vice versa 

 
 

 - Select organisms Xj, randomly where (Xj ≠ Xi)  

- Modify Xi using Eq.  (6) 

- calculate fitness value of the new organism 

- Replace Xi with Xi_new if f(Xi_new) > f(Xi) and vice versa 
 

 
- Select organisms Xj, randomly where (Xj ≠ Xi)  

- Create parasite vector (P_V) from Xi 

- Calculate fitness value of new organism 

- Replace Xj with P_V  if f(P_V) > f(Xj) and vice versa 

 

 

 

Mutualism phase 

Commensalism  phase 

Parasitism phase 

i=i+1 

Yes 

No 

Start 

Initialization of ecosystem; i=1 

Is termination criteria 

achieved? 

Stop 
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To increase individual variability, the parasitism 

phase is divided into two sub-phases (dual phase 

parasitism), namely RWP and CP. RWP is a 

parasitism phase that uses Eq. (13) as a parasitic 

vector, while CP follows the parasitism phase of the 

original SOS. Modifications to the parasitism phase 

are explained in Fig. 2.  

3. NeSOS validation 

NeSOS validation is performed in two stages. In 

the first stage, NeSOS performance is tested using 

26 complex mathematical functions. The second 

stage using real problems in the field of electrical 

engineering. In this section, NeSOS is used to 

optimize DG location and size by using the IEEE 33 

and IEEE 69 bus testing systems.  

3.1 Benchmark function 

The performance of the proposed algorithm is 

tested using 26 benchmark functions as shown in 

Table 1[17]. Functions 1 through 11 are 2 

dimensions, whereas functions 12 and 13 are 4 and 

5-dimensional functions respectively. Functions 14 

and 15 are 10-dimensional functions, and the rest 

are 30-dimensional functions. 

3.1.1. The effect of RWIV and DPP 

To determine the effect of RWIV and DPP in the 

algorithm, a performance test is conducted on SOS, 

RWIV, and DPP using the Ackley function. Ackley 

has a dimension of 30 and a minimum value of 0 

[17]. The SOS parameters used are: Ecosystem 

number (n) = 50; Maximum of iteration = 3000; 

Error = 1x10-12.  The algorithm is run 20 times for 

each scheme. The algorithm stops if the error is 

smaller than 1x10-12 or the iteration equals the 

maximum iteration. The best fitness, mean, standard 

deviation (SD), and iterations average (Iter avg) are 

 
Table 1. Benchmark function 

No Function No Function 
1 Beale 14 Zakharov 
2 Easom 15 Michalewicz10 

3 Matyas 16 Step 
4 Boha  chevsky1 17 Sphere 

5 Booth 18 Sum squares 
6 Michalewicz2 19 Quartic 

7 Schaffer 20 Schwefel 2.22 

8 Six Hump Camel Back 21 Schwefel 1.2 
9 Bohachevsky2 22 Rosenbrok 

10 Bohachevsky3 23 Dixon-Price 
11 Schubert 24 Rastrigin 

12 Colville 25 Griewank 

13 Michalewicz5 26 Ackley 

 

Table 2. The effect of RWIV and DPP in the algorithms 

Description Original SOS RWIV DPP 

Best Fitnes 6.8301E-13 2.564E-14 3.7748E-13 

Mean  1.13669E-12 7.16399E-13 7.68275E-13 

SD 4.18995E-13 2.31214E-13 1.94675E-13 

Iter avg 98.75 60.95 58.55 

 

 
Figure.3 Convergence curve of SOS, RWIV and DPP  

 

reported in Table 2. The convergence curve of SOS, 

RWIV and DPP are shown in Fig. 3. 

The mutualism and commensalism phases play 

an important role in the process of exploitation of 

organisms to reach the expected convergence point. 

Random numbers in Eq. (1), (2) and (6) are very 

important in controlling the speed of algorithm 

convergence, but they have a wide search range so 

that the search space becomes large. As a result, the 

convergence speed becomes low. Table 2 and Fig. 3 

show that narrowing the search space in the range of 

0.5 to 1 using RWIV causes the convergence curve 

to decrease drastically, the iteration becomes smaller 

thereby saving computing time. In addition, the best 

fitness, mean and SD are better than original SOS. 

The DPP Strategy in parasitism phase allows the 

algorithm to explore different regions of the search 

space while avoiding population concentration in 

high fitness areas, by offering around 50% of new 

organisms from RWP. As seen in Table 2 and Fig. 3, 

the DPP strategy causes the convergence curve to 

decrease dramatically and the number of iterations 

to reach the global optimum is lower. The best 

fitness, average and SD are better than original SOS 

which uses classical parasitism.   

3.1.2. Validation using 26 benchmark functions 

To validate the performance of the proposed 

algorithm, the optimization results use 26 
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Table 3. Comparison of NeSOS and other algorithms 

No Function Min Description GA[17] PSO[17] BA[17] DE[17] SOS NeSOS 

1 Beale 0 Mean 0 0 1.88E-5 0 0 0 

  

 

 SD 0 0 1.94E-5 0 0 0 

   Iter  avg NA NA NA NA 52.92 15.88 

2 Easom -1 Mean -1 -1 -0.99994 -1 -1 -1 

  

 

 SD 0 0 4.5E-5 0 0 0 

   Iter  avg NA NA NA NA 56.24 19.2 

3 Matyas 0 Mean 0 0 0 0 0 0 

 
  SD 0 0 0 0 0 0 

   Iter  avg NA NA NA NA 23.64 9.8 

4 Boha- 0 Mean 0 0 0 0 0 0 

 chevsky1  SD 0 0 0 0 0 0 

   Iter  avg NA NA NA NA 24.88 12.68 

5 Booth 0 Mean 0 0 0.00053 0 0 0 

   SD 0 0 0.00074 0 0 0 

   Iter  avg NA NA NA NA 88.28 88.44 

6 Micha- -1.8013 Mean -1.8013 -1.57287 -1.8013 -1.8013 -1.8013 -1.8013 

 lewicz2  SD 0 0.11986 0 0 0 0 

   Iter  avg NA NA NA NA 14.96 6.84 

7 Schaffer 0 Mean 0.00424 0 0 0 0 0 

   SD 0.00476 0 0 0 0 0 

   Iter  avg NA NA NA NA 99.92 16.84 

8 Six Hump -1.03163 Mean -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

 Camel  SD 0 0 0 0 0 0 

 Back  Iter  avg NA NA NA NA 47.88 14.92 

9 Boha- 0 Mean 0.06829 0 0 0 0 0 

 chevsky 2  SD 0.07822 0 0 0 0 0 

   Iter  avg NA NA NA NA 22.8 11.8 

10 Boha- 0 Mean 0 0 0 0 0 0 

 chevsky 3  SD 0 0 0 0 0 0 

   Iter  avg NA NA NA NA 32.2 12.8 

11 Schubert -186.73 Mean -186.73 -186.73 -186.73 -186.73 -186.73 -186.73 

   SD 0 0 0 0 0 0 

   Iter  avg NA NA NA NA 144.32 11.52 

12 Colville 0 Mean 0.01494 0 1.11760 0.04091 0 0 

   SD 0.00736 0 0.46623 0.081898 0 0 

   Iter  avg NA NA NA NA 1325.76 40.12 

13 Micha- -4.6877 Mean -4.64483 -2.49087 -4.6877 -4.68348 -4.6877 -4.6877 

 lewicz 5  SD 0.09785 0.25695 0 0.01253 0 0 

   Iter  avg NA NA NA NA 127.44 213.44 

14 Zakharov 0 Mean 0.01336 0 0 0 0 0 

   SD 0.00453 0 0 0 0 0 

   Iter  avg NA NA NA NA 75.56 21.92 

15 Micha- -9.6602 Mean -9.49683 -4.00718 -9.6602 -9.59115 -9.6602 -9.6602 

 lewicz 10  SD 0.14112 0.50263 0 0.06421 0 0 

   Iter  avg NA NA NA NA 1394.2 1126.68 

16 Step 0 Mean 1.17E+03 0 5.12370 0 0 0 

   Stdv 76.56145 0 0.39209 0 0 0 

   Iter  avg NA NA NA NA 184.8 223.44 

17 Sphere 0 Mean 1.11E+03 0 0 0 0 0 

   SD 74.21447 0 0 0 0 0 

   Iter  avg NA NA NA NA 60.08 23.04 

18 Sum 0 Mean 1.48E+2 0 0 0 0 0 

 squares  SD 12.40929 0 0 0 0 0 

   Iter  avg NA NA NA NA 56.8 22.28 

19 Quartic 0 Mean 0.18070 0.00116 1.72E-6 0.00136 7.41498E-05 1.43324E-05 

   SD 0.0271 0.00028 1.85E-6 0.00042 1.72271E-09 6.54271E-11 

   Iter  avg NA NA NA NA 3000 3000 
20 Schwefel 0 Mean 11.0214 0 0 0 0 0 

 2.22  SD 1.38686 0 0 0 0 0 
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   Iter  avg NA NA NA NA 101.08 38.72 

21 Schwefel 0 Mean 7.40E+3 0 0 0 0 0 

 1.2  SD 1.14E+3 0 0 0 0 0 

   Iter  avg NA NA NA NA 63.96 24.52 

22 Rosen- 0 Mean 1.96E+5 15.088617 28.834 18.20394 0.270040821 0 

 brok  SD 3.85+4 25.170196 0.10597 5.03619 0.11285849 0 

   Iter  avg NA NA NA NA 3000 1232.48 

23 Dixon 0 Mean 1.22E+3 0.66667 0.66667 0.66667 0.666666667 0.666666667 

 Price  SD 2.66E+2 1E-8 1.16E-9 1.E-9 0 0 

   Iter  avg NA NA NA NA 3000 3000 

24 Rastrigin 0 Mean 52.92259 43.97714 0 11.71673 0 0 

   SD 4.56486 11.72868 0 2.53817 0 0 

   Iter  avg NA NA NA NA 93.48 24.4 

25 Griewank 0 Mean 10.63346 0.01739 0 0.00148 0 0 

   SD 1.16146 0.02081 0 0.00296 0 0 

   Iter  avg NA NA NA NA 62.04 23.48 

26 Ackley 0 Mean 14.67178 0.16462 0 0 0 0 

   SD 0.17814 0.49387 0 0 0 0 

   Iter  avg NA NA NA NA 99.08 38.6 

 Note: NA=not available 

 

benchmark functions compared to the GA, PSO, 

Bees Algorithm (BA), Differential Evolution (DE) 

and original SOS. NeSOS was built using the Matrix 

Laboratory software. This program is run using a 

laptop with a Core 2 Duo processor and 2.0 GB 

RAM. The parameter settings used for GA, PSO, 

BA, and DE follow [17], while for original SOS, 

and NeSOS are as follows: Ecosystem number 

(n)=50; Maximum of iteration = 3000; Error = 

1x10-12. The algorithm is run 30 times for each 

benchmark function. The algorithm stops if the error 

is smaller than 1x10-12 or the iteration equals the 

maximum iteration. The mean, standard deviation 

(SD) and iteration average (iter avg) are indicated in 

Table 3. Bolded numbers represent the best value 

for each function. Mean and SD values smaller than 

1x10-12 are considered the same as zero [17]. 

Table 3 shows that the proposed algorithm is 

more competitive compared to GA, PSO, BA, DE, 

and SOS. NeSOS can converge on 24 functions 

(except Quadratic and Dixon Price function), while 

SOS converge on 23 benchmark functions. GA has 

the worst performance, only converging on 10 of the 

26 benchmark functions. PSO, DE, and BA are able 

to converge on 17, 18 and 19 benchmark functions 

respectively. GA, PSO, DE, and BA have difficulty 

converging on functions with larger dimensions 

such as Quadratic, Rosenbrok and Dixon Price 

functions.  Although NeSOS on the Quadratic 

function does not reach the required error, it 

produces better values compared to GA, PSO, BA, 

DE, and SOS.  For converging speed, NeSOS excels 

on 21 benchmarks, while SOS excels only on 3 

benchmarks, namely: Step, Michalewicz 5, and 

Booth function. The use of RWIV and DPP 

accelerates the convergence rate of NeSOS 30% 

faster than SOS. 

3.2 Optimal location and size of DG 

NeSOS performance will be tested using 

location optimization and DG size on the IEEE 33 

and IEEE 69 bus test system. The IEEE 33 bus 

radial distribution system consists of 32 lines and 33 

buses. The total load connected to the IEEE 33 bus 

system is 3.72 MW and 2.3 MVar. The IEEE 69 bus 

system consists of 68 lines and 69 buses. The total 

load connected to the system is 3.8 MW and 2.69 

MVar. The optimization results using NeSOS are 

compared with the improved analytic method (IA), 

PSO, hybrid analytic-PSO (hybrid), and SOS 

method [28]. 

3.2.1 Objective functions and constrains 

In the distribution systems, active power loss 

depends on the resistance and line current. High line 

resistance results in a large power loss and voltage 

deviations. The objective function of DG 

optimization is active power loss reduction: 

 

𝐹 = min(∑ ∑ 𝐼ij
2𝑅ij

𝑛
j=2

𝑛
i=1 )               (14) 

 

Optimization is performed to determine the 

location and size of DG by minimizing the objective 

function in Eq. (14).  The objective function must 

meet the following constraints:  

a. The number of DG (NDG) must less or equal to 

the maximum number of DG (NDG max). 
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NDG ≤NDG max                       (15) 

 

b. The active power of DG (PDG) is limited by its 

minimum (PDGmax) and maximum (PDGmin) limits. 

 

PDGmax ≤PDG ≤ PDGmin                      (16) 

 

c. The total power generated by initial sources (Pg) 

and DG units (PDG) must cover the total load 

demand (Pd) and power loss (Ploss). 

 

Pg + PDG = Pd + Ploss                          (17) 

 

d. The voltage on each bus i (Vi) is limited by its 

minimum (Vi
min) and maximum (Vi

max) limits. 

 

Vi 
min ≤ Vi ≤ Vi 

max                            (18) 

3.2.2. Identification of DG locations 

The most difficult part in optimizing DG 

placement is determining the right locations of DG 

so that the objective function is optimal. For single 

DG, the possible combination of DG locations is the 

same as the number of buses in the system, so it is 

easy to determine. The number of DG location 

combinations will increase with increasing DG 

numbers, making it even more complicated.  

Various approaches have been developed in 

determining DG locations. In this paper, the loss 

reduction sensitivity factor (LRSF) is used to 

identify the location of DG. LRSF value due to DG 

injection on the bus i is formulated as follows [27]: 

 

LRSF𝑖 =
𝑃Loss
𝑖 -PLoss

𝑏

𝑃DG_i
inj                            (19) 

 

Pi
Loss= network loss due to DG injection on the bus i, 

Pb
loss= system loss prior to DG injection and Pinj

DG i= 

power injected by DG on the bus i.  

The steps to determine the optimal DG location 

on a distribution system using LRSF are as follows: 

1. Determine the number, size, and DG capacity. 

2. DG injection into the distribution system using 

one DG. DG capacity is gradually increased 

and the LRSF value for each bus is recorded 

until the DG capacity is met. 

3. Determine the optimal DG location based on 

the smallest LRSF value in step 2. 

4. Install DG in the optimal location according to 

step 3. 

5. Continue steps 2-4 for the next DG unit, until 

all DG locations are known. 

 

 

Table 4. LRSF and DG location for IEEE 33 bus System 

Scheme DG Location Size (MW) LRSF 

1 DG 6 2.550 -0.0386 
2 DG 

 

13 0.850 -0.0265 

30 0.850 -0.0439 
3 DG 

 

 

13 0.850 -0.0265 

30 0.850 -0.0439 
24 0.850 -0.0499 

 
Table 5. LRSF and DG location for IEEE 69 bus System 

Scheme DG Location Size (MW) LRSF 

1 DG 61 1.80 -0.0215 

2 DG 

 

17 0.50 -0.087 
61 1.80 -0.0215 

3 DG 

 

 

11  0.50 -0.1106 

17 0.50 -0.0870 
61 1.80 -0.0215 

 

Following the procedures above, the lowest LRSF 

and optimal locations of DG for IEEE 33 and IEEE 

69 bus systems are presented in Table 4 and Table 5.  

3.2.3. Optimal sizing of DG 

After determining the optimal location of DG 

using LRSF, optimal sizing of DG is performed 

using back-forward load flow and NeSOS. The type 

of DG used is DG which is only capable of injecting 

real power. The optimization scheme consists of 3 

schemes, namely 1 DG, 2 DG, and 3 DG. The 

optimization results are compared with hybrid PSO, 

PSO, IA, and SOS. The parameter settings for 

NeSOS and SOS are: Ecosystem number (n) = 50; 

maximum of iteration = 100. The algorithm is run 

10 times for each scheme. Parameter settings for 

PSO, hybrid PSO and IA follow parameters in [28]. 

Tables 6 and 7 show the results of DG optimization 

for the IEEE 33 and the IEEE 69 bus system.  

IA is an analytical method based on 

mathematical expressions that integrates the DG 

model into the load flow. It is well known that 

analytic methods have limitations in mathematical 

modelling for non differential or complex problems, 

which affects inaccurate results.  The hybrid method 

combines analytic and PSO methods. PSO is used to 

determine the location while DG size is determined 

using analytic methods. PSO has precisely 

determined the optimal DG location, but the analytic 

method failed to determine the DG size accurately. 

PSO itself has problems with many parameters that 

need to be adjusted to ensure a balance between 

exploration and exploitation. The improper 

parameters settings affect the accuracy of the PSO 

results. Unlike PSO, NeSOS does not have special 

control parameters, so this algorithm is robust and 
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Table 6. Optimal location and size of DG on IEEE 33 bus System 

Scheme Method 
Bus 

Location 

Sise  

(MW) 

Capacity  

(MW) 

Power  

Loss(kW) 

 Loss 

Reduction (%) 
Iteration 

No DG - - - - 211 - - 

1 DG Hybrid [28] 6 2.49 2.49 111.7 50.356 NA 

  PSO [28] 6 2.59 2.59 111.03 50.653 NA 

  IA[28] 6 2.60 2.6 111.1 50.622 NA 

  SOS 6 2.59 2.59 111.02 50.658 4.3 

  NeSOS 6 2.59 2.59 111.02 50.658 2.5 

2 DG Hybrid [28] 13   30 0.83     1.11 1.94 87.28 61.209 NA 

  PSO [28] 13   30 0.85     1.16 2.01 87.17 61.258 NA 

  IA[28]  6    14 1.80     0.72 2.52 91.63 59.276 NA 

  SOS 13   30 0.852   1.158 2.01 87.16 61.262 21.9 

  NeSOS 13   30 0.852   1.158 2.01 87.16 61.262 9.2 

3 DG Hybrid [28] 13  24   30 0.79     1.07     1.01 2.87 72.89 67.604 NA 

  PSO [28] 13  24   30 0.77     1.09     1.07 2.93 72.79 67.649 NA  

  IA[28]   6  12   31 0.90     0.90     0.72 2.52 81.05 63.978 NA 

  SOS 13  24   30 0.802   1.091   1.054 2.947 72.78 67.653 32.5 

  NeSOS 13  24   30 0.802   1.091   1.054 2.947 72.78 67.653 13.7 

Note: NA=not available 

 

Table 7. Optimal location and size of DG on IEEE 69 bus System 

Scheme Method 
Bus 

Location 

Sise 

(MW) 

Capacity 

(MW) 

Power 

Loss(kW) 

Loss 

Reduction (%) 
Iteration 

No DG - - - - 225 - - 

1 DG Hybrid [28] 61 1.81 1.81 83.37 62.947 NA 

  PSO [28] 61 1.87 1.87 83.22 63.013 NA 

  SOS 61 1.872 1.872 83.22 63.013 1.8 

  NeSOS 61 1.872 1.872 83.22 63.013 1.6 

2 DG Hybrid [28] 17   61 0.52    1.72 2.24 71.80 68.089 NA 

  PSO [28] 17   61 1.78    0.53 2.31 71.68 68.142 NA 

  SOS 17   61 0.531  1.781 2.31 71.67 68.145 14.3 

  NesOS 17   61 0.531  1.781 2.31 71.67 68.145 5.2 

3 DG Hybrid [28] 11   17   61 0.510   0.38     1.67 2.56 69.54 69.09 NA 

  PSO [28] 11   17   61 0.460   0.44    1.70 2.60 69.54 69.09 NA 

  SOS 11   17   61 0.527   0.381  1.719 2.626 69.43 69.14 24.6 

  NeSOS 11   17   61 0.527   0.381  1.719 2.626 69.43 69.14 10.5 

Note: NA=not available    

 

has a good convergence speed. The integration of 

RWIV and DPP increases the computational time 

efficiency and accuracy of the NeSOS. As seen in 

Table 6, NeSOS has a better performance compared 

to Hybrid, PSO, IA, and SOS. For accuracy, NeSOS 

and SOS excel in all schemes of optimization. 

NeSOS and SOS provide the smallest loss compared 

to Hybrid, PSO and IA methods. NeSOS and SOS 

resulted in loss 111.02 kW, 87.16 kW and 72.78 kW 

for schemes 1, 2 and 3 respectively. DG injection 

into the power system, in addition to minimizing 

power loss, also improves voltage deviation. The 

minimum bus voltage before DG injection is 0.903 

pu on bus 18. DG injection increases the minimum 

bus voltage to 0.94 pu, 0.96 pu and 0.97 pu for the 

first, the second, and the third scheme respectively. 

The bus voltages before and after DG injection are 

shown in Fig. 4. In terms of convergence speed, 

NeSOS is 52.6% faster than SOS. Curve 

convergence of NeSOS and SOS are shown in      

Fig. 5.  

Optimization DG using IEEE 69 bus test system, 

NeSOS and SOS produce the smallest loss in the 

second and the third scheme, while in the first 

scheme NeSOS produce the same value as SOS and 

PSO. Power loss before DG placement is 225 kW.  

DG injection resulted in a reduction in loss of    

83.22 kW, 71.67 kW and 69.43 kW for the first, the 

second and the third scheme respectively. 

The reduction of power loss is also followed by 

an increase in bus voltage. The minimum bus 

voltage before placement of DG is 0.908 pu on bus 

65. DG injection on bus 61 of 1.872 MW 

significantly increases the system bus voltage. The 

minimum bus voltage is 0.968 pu. DG injection on 
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Figure. 4 Bus voltages before and after DG placement on 

the IEEE 33 bus system 

 

 
Figure. 5 Curve convergence of NeSOS and SOS 

 

 
Figure. 6 Bus voltages before and after DG placement 

on the IEEE 69 bus system 

 

buses 17 and 61 with a total of 2.31 MW produces a 

minimum bus voltage of 0.978 pu. Scheme 3 does 

not provide a significant increase in bus voltage. 

The minimum bus voltage is 0.979 pu. The bus 

voltage before and after DG placement on the IEEE 

69 bus system is shown in Fig. 6. In terms of 

convergence speed, NeSOS is superior to SOS. 

NeSOS is 44.04% faster than SOS on average. 

4. Conclusions 

This research proposes improvements to the 

original SOS by using RWIV and DPP called 

NeSOS. RWIV and DPP are used to increase the 

variability of organisms in the ecosystem so that an 

optimal global is achieved. The validation results 

using 26 benchmark functions show that NeSOS is 

superior both in terms of accuracy and convergence 

speed. NeSOS can converge on 24 of 26 benchmark 

functions with better accuracy than other methods. 

For converging speed, NeSOS excels on 21 

benchmarks, while SOS excels only on 3 

benchmarks function. NeSOS is 30% faster than 

SOS. NeSOS validation on DG location and size 

optimization shows that NeSOS has succeeded in 

providing the smallest loss. NeSOS provides an 

average power loss of 1.53% lower than other 

methods. Based on the results of the validation, it 

can be concluded that NeSOS has a higher 

capability in finding optimal solutions. 

For further studies, it will be interesting to 

hybridize the SOS algorithm with other algorithms 

to improve its performance. In addition, 

comparisons with other SOS variants that exist in 

various kinds of literature need to be studied more 

deeply to check the effectiveness of the proposed 

algorithm. Implementation of the NeSOS algorithm 

in solving more complex engineering problems will 

be further work. 
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