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Abstract: In this paper, a new meta-heuristic algorithm, called Squirrel Search Optimizer (SSO) is applied to solve 

various types of economic load dispatch (ELD) problems. The SSO mimics the foraging behavior of squirrels which 

is based on the dynamic jumping and gliding strategies. In SSO algorithm, predator presence behavior and a seasonal 

monitoring condition are employed to increase the search ability of the algorithm, and to balance the exploitation and 

exploration. The key idea of the suggested approach is to determine the optimal generation scheduling by 

minimizing total generation cost of units while satisfying various constraints such as power balance constraint, 

prohibited operating zones (POZ), ramp rate constraints and operating limits of generators. The different generating 

unit’s characteristics, quadratic fuel cost function, non-convex fuel cost function and multiple fuel options (MFO) 

are also considered. The feasibility of the proposed algorithm is tested on four different power test systems having 

different sizes and intricacies. The results are examined in terms of both solution quality and the computational 

efficiency, and compared with the other approaches in the literature. The comparisons prove the robustness and 

effectiveness of the proposed algorithm and show that it could be used as a consistent optimizer for solving various 

ELD problems. 

Keywords: Economic load dispatch, Meta-heuristic algorithm, Non-convex fuel cost function, Squirrel search 

algorithm, Valve point effect. 

 

 

1. Introduction 

1.1 Motivation   

ELD is one of the most important concerns to be 

solved for a power system to operate smoothly and 

economically. It is a process of sharing the total load 

on a power system between different generating 

plants in order to achieve the greatest operating 

economy. Traditionally, the cost-power 

characteristics of the generating units considered in 

the ELD problem are approximated by a quadratic 

function which does not take into account the valve 

point loading (VPL) and the POZ. In order to 

increase the accuracy of the ELD modeling, the 

VPL effects, and POZ are considered in the cost-

power characteristics of the generating units. The 

VPL effects and POZ will determine non-convex 

and non-smooth cost characteristics, and the 

searching space of the solutions will have multiple 

minimum points with discontinuities. Thus, the 

optimizing model of the ELD problem is non-linear 

with discontinuities and needs adequate solving 

approaches. 

1.2 Literature survey 

In the past decades, many optimization 

approaches including mathematical programming 

techniques and heuristic algorithms have been 

applied for solving the ELD problem. The 

conventional mathematical optimization techniques 

such as linear programming algorithms [1], dynamic 

programming algorithms [2], Lagrangian relaxation 

algorithms [3] etc. have been implemented to ELD 
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issues. The classical calculus-based methods cannot 

perform satisfactorily to solve ELD problems due to 

highly non-linear features of the problem and a large 

number of constraints.  These conventional 

techniques are failed to handle the ELD problem 

with non-smooth fuel cost function due to VPL 

effects.  

To conquer the intricacies raised by the 

conventional techniques and to obtain the best 

possible solutions, different approaches based on 

artificial intelligence were developed and 

successfully applied to solve the ELD problem. 

These heuristic algorithms are used in their unique 

form, improved or hybridized with other algorithms.  

Gaing proposed Particle Swarm Optimization (PSO) 

to solve the ELD problem in power systems and 

compared with Genetic Algorithm (GA) [4]. Several 

nonlinear characteristics of the generator, such as 

ramp rate limits, POZs, and nonsmooth cost 

functions were considered.  The GA and PSO are 

habitually trapped into local optima when applied to 

the ELD problem with VPE effects. Sakthivel [5] 

proposed a new PSO with Nature Inspired Dynamic 

Inertia Weight (PSO-NIDIW) to solve the ELD 

problem of power systems. In PSO-NIDIW, the 

inertia weight was naturally adapted on the basis of 

the improvement in the best fitness of the particles 

as the search process progresses. In [6], Firefly 

Algorithm (FA) was used to determine optimal 

solutions for the ELD problems. FA emulates the 

social conduct of fireflies dependent on their blazing 

qualities. Dubey, Pandit, and Panigrahi [7] presented 

Modified Flower Pollination Algorithm (MFPA) to 

deal the ELD problems. In the MFPA, neighborhood 

fertilization of FPA was constrained by a scaling 

component and a concentrated exploitation stage 

was added to determine the best solutions. Sakthivel 

and Sathya [8] introduced Glowworm Swarm 

Optimization (GSO) for solving the ELD problems 

with nonlinear characteristics.  The GSO was a 

derivative-free, meta-heuristic optimization 

algorithm that inspired as its agents the swarm of 

glowworms. The agents were considered the 

prospective solutions to the ELD problem. A 

continuous version of Quick Group Search 

Optimizer (QGSO) algorithm was proposed to 

realize the ELD formulation with VPL effect, POZs, 

transmission losses and ramp-rate limits [9]. The 

searching strategy of PSO algorithm was used to 

update the scrounger locations. Cuckoo Search 

Algorithm (CSA) was developed for solving both 

convex and nonconvex ELD problems [10, 11]. It 

was inspired from the obligate brood parasitism of 

some cuckoo species by laying their eggs in the 

nests of other host birds of different species. In [12], 

the ELD problems were solved by using Krill Herd 

Algorithm (KHA). Furthermore, the performance of 

the KHA approach was enhanced by crossover and 

mutation operations of Differential Evolution (DE). 

Different variants of the KHA were applied to small, 

medium and large scale power systems. Ghorbani, 

and Babaei [13] implemented Exchange Market 

Algorithm (EMA) to solve the ELD problems with 

practical constraints. The EMA approach was 

inspired by the stock exchange trading technique. 

This algorithm used two searcher and two absorbent 

operators for individuals to be absorbed to the elite 

person, which resulted to creation and organization 

of random numbers. Backtracking Search Algorithm 

(BSA) [14] was introduced to deal the ELD 

problems with VPL impacts and MFOs. The BSA 

used crossover and mutation operators to explore the 

search domain. These operators are completely 

different from the GA and evolutionary 

programming. A new physics inspired approach, 

Franklin’s and Coulomb's laws inspired algorithm 

(CFA) [15] was also developed to determine the 

global solutions of optimal ELD problems in power 

system. CFA was based on the impact of electrically 

charged particles on each other due to electrical 

attraction and repulsion forces. 

1.3 Contributions 

Recently, a new meta-heuristic algorithm, 

named Squirrel search optimizer (SSO) algorithm 

was proposed by Jain, Singh, and Rani [16]. The 

SSO algorithm models the foraging activities of 

squirrel individuals. Each squirrel individuals 

modifies its position using four processes namely, 

(1) distributing the population, (2) dynamic foraging 

behavior, (3) seasonal adapting intelligence and (4) 

random repositioning of individuals at the end of 

winter season. The unique features of the SSO 

algorithm are as follows: 

• The gliding constant is used in the location 

update of squirrels which provides suitable 

steadiness between exploration and exploitation. 

• The predator presence behavior is employed to 

abruptly change the location of squirrel which 

enhances the exploration ability of algorithm. 

• A seasonal monitoring condition is used to 

prevent the suggested algorithm from being 

trapped in local optimal solutions. 

• Levy distribution is used to find new solutions 

far away from the current best solution which 

improves the global exploration ability of the 

algorithm. 

These features make SSO algorithm able to 

overcome the normal drawbacks of other algorithms 



Received:  April 20, 2020.     Revised:  May 22, 2020.                                                                                                     113 

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020           DOI: 10.22266/ijies2020.1031.11 

 

such as premature convergence, inadequate ability 

to discover to find nearby extreme points and 

absence of efficient constraints handling mechanism. 

The advantages of SSO algorithm are less execution 

time, ability to solve different complex optimization 

problems and high capacity in obtaining global 

optimum solutions. 

 To the best of authors’ knowledge, 

application of the SSO approach for ELD problems 

in power system has not yet been reported. In this 

paper, SSO is developed for solving various types of 

ELD problems in which different types of 

constraints along with the VPL effects and MFO. 

The effectiveness of SSO approach is validated by 

employing extensive test cases and comparing the 

results with those obtained by other techniques 

reported in the literature. 

1.4 Paper structure 

The remainder of the paper is organized as 

follows: Section 2 presents the ELD problem 

formulation. Sections 3 and 4 describe the SSO 

approach and implementation of the suggested 

approach to the ELD problem respectively. The 

description of the test system, existing heuristic 

approaches used for comparison, experimental 

results and comprehensive analysis are elaborated in 

Section 5, and the concluding remarks are given in 

Section 6. 

2. ELD problem formulation 

The goal of the ELD problem is to find an 

optimal power generation schedule while 

minimizing fuel costs and also satisfying the 

operating constraints of different power systems. 

2.1 Objective function 

The problem with ELD is formulated as follows: 

  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑ 𝐹𝑖(𝑃𝑖)
𝑛𝑔
𝑖=1        (1)   

 

The generator's quadratic fuel cost function is 

defined by: 

 

 𝐹𝑖(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2   (2) 

 

The sequential valve opening in multi-valve 

steam turbines generates rippling effect on the fuel 

cost curve of the generator. To model an accurate 

and practical ELD solution, this VPL effects should 

be included in the fuel cost function as shown in 

  

 
Figure. 1 Fuel cost curve with VPL impacts 

 

 
Figure. 2 Fuel cost curve with VPL and MFO impacts 

 

Fig. 1.  Then the fuel cost function of each 

generating unit is expressed in the non-convex form 

as follows. 

 

 𝐹𝑖(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖𝑃𝑖 + 𝑐𝑖𝑃𝑖
2 + 

               |𝑑𝑖 × sin (𝑒𝑖 × (𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖))|               (3) 

 

Furthermore, there are few generating units supplied 

with multiple fuels. In those cases, the fuel cost 

function of each unit is represented by a piecewise 

function. To model an accurate and practical ELD 

solution, VPL effects and MFO should be comprised 

in the cost function which is formulated as follows: 

 

𝐹𝑖(𝑃𝑖) = 𝑎𝑖𝑗 + 𝑏𝑖𝑗𝑃𝑖 + 𝑐𝑖𝑗𝑃𝑖
2 + 

        |𝑑𝑖𝑗 × sin (𝑒𝑖𝑗 × (𝑃𝑖,𝑚𝑖𝑛 − 𝑃𝑖))|                    (4)  

 

if  𝑃𝑖𝑗,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖𝑗,𝑚𝑎𝑥, j= 1, . . ., nf 

The fuel cost function with VPL impacts and 

MFO are depicted in Fig. 2. 
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2.2 System constraints 

2.2.1. Power balance constraints 

The generators' complete power output must be 

equal to the sum of power requirements and 

complete transmission losses and is provided by: 

 

 ∑ 𝑃𝑖 = 𝑃𝐷 + 𝑃𝐿
𝑛𝑔
𝑖=1     (5) 

 

The transmission losses are expressed as 

 

𝑃𝐿 = ∑ ∑ 𝑃𝑖
𝑛𝑔
𝑗=1 𝐵𝑖𝑗

𝑛𝑔
𝑖=1 𝑃𝑗 + ∑ 𝐵0𝑖

𝑛𝑔
𝑖=1 𝑃𝑖 + 𝐵00 (6) 

2.2.2. Generator capacity constraints 

Each unit's output power needs to be restricted 

by limiting inequality between its limits. This 

constraint is represented by  

 

 𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥     (7) 

2.2.3. Ramp rate constraints 

The operating range of all generating units is 

practically restricted by their ramp rate limits to 

operate continually between two closest specific 

operating zones. The power output of all generating 

units is controlled by the ramp rate constraint and is 

provided as follows: 

 

                 𝑃𝑖 − 𝑃𝑖
0 ≤ 𝑈𝑅𝑖  

                𝑃𝑖
0 − 𝑃𝑖 ≤ 𝐷𝑅𝑖       (8) 

2.2.4. Prohibited operating zone 

The POZs are due to steam valve operation or 

vibrations in the shaft bearings. The viable operating 

zones of unit j can be defined as follows: 

 

        𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,1
𝐿   

 𝑃𝑖,𝑘−1
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑘

𝐿          k = 2, . . .. nz 

             𝑃𝑖,𝑛𝑧
𝑈 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥    (9) 

3. Squirrel search optimizer 

The hunt procedure starts when flying squirrels 

begin scavenging [16]. During fall, the squirrels 

look for nourishment assets by skimming from one 

tree to the next. At the same time, they change their 

area and investigate various regions of woods. As 

the climatic conditions are sufficiently hot, they can 

meet their every day vitality needs more rapidly on 

the eating routine of oak seeds accessible in bounty 

and thus they devour oak seeds quickly after 

discovering them. Subsequent to satisfying their day 

by day vitality prerequisite, they begin scanning for 

ideal nourishment hotspot for winter (hickory nuts). 

Capacity of hickory nuts will help them in keeping 

up their vitality prerequisites in amazingly brutal 

climate and decrease the expensive searching 

excursions and in this way increment the likelihood 

of endurance. 

During winter, lost leaf spread in deciduous 

woodlands results an expanded danger of predation 

and thus they become less dynamic yet don't sleep in 

winter. Toward the finish of winter season, flying 

squirrels again become dynamic. This is a 

monotonous procedure and proceeds till the life 

expectancy of a flying squirrel and structures the 

establishment of SSO.  

The SSO refreshes the places of squirrels as 

indicated by the ebb and flow season, the sort of 

squirrels and if chasers show up. 

3.1 Instate the population  

Expecting that the quantity of the populace is N, 

the upper and lower limits of the pursuit space are 

XU and XL. N squirrels are arbitrarily created as 

follows: 

 

   𝑋𝑖 = 𝑋𝐿 + 𝑟𝑎𝑛𝑑(1, 𝐷) × (𝑋𝑈 − 𝑋𝐿)          (10) 

 

where, Xi indicates the ith squirrel, (i = 1 : N); 

rand is an random number somewhere in the range 

of 0 and 1; D is the measurement of the issue.  

3.2 Group the population  

SSO requires that there is just a single squirrel at 

each tree, accepting the absolute number of the 

squirrels is N, subsequently, there are N trees in the 

woods. All the N trees contain one hickory tree and 

Na oak seed trees; the others are typical trees that 

have no nourishment. The hickory tree is the best 

nourishment asset for the squirrels and the oak seed 

tree comes in just short of the win. Positioning the 

fitness estimations of the populace in rising request, 

the squirrels are separated into three kinds:  

• squirrels situated at hickory trees (Wh),  

• squirrels situated at oak seed trees (Wa) and  

• squirrels situated at ordinary trees (Wn).  

3.3 Refresh the location of squirrels  

The squirrels refresh their situations by 

skimming to the hickory trees or oak seed trees as 

follows: 

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑑𝑔𝐺𝑐(𝑋𝑎𝑖

𝑡 − 𝑋𝑖
𝑡)      𝑖𝑓 𝑟1 ≥ 𝑃𝑑𝑝 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (11)   



Received:  April 20, 2020.     Revised:  May 22, 2020.                                                                                                     115 

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020           DOI: 10.22266/ijies2020.1031.11 

 

   𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑑𝑔𝐺𝑐(𝑋ℎ

𝑡 − 𝑋𝑖
𝑡)     𝑖𝑓 𝑟2 ≥ 𝑃𝑑𝑝 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12)   

                                               

Pdp is esteemed at 0.1 indicates the chaser 

likelihood. In the event that r > Pdp, at that point no 

chaser shows up, the squirrels coast in the 

backwoods to discover the nourishment, and the 

squirrels are protected; if r <  Pdp, the chasers show 

up, the squirrels are compelled to limit the extent of 

exercises, the squirrels are imperilled, and their 

locations are migrated arbitrarily. dg is the skimming 

separation that can be determined by  

   

 𝑑𝑔 =
ℎ𝑔

tan ∅
                (13) 

 

where, hg is the consistent esteemed 8; tan (ɸ) 

indicates the coasting point that can be determined 

by  

tan ∅ =
𝐷

𝐿
                (14) 

 

The drag power and lift power can be estimated 

as follows: 

 

𝐷 =
1

2𝜌𝑉2𝑆𝐶𝐷
               (15) 

 

𝐿 =
1

2𝜌𝑉2𝑆𝐶𝐿
                  (16) 

3.4 Occasional changeover verdict and arbitrary 

refreshing  

Toward the start of every generation, the SSO 

necessitates that the entire populace is in winter, 

which implies all the squirrels are refreshed by Eqs. 

(11) and (12)  At the point the squirrels are refreshed, 

regardless of whether the season change is decided 

by the following formulae. 

  

𝑆𝑐
𝑡 = √∑ (𝑋𝑎𝑖,𝑘

𝑡 − 𝑋ℎ,𝑘
𝑡 )

2𝑑
𝑘=1   𝑖 = 1,2, . . , 𝑁𝑎    (17)

                 

𝑆𝑚𝑖𝑛 =
10𝑒−6

(365)𝑡 (𝑡𝑚𝑎𝑥 2.5⁄ )⁄               (18) 

 

If Stc < Smin, winter is finished and the season 

goes to summer, something else, the season is 

unaltered. At the point when the season goes to 

summer, all the people who float to Wh remain at the 

refreshed area, and all the squirrels who skim to Wa 

and don't meet with chasers  move their situations as 

follows:  

𝑋𝑖𝑛𝑒𝑤
𝑡+1 = 𝑋𝐿 + 𝐿𝑒′𝑣𝑦(𝑥) × (𝑋𝑈 − 𝑋𝐿)         (19)  

𝐿𝑒′𝑣𝑦(𝑥) = 0.01 ×
𝛼×𝑟𝑎

|𝑟𝑏|
1
𝛽

               (20) 

Le’vy is the arbitrary walk model whose 

progression complies with the Le’vy appropriation 

and can be determined by  

 

𝐿𝑒′𝑣𝑦(𝑥) = 0.01 ×
𝛼×𝑟𝑎

|𝑟𝑏|
1
𝛽

                          (21)   

α is determined as 

𝛼 = [
Γ(1+𝛽)×sin(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×β×2

(
β−1

2
)
]

1

𝛽

                        (22) 

4. Implementation of  SSO to ELD 

problems 

In this article, the proposed SSO algorithm is 

developed and effectively implemented for solving 

different types of ELD problems.  The different 

steps of SSO algorithm for solving ELD problems 

are described below. 

 

Step 1: Generate the generation values randomly 

within the specified limits for every 

generating unit in each solution or squirrel 

as follows 

 

   [

𝑃1

𝑃2

⋮
𝑃𝑛

] =

[
 
 
 
𝑃1,1 𝑃1,2 ⋯ 𝑃1,𝑛𝑔

𝑃2,2 𝑃2,2 ⋯ 𝑃2,𝑛𝑔

⋮ ⋮ ⋯ ⋮
𝑃𝑛,1 𝑃𝑛,2 ⋯ 𝑃𝑛,𝑛𝑔]

 
 
 

          (23) 

 

Step 2: Apply the renovate strategy to satisfy the 

power balance constraint and modify the 

generation value for POZ constraint 

violation. 

Step 3: Evaluate the objective values of all the 

squirrels using Eq. (3). 

Step 4: Sort the fitness values of each squirrel’s 

location in ascending order. 

Step 5: Declare the flying squirrel with minimal 

fitness value is on the hickory nut tree 

(optimal food source), the next three best 

flying squirrels are on the acorn tree 

(normal food source) and the remaining 

squirrels are on the normal trees (no food 

source). 

Step 6: Update the position of squirrels which are 

on the acorn and normal trees as described 

in Section 3.3.  
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Step 7: Randomly relocate the positions of some 

squirrels when seasonal monitoring 

condition is satisfied.  

Step 8: If the maximum number iterations are 

reached, output the location of squirrel on 

hickory nut tree as the optimal solution for 

the ELD problem. Otherwise go to Step 2. 

5. Simulation results 

To evaluate the effectiveness of the newly 

developed meta-heuristic algorithm, SSO, the ELD 

problems with smooth and non-smooth quadratic 

cost functions, transmission losses, ramp rate limits, 

VPL effects and MFO are solved, and four different 

power test systems with different sizes and 

intricacies are considered. The ELD problems are 

implemented in Matlab 7.1 and executed on an Intel 

core i3 processor with 4GB RAM personal 

computer. The results obtained using SSO algorithm 

are compared with results of other methods reported 

in literature.  In order to compare the performance of 

the SSO, the 50 independent runs are made and the 

results of the minimum, maximum and mean fuel 

costs and standard deviation are tabulated for each 

test system. The parameter settings of the proposed 

SSO are as follows: 

• Number of hickory tree = 1 

• Number of acorny  trees, Na  = 3 

• Number of trees (Population size) = 20 

• Maximum number of generations, tmax = 100 

• Gliding constant ,  Gc = 1.9 

• Density of air, ρ = 1.204 kgm-3 

• Speed, V = 5.25 ms−1 

• surface area of body S = 154cm2 

• Drag coefficient CD  = 0.6 

• Lift coefficients CL =  0.675 ≤ CL ≤ 1.5  

5.1 Description of the test systems 

The SSO is applied on four different power 

systems: (1) System with 6-unit system with POZs, 

ramp rate limits and transmission losses; (2) 10-unit 

system with VPL and MFOs; (3) 40-unit system 

with VPL impacts; (4) 140-units system with VPL 

impacts. 

5.2 Brief overview of compared heuristic 

approaches  

Results of the SSO algorithm are compared with 

the following heuristic approaches. 

BSA [14]: The BSA utilizes three essential 

genetic operators: selection, mutation and crossover 

to create new individuals. It has a random mutation 

method which utilizes one direction individual for 

each target individual, in contrast with the GA and 

DE approaches.  

CFA [15]: The CFA algorithm is derived from 

the Coulomb’s and Franklin’s theories, and 

comprises attraction/repulsion, probabilistic 

ionization, and contact phases. 

CSA [10, 11]: CSA is inspired from the obligate 

brood parasitism of some cuckoo species by laying 

their eggs in the nests of other host birds of other 

species. It is glorified such breeding conduct in 

combination with Lévy flights behavior of some 

birds and fruit flies for applying to different 

optimization problems. 

EMA [13]: This algorithm is inspired by the 

financial exchange wherein the investors purchase 

and sell any kinds of shares under various economic 

situations. In contrast to different algorithms, this 

algorithm has two searcher and two absorbent 

operators which empower the algorithm to search 

around the optimum solution. 

FA [6]: FA is inspired by the glimmering 

behavior of fireflies in the summer sky in the 

tropical temperature regions. It depends on the 

following glorified conduct of the flashing 

characteristics of fireflies: all fireflies are unisex; the 

level of attractiveness of a firefly is proportional to 

its brightness; and the brightness of a firefly is 

evaluated by objective function value of a given 

problem. 

FPA [7]: FPA is mimicked by pollination 

procedure of blooming plants in nature. It adopts the 

conduct of blossoming plants for the solution of 

constrained optimization problems. 

GSO [9]: GSO is inspired by animal searching 

behavior which depends on the producer-scrounger 

model. Animal scanning methods are utilized 

figuratively to model optimum searching strategies 

to solve continuous optimization problems. 

KHA [12]: KHA is based on the herding 

behavior of krill individuals. Each krill individuals 

modify its position using three processes as follows:  

movement induced by other individuals; foraging 

motion; and random physical diffusion. It is also 

combined with opposition based learning to improve 

the convergence speed of the basic KHA algorithm 

[17]. 

PSO-NIDIW [5]: PSO is inspired by the social 

behavior of bird flocking and fish schooling, 

whereas NIDIW is mimicked by the social behavior 

of humans which is proposed to cogently balance 

the global exploration and local exploitation abilities 

for PSO. The performance of the PSO-NIDIW 

algorithm is improved by this fine strategy of 

naturally adjusting dynamic inertia weight. 
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5.3 Performance comparison 

5.3.1. Test system 1 

In this test system, a standard six generating 

units with a power demand of 1263 MW is 

considered. This test system ponders the 

transmission loss, ramp rate limits and POZ effects. 

The system data, loss formula coefficients and cost 

coefficients are given in Ref. [4]. The optimal 

generation schedule, fuel cost and transmission loss 

obtained by the SSO are depicted in Table 1. It is 

evident from Table 1 that the proposed SSO 

approach minimizes the fuel cost function without 

violating the system constraints such as ramp rate 

and POZ limits. The minimum, mean and maximum 

fuel costs and standard deviation obtained by SSO 

algorithm are compared with the other approaches in 

Table 2. It is seen that the minimum, mean and 

maximum fuel costs obtained by the SSO algorithm 

are very close to each other which proves the 

robustness of the proposed approach. Furthermore, 

SSO algorithm provides lesser standard deviation 

than the compared original, improved and hybrid 

algorithms which confirms the stability of the 

proposed approach. 

5.3.2. Test system 2 

The SSO algorithm is applied to solve the ELD 

problem for a 10 units system with VPL effects and  

 
Table 1. Optimal generations schedule of various 

algorithms for test system 1 

Unit (MW) SSO 

P1 447.0936 

P2 172.9299 

P3 263.9487 

P4 138.6932 

P5 164.9655 

P6 87.7593 

PL 12.3902 

Minimum cost ($/h) 15442.4 

 
Table 2. Comparison and statistical analysis of various 

algorithms for test system 1 

Approach 
Min. cost 

($/h) 

Mean cost 

($/h) 

Standard 

deviation 

BSA [14] 15449.8995 15449.9001 - 

PSO-

NIDIW [5] 
15449 15449 - 

GSO [9] 15,448 15450  

CSA [11] 15443.08 - - 

KHA [12] 15443.0752 15443.1863 - 

EMA [13] 15443.075 15443.075 - 

CFA [15] 15442.6553 15442.6735 0.0119 

SSO 15442.4 15442.6 0.0352 

Table 3. Optimal generations schedule of various 

algorithms for test system 2 

Unit (MW) 
Fuel 

Types 
SSO 

P1 2 218.5032 

P2 1 212.3104 

P3 1 280.4736 

P4 3 239.5643 

P5 1 278.5875 

P6 3 239.7953 

P7 1 288.0741 

P8 3 239.8211 

P9 3 426.4850 

P10 1 276.0857 

Minimum 

cost ($/h) 
623.7129 

 
Table 4. Comparison and statistical analysis of various 

algorithms for test system 2 

Approach 
Min. cost 

($/h) 

Mean cost 

($/h) 

Standard 

deviation 

CFA [15] 623.9576 623.9702 0.0105 

BSA [14] 623.9016 623.9757 - 

CSA [10] 623.8684 623.9495 0.2438 

SSO 623.7129 624.2592 0.126 

 

MFO in which the transmission line losses are 

neglected. The power demand of this system is 

chosen as 2700 MW. 

The system data and concerned constraints 

values of this test system are taken from Ref. [5].  

Table 3 confers the best power dispatch schedule 

with optimum fuel types and settings using various 

heuristic approaches. The fuel cost obtained by SSO 

approach is 623.7129 $/h with no constraints 

violation that indicates high accuracy of the 

proposed approach. The statistical results of 

minimum, mean and maximum fuel costs, standard 

deviation and CPU time are summarized in Table 4, 

which show that the SSO approach obtains better 

quality solutions than the compared algorithms and 

has a good stability in the 50 independent runs. 

Furthermore, it is noticed that the proposed SSO is 

faster than the other optimization approaches 

available in the literature. 

5.3.3. Test system 3 

This system consists of 40 units with VPL 

effects. The system data is adopted from Ref. [14]. 

The power demand is 10,500 MW. Table 5 

compares obtained results by the proposed SSO 

algorithm with the other state of the art optimization 
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Table 5. Optimal generations schedule of SSO algorithm 

for test system 3 

Unit 
Output 

power (MW) 
Unit 

Output 

power (MW) 

P1 110.8020 P21 523.27668 

P2 110.8020 P22 523.27658 

P3 97.3983 P23 523.27789 

P4 179.7113 P24 523.27688 

P5 87.8014 P25 523.2768 

P6 140 P26 523.2768 

P7 259.5986 P27 10.00 

P8 284.5886 P28 10.00 

P9 284.5886 P29 10.00 

P10 130.00 P30 87.7979 

P11 94 P31 190 

P12 94 P32 190 

P13 214.7583 P33 190 

P14 394.2798 P34 164.7987 

P15 394.2798 P35 194.3694 

P16 394.2798 P36 200 

P17 489.2813 P37 110 

P18 489.2813 P38 110 

P19 511.2789 P39 110 

P20 511.2789 P40 511.2769 

Minimum 

cost ($/h) 
121412.3477 

 

Table 6. Comparison and statistical analysis of various 

algorithms for test system 3 

Approach 
Min. cost 

($/h) 

Mean cost 

($/h) 

Standard 

deviation 

FA [6] 121415.05 121416.57 1.784 

FPA [7] 121414.6184 121441.2461 - 

KHA [12] 121412.5991 121413.1454 - 

EMA [13] 121412.5355 121417.1328 - 

SSO 121412.3477 121412.9743 0.5864 

 

 

techniques. From Table 5, it is seen that the 

minimum fuel cost obtained by the SSO algorithm is 

lower than the other approaches. The minimum fuel 

cost obtained by SSO algorithm is 121412.347706 

$/hr. Table 6 imparts the comparison of the 

statistical results of the SSO and other heuristic 

algorithms. In this case, the SSO algorithm 

outperforms all the other algorithms in terms of 

obtaining better solution quality with less 

computational effort. 

5.3.4. Test system 4 

This system, namely Korean power system is a 

large scale test case which consists of 140 

generating units. This test system is fossil fuel based 

power system in which 40 thermal units, 51 gas 

units, 20 nuclear units and 29 oil units are 

incorporated. 

The VPL effects are considered in 6 thermal 

units, 4 gas units and 2 oil units. The POZs are 

deliberated in 4 generating units. The input data are 

taken from Ref. [19]. The total demand is 49,342 

MW. The optimal dispatch solution with proposed 

SSO algorithm is conferred in Table 7. The 

minimum, mean and maximum fuel costs, standard 

deviation and CPU time among 50 runs of solutions 

obtained from proposed SSO, GSO [9], CQGSO [9], 

CSA [11], KHA [17] and OKHA [17] are compared 

in Table 8. It is noticeable from Table 8 that the fuel 

cost acquired by using SSO is the lowest among all 

other approaches. 

5.3.5. Convergence and computational efficiency 

Fig. 3 shows the convergence characteristics of 

SSO algorithm for test system 4. It can be seen that 

the SSO is congregate to the optimal solutions in 

earlier iterations even in large scale power system 

(test system 4) and confirms the fast convergence 

speed of the proposed approach. The average CPU 

times of SSO approach for different power systems 

are shown in Fig. 4. It is observed from Tables 2, 4, 

6 and 8, the fuel costs achieved by the SSO 

algorithm are lesser than the reported approaches in 

the literature. Also, the SSO approach is also 

computationally efficient. 

5.3.6. Robustness 

From Tables 2, 4, 6 and 8, it is perceptible that 

the minimum fuel cost obtained by SSO approach is 

least compared with other heuristic techniques 

highlighting its better solution quality. The 

dissemination of the fuel cost obtained by SSO 

algorithm for test system 4 in 50 independent runs 

are shown in Fig. 3. From Fig. 5, the minimum fuel 

cost obtained by SSO algorithm in 50 independent 

runs for test system 4 is in the range of 1559.818 to 

1559.875k $/hr. The occurrence of attaining the fuel 

costs within the mean cost is also the highest. Thus 

the SSO algorithm is robust and more stable in 

accomplishing the feasible solutions. 

This is due to the realistic modelling of 

determination capacity of squirrels for optimal food 

sources. The squirrels search around the region of 

recently updated solutions which gives sufficient 

exploitation. Additionally, the unification of 

characteristics such as predator presence probability 

and seasonal monitoring conditions provide proper 

balance between the exploration and exploitation in 

the search domain. 
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Table 7. Optimal generations schedule of SSO algorithm for test system 4 

Unit 
Output 

power (MW) 
Unit 

Output 

power 

(MW) 

Unit 

Output 

power 

(MW) 

Unit 

Output 

power 

(MW) 

Unit 

Output 

power 

(MW) 

P1 116.5799 P29 501 P57 103 P85 115 P113 94 

P2 189 P30 501 P58 198 P86 207 P114 94 

P3 190 P31 506 P59 312 P87 207 P115 244 

P4 190 P32 506 P60 281.1698 P88 175 P116 244 

P5 168.6899 P33 506 P61 163 P89 175 P117 244 

P6 190 P34 506 P62 95 P90 175 P118 95 

P7 490 P35 500 P63 160 P91 175 P119 95 

P8 490 P36 500 P64 160 P92 580 P120 116 

P9 496 P37 241 P65 490 P93 645 P121 175 

P10 496 P38 241 P66 196 P94 984 P122 2 

P11 496 P39 774 P67 490 P95 978 P123 4 

P12 496 P40 769 P68 488.6475 P96 682 P124 15 

P13 506 P41 3 P69 130 P97 720 P125 9 

P14 509 P42 3 P70 233.8972 P98 718 P126 12 

P15 506 P43 248.8932 P71 137 P99 720 P127 10 

P16 505 P44 247.3674 P72 326.0975 P100 964 P128 112 

P17 506 P45 250 P73 195 P101 958 P129 4 

P18 506 P46 250 P74 175 P102 1007 P130 5 

P19 505 P47 240.6137 P75 175 P103 1006 P131 5 

P20 505 P48 250 P76 175 P104 1013 P132 50 

P21 505 P49 250 P77 175 P105 1020 P133 5 

P22 505 P50 250 P78 330 P106 954 P134 42 

P23 505 P51 165 P79 531 P107 952 P135 42 

P24 505 P52 165 P80 531 P108 1006 P136 41 

P25 537 P53 165 P81 395.7215 P109 1013 P137 17 

P26 537 P54 165 P82 56.9652 P110 1021 P138 7 

P27 549 P55 180 P83 115.3572 P111 1015 P139 7 

P28 549 P56 180 P84 115 P112 94 P140 27 

Minimum 

cost ($/h) 
1559818.7289     

  
  

 
Table 8. Comparison and statistical analysis of various 

algorithms for test system 4 

Approach 
Min. cost 

($/h) 

Mean cost 

($/h) 

Standar

d 

deviation 

GSO[9] 
1728151.168

0 

1745514.997

5 
- 

CQGSO[9

] 
1657962.727 1657962.741 - 

CSA [11] 1655746.14 1655904.66 592.7 

KHA [17] 1560173.88 
1560176.744

8 
- 

OKHA[17] 1560146.95 
1560148.926

4 
- 

SSO 
1559818.728

9 

1559839.583

2 
2.32 

 

 
Figure. 3 Convergence characteristic of SSO algorithm 

for test system 4 
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Figure. 4  Average CPU times of SSO algorithm for 

approach test systems 

6. Conclusion 

In this paper, a new meta-heuristic swarm 

approach based on squirrel search optimizer (SSO) 

algorithm is successfully employed to solve the 

different types of ELD problems. Many nonlinear 

generator characteristics such as POZs, ramp rate 

limits, VPL effects and MFOs are taken into 

 

 
Figure. 5 Dissemination of fuel costs of the SSO 

approach for test system 4 in 50 different trials 

 

 

consideration. In SSO, the predator presence 

behavior and a seasonal monitoring condition are 

incorporated to update the position of squirrel in a 

better way, which enhances the exploration and 

exploitation search abilities of the algorithm 

significantly. Moreover, the global search ability of 

the algorithm is further enhanced by Levy 

distribution. The efficacy of SSO algorithm is 

studied on four different test systems with various 

complexities, and the results are compared with 

other state-of-the-art heuristic approaches surfaced 

in the literature. The simulation results demonstrate 

that the SSO algorithm is superior to the other 

compared algorithms in terms of fuel costs, and 

standard deviation values. In addition, SSO has 

obvious advantages in terms of convergence rate.  

Then the robustness of the SSO algorithm is 

analyzed in fifty independent runs. In summary, 

these findings confirm that the suggested SSO 

approach is significantly better than the other 

algorithms. As a scope of further research, the SSO 

algorithm can be applied for solving complex unit 

commitment and dynamic ELD problems. 
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Nomenclature 

ai, bi, ci   cost coefficients of the unit i  

aij, bij, cij,  cost coefficients of the unit i for  

  fuel type j 

Bij,B0i, and B00 B-matrix coefficients for  

  transmission losses 
CD   frictional drag coefficient 

CL   frictional lift coefficient 

dg   gliding distance 
D   drag force 

ei and fi   cost coefficients of the VPL effect 

  of unit i 

eij and fij   cost coefficients of the VPL effect 

  of unit i for fuel type j 

Fi (Pi)  total fuel cost of the generators 

Gc  Gliding constant 

hg  gliding height 

k   index of prohibited zone 
L   lift force 

ng   total number of generating units 

nf   number of fuel types for each unit 

nz  total number of POZs  

Pdp   predator presence probability 

PD  power demand 

Pi  Power generation of ith unit 

P i, min, P i, max    minimum and maximum generation 

  of unit i 

PL  transmission losses  
ra and rb  randomly distributed numbers in [0, 1] 

r1, and r2 random numbers in the range of [0, 1] 
Smin   minimum value of seasonal constant 

S  surface area of the body 

t   current iteration value 
tmax   maximum iteration value 
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tan (ɸ)   gliding angle 

URi , DRi  up and down ramp limits of ith unit 

  respectively 
V  speed 

Xa   position of squirrel individual which 

  reached the acorn tree 

Xh   position of squirrel individual which 

  reached the hickory tree 

XL , XU   lower and upper bounds of squirrel 

  individual 
ρ  density of air 

β   constant  
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