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Abstract: In this paper, a battery model suitable for electric vehicle application is analyzed. Open circuit voltage is 

described by an adaptation of Nernst equation. Thevenin circuit is used to depict the instantaneous and transient regime. 

Hysteresis effect is outlined by a zero-state correction term. We propose a new algorithm AFFRLS (adaptive forgetting 

factor recursive least squares) to extract the parameter of the battery model, then to predict the output voltage, and 

compare it to the original FFRLS (forgetting factor recursive least squares). To evaluate these algorithms, we used 

experimental data conducted by CALCE Battery Research Group on the Samsung INR 18650-20R battery cell. We 

fed the data to the algorithms and compared the estimated output voltage for two dynamic tests on MATLAB. Results 

show that AFFRLS has low distribution in high error range up to 4% less than FFRLS, this means that AFFRLS has a 

better parameter identification than FFRLS. 

Keywords: Forgetting factor recursive least squares (FFRLS), Adaptive forgetting factor recursive least squares 
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1. Introduction 

      One of the biggest keys to fighting climate change 

and urban pollution is to bring electricity to 

transportation at a large scale. With more electric 

vehicles on the road, less fuel is burnt and less planet-

heating gases is put out into the atmosphere.                                      

      An electric vehicle relies on a battery to supply 

the energy to different components of the vehicle. 

The most appealing and attractive choice for 

electrical and hybrid electrical vehicles (VE, HEV) 

are   lithium battery.                       

      Battery management system (BMS) ensures good 

operation of the battery. BMS supervises not only the 

battery via different indicators (SOC, SOH…), but 

also guarantees the safety and balance between 

different cells [1].  

      To help improve the system performance and 

reliability, and to lengthen the lifetime span of the 

battery, the battery management system needs to 

accurately predict the state of charge (SOC), as a 

matter of fact the SOC estimation is one of the main 

tasks of a BMS. Precise SOC estimation of the battery 

can avoid unpredicted system interruption and 

prevent the batteries from being overcharged and 

over discharged [1-3], which may cause permanent 

damage to the internal structure of batteries. 

      Kalman filters [2-5], Sliding mode observers [6, 

7], techniques and others have been used heavily to 

estimate battery state of charge. The performance of 

these methods relies heavily on the accuracy of the 

battery model.  

      When the battery is used, some parameters in the 

battery equivalent model change when the working 

conditions change, affected by the factors such as 

ambient temperature, operating conditions, and 

battery aging degree. Therefore, it is necessary to 

accurately identify these parameters.  

      In this context various works were carried out, 

we discuss here the most recent: In [8], parameters of 

a Thevenin model are identified based on the voltage 

response data collected from a battery under constant 

current discharging. From the voltage response, a 

sensitivity analysis allows to analyze the 



Received:  March 31, 2020.     Revised:  May 13, 2020.                                                                                                     75 

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020           DOI: 10.22266/ijies2020.1031.08 

 

identifiability of the parameters. To address 

identification, an optimization problem based on 

nonlinear least squares is formulated, bounds were 

imposed to limit the search space. The problem of 

identification is solved by a trust region method. In 

[9], a third order ECM (equivalent circuit model) is 

used to describe a lithium battery, the coevolutionary 

particle swarm optimization (CPSO) method is 

applied to identify battery parameters. A PIW 

parameter identification window is used to hold a 

piece of data that indicates the battery operation at the 

present moment, and used afterwards by the CPSO to 

identify the battery parameters. To optimize their 

values, each parameter employs a separate parameter 

particle swarm and changes only one step in every 

cycle. In [10], FFRLS (forgetting factor recursive 

least squares) is applied to steadily refresh the 

parameters of a Thevenin model and a nonlinear 

Kalman filter is used to perform the recursive 

operation to estimate SOC (state of charge). In [11] 

an adaptive online estimation algorithm for fractional 

equivalent circuit model is proposed based on the 

theory of fractional order calculus and indirect 

Lyapunov method. In [12], an online parameter 

identification strategy is proposed to track the 

parameters deviation guaranteed by Lyapunov’s 

direct method. Unlike other estimation techniques 

where temperature effects are ignored, the mentioned 

paper proposes a universal compensation strategy 

which can be used with many estimation algorithms. 

In paper [13], a particle filter PF is used to identify in 

real time the battery model parameters with 

consideration of the battery states. Meanwhile, a 

cubature Kalman filter is used to estimate the state of 

charge SOC.  

       The above algorithms are accurate, but a part 

from RLS (recursive least squares), they are 

computationally expensive (CPSO, PF), this infer 

that RLS is much faster [14]. Also, the 

implementation of RLS is easier in the chips which 

suits electric vehicle application. In addition, some of 

the mentioned algorithms (PF, CPSO) need a precise 

model to achieve optimal results, this is not the case 

for RLS.That’s why in this paper we focus on RLS 

technique method which is commonly used for 

system parameter identification [14]. 

      The problem with RLS is the fact that it is 

affected by old data, this means that the generation of 

new data will be affected by old data, which will lead 

to large errors. This is adjusted by introducing a 

forgetting factor into the RLS, so that the proportion 

of old data is reduced when new data is available, and 

the algorithm can converge to the actual value 

quickly [15].  

      Since the forgetting factor is constant, the ability 

and accuracy of dynamic circuit parameters 

identification using FFRLS will be affected when the 

charging and discharging currents change frequently, 

especially when the fluctuations are vigorous, and 

that’s the case for electric vehicle application.  

      In this paper we propose an adaptive expression 

to calculate the forgetting factor and compares it with 

the fixed forgetting factor FFRLS applied to the 

model proposed in [16]. The model is based on the 

one RC Thevenin equivalent model. Open circuit 

voltage (OCV) and state of charge (SOC) relationship 

is described using an adaptation of Nernst equation, 

the model also uses zero state hysteresis correction 

term to describe hysteris phenomenon [16]. 

      We will expose the simulation results carried out 

with MATLAB to verify the performance and 

accuracy of the AFFRLS versus FFRLS algorithm in 

two dynamic profiles: Dynamic stress test (DST), 

and the Federal Urban Driving Schedule (FUDS). 

      The paper is organized as follows: section 2 

describes the model structure used. section 3 reports 

the principle of the adaptive forgetting factor 

proposed. section 4 describes the implementation of 

the proposed on AFFRLS. section 5 reports the 

simulation setup, results and discussion. Finally, 

Section 6 presents the conclusion.  

2. Lithium-Ion battery modeling 

      The battery model is the same as used in [16]. The 

model contains one resistance R2 to simulate the 

instantaneous voltage drop, R2 represents the internal 

resistance of the battery. One parallel RC network to 

describe the transient regime (R1, C1). The open 

circuit voltage (OCV) is described using an 

adaptation of NERNST equation with three 

parameters K0, K1 and K2. sM refers to hysteresis 

effect, s is a function of the current sign in the battery. 

V is the terminal voltage, and M is a coefficient term 

that needs to be identified. 

The equivalent circuit model is shown in Fig. 1. 

The sign s according to [16]: 

 

 
Figure. 1 Battery cell model 
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s(k)= {
1 if  I(k)>ε

-1 if  I(k)<-ε

s(k-1) if | I(k)|≤ε

                                 (1) 

 

      ε is a small positive number and k being the index 

time. 

      In [16] the following discrete time state equations 

are used to calibrate recursively the parameters (K0, 

K1, K2, M, R2, R1, C1) using recursive least square 

with fixed forgetting factor λ: 
 

SOC(k+1)=SOC(k)-
η I(k)Δt

Cn
                               (2) 

 

Cn is the nominal capacity of the battery, ɳ is the 

Coulombic efficiency which is assumed to be 100% 

for discharge and 98% for charge. I(k) is the current 

flowing in and out from the battery, I(k) is positive at 

discharge and negative at charge. ∆t represents the 

sampling time interval. 

 

V(k) = K0(k)+K
1
(k) ln(SOC(k)) + I(k) R2(k)  

+K2 ln(1-SOC(k)) +s(k)M(k)-A(k)U1(k-1) 

-B(k)I(k-1)                                                     (3)                              
 

V(k) is the terminal voltage in sample time k, with: 

 

A(k)= exp (
-Δt

R1(k)C1(k)
)                            (4) 

 

B(k)= R1(k)[1-exp (
-Δt

R1(k)C1(k)
) ]           (5) 

 

      The parameters to be identified (K0, K1, K2, M, 

R2, R1, C1) are grouped in vector θ(k). 
 

θ(k)= [K0(k),K1(k),K2(k),M(k),R2(k),A(k) 

,B(k)]T                                                         (6) 

 

With:  
 

φ(k)=[1, ln(SOC(k)) , ln(1-SOC(k)) ,  s(k), -I(k), 

-U1(k-1),-I(k-1)]                                            (7) 

 

U1(k-1)=K0(k-1)+K1(k-1) ln(SOC(k-1)) + 

K2(k-1) ln(1-SOC(k-1)) +s(k-1)M(k-1)- 

I(k-1)R2(k-1)-U1(k)               (8) 

 

      U1(k-1) represents the previous voltage drop 

across the resistor R1. 

 

G(K)=
P(k-1)φ(k)

λ+φT(k)P(k-1)φ(k)
                                          (9) 

 

P(K)=
P(k-1)-G(k)φT(k)P(k-1)

λ
                                 (10) 

 

      G(K), P(k) represent the gain and error covariance 

matrices respectively. 

      λ is the forgetting factor used to give less weight 

to older data and more weight to recent data. 
 

θ(k)=θ(k-1)+G(k)[V(k)-φT(k)θ(k-1)]         (11) 

 

      In [16], fixed weight forgetting factor FFRLS 

uses the above equation to predict the new parameter 

values stored in θ(k) vector, based on the previous 

values hold on θ(k-1), the gain matrix G(K) and the 

error covariance matrix P(k). 

      The figure below illustrates the schematic 

diagram of the recursive least square method used to 

identify the parameters.  

3. Adaptive forgetting factor 

      The forgetting factor λ assigns weights for old and 

new data and usually takes a constant value between 

0.95 and 1 [13]. λ used in [16] is constant. 

      However, it is expected from the forgetting factor 

to vary adaptively with the identification parameter 

error. especially when the online identification 

parameter error is very large to make the online 

identification have faster convergence speed and 

reduce the identification error [15]. 

      The crucial part of the variable forgetting factor 

least squares algorithm is how to make the forgetting 

factor adaptively change. An adjusted equation 

inspired from [15] to calculate the adaptive forgetting 

factor is proposed to achieve the above goal, it is 

expressed by: 

 

λ(k)= min(λmin+(1-λmin).h
ε(k)

 , 1)              (12) 

 

ε(k)=
e(k)

ebase
                                                           (13) 

 

      λmin is the minimum value of the forgetting factor 

fixed at 0.98 to give better balance between accuracy 

and speed [15]. 

 

 
Figure. 2 Schematic of the recursive least square method   

for battery model update [16] 
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h is a constant coefficient, it indicates the sensitivity 

of the forgetting factor with respect to errors. λ 

changes slowly when h is close to 1 and leads to slow 

response speed. When it is close to 0 itchanges 

sharply, which speeds up the parameter identification 

response, but reduces the accuracy. We used the same 

value 0.9 as in [15]. 

      e(k) is the error at time k, and ebase is chosen based 

on the magnitude of the expected error.  

      The identification parameters are considered 

stable when e(k) error is less than  , λ in this case 

changes to a larger value. When the error of 

identification parameters e(k) is greater than ebase , the 

identification parameters are considered unstable and 

λ changes to a smaller value.  

       It can be seen from Eq. (12) that the larger the 

error value e(k) ,the smaller the forgetting factor, and 

vice versa, its variation range is between 0.98 and 1. 

Thus, the forgetting factor changes with the error of 

identification parameters. 

4. Implementation of online parameter 

identification algorithm based on 

AFFRLS 

      The first order RC model equivalent circuit 

described in section 2 is used as a model where the 

parameters to be estimated at time k are hold in vector 

θ(k) Eq. (6). 

      AFFRLS is applied recursively to calculate this 

vector with adaptive weight factor λ reported in 

section 3. The specific implementation flow chart of 

AFFRLS proposed is shown in Fig. 3. 

      The initial values of the parameter estimate θ(0),  

the error covariance matrix P(0), the gain matrix G(0), 

the sensibility h, and forgetting factor λ,are firstly 

provided. Then, the θ(k) parameter vector can be 

updated based on the online collected regressor. 

      For every iteration, the previous Uk-1 is calculated 

Eq. (8), then SOC (state of charge) is readjusted 

according to equation Eq. (2). 

      Before calculating θ(k), the gain matrix G(k) is 

assessed according to Eq. (9). 

      When θ(k) is evaluated Eq. (11). The estimated 

values of R1, R2, C1, K0, K1, and K2 at time k can be 

obtained.  

      The covariance matrix P(k) are updated for every 

iteration by the obtained gain matrix G(k) Eq. (10). 

      At the end, the estimated voltage can be 

calculated Eq. (3), and a new value of the forgetting 

factor λ is computed Eq. (12) based on the current 

error e(k) and the expected error ebase. 

The parameter identification at the next moment are 

performed again using the same steps.  

 
Figure. 3 Flow chart of the adaptive forgetting factor 

recursive least square proposed AFFRLS 

5. Simulation setup, results and discussion 

      In this paper, we propose a new algorithm 

AFFRLS (adaptive forgetting factor recursive least 

squares) Fig. 3 to extract the battery parameter and 

estimate the output voltage. we compare in this 

section the suggested algorithm (AFFRLS) to the 

original FFRLS (forgetting factor recursive least 

squares) Fig. 2 proposed in [16] applied to the same 

model described in section 2. 

      To verify the performance of the two algorithms, 

we used experiment data provided by CALCE 

Battery Research Group operated on the Samsung 

(INR 18650-20R) battery cell. This type of lithium-

ion cell is suitable for EV (electric vehicle) 

application due to its high voltage and capacity.   

      We used two datasets provided by CALCE 

Battery Research Group. The two datasets store the 

results (current, voltage, time…)  of two EV 

(electric vehicle) cycles conducted on the Samsung 

(INR 18650-20R) lithium-ion battery named The 

Dynamic stress test (DST) and the Federal Urban 

Driving Schedule (FUDS). The table below shows 

the specifications of this battery [18-20]. 
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Table 1. Battery parameter  

      

The CALCE Battery Research Group used a custom 

built battery test bench which included lithium 

battery cells, a thermal chamber to control 

temperature, an Arbin BT2000 battery test system to 

control battery charge and discharge, and a host 

computer with Arbin software to observe and control 

data information in order to obtain these data [18-20].  

      The constant current constant voltage (CCCV) 

was used to charge the Samsung (INR 18650-20R) 

battery cell. The measurements were recorded in a 1-

second interval. Data were collected at a low 

temperature of 0°C, room temperature of 25°, and a 

high temperature of 45°C [18-20]. We used data that 

was carried out for 80% battery level at 25°C. 

      We fed the data (current and voltage, time….) to 

both algorithms applied for the same model discussed 

in section 2, and compared the estimated terminal 

voltage for the two dynamic tests (DST and FUDS) 

with the measured voltage recorded in the datasets. 
       We discuss the results for DST and FUDS 

profiles in section 5.1 and 5.2 respectively. 

      Fig. 4 and Fig. 5 illustrate the current profile for 

each dynamic test, we can see that these two 

experiments have a strict charge and discharge 

process, the cell is highly stressed with a current that 

varies between +2A (charge) and -4A (discharge).  

Underneath these terms, the validity of the parameter 

identification algorithms can be well verified. 

 

 

 
Figure. 4 Current for DST profile at 25°C 

 

Figure. 5 Current for FUDS profile at 25°C 

5.1 Dynamic stress test (DST) 

      The DST is a common driving cycle which is 

often used to assess various battery models and SOC 

(state of charge) estimation algorithms, we used it 

here to compare the two algorithms. The current 

profile of this test is shown in Fig. 4. 

      We provided the same initial values for both 

AFFRLS and FFRLS: The vector that holds the 

battery parameters to be estimated θ (0) Eq. (6). The 

gain and error covariance matrices G(0) and P(0) Eq. 

(9)  Eq. (10) respectively. The initial voltage drops 

U1 (0) across the resistor R1 Eq. (8). We provided as 

well forgetting factor λ for both algorithms. 

      We run afterwards in MATLAB the algorithms 

FFRLS Fig.2 and AFFRLS Fig. 3 to estimate the 

battery parameters and the output voltage of the 

battery.in each iteration we supply the algorithms 

with the current and voltage stored in the datasets 

provided by CALCE battery group research for this 

test. In Fig. 6, we collected the parameter 

identification results for FFRLS and AFFRLS for 

DST test. In Fig. 7 we plot the output voltage 

estimated by both algorithms and compare it with the 

measured voltage (true value stored in dataset). 

      It can be seen that the parameters identified by the 

AFFRLS algorithm are relatively stable. The 

parameters evolve smoothly with the change of 

charging and discharging current. In fact, AFFRLS 

relies on both the forgetting factor (λ) which oscillate 

vigorously in this test Fig. 6, and the parameters 

stored in θ(k) Eq. (6) to reduce the error between the 

estimated and the true terminal voltage. In contrary 

FFRLS has a fixed λ, thus, to reduce the error only 

parameters in vector θ(k) vary, as a consequence we 

observe more variations and sometimes spikes in 

parameters identified by FFRLS.  

 

INR 18650-20R Battery cell 

Battery (Parameters) Specifications (Value) 

Capacity Rating 2000mAh 

Cell Chemistry LNMC/Graphite 

Max current (A) 22 

Cut-off voltage 2.4/4.2 
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(a)                                                                        (b) 

 

           
(c)                                                                        (d) 

 

           
(e)                                                                        (f) 

 

           
(g)                                                                        (h) 

Figure. 6 Parameter identification results for FFRLS and AFFRLS algorithm: (a),(b),(c) Identification curve of Nernst 

parameters equation K0, K1 and K2 respectively, (d) Identification curve of R1, (e) Identification curve of R2, (f) 

Identification curve of C1, (g) Identification curve of M, and (h) Identification curve of the forgetting factor 𝜆 
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(a) 

 

 
(b) 

Figure. 7 (a) True terminal voltage vs terminal voltage 

estimated by FFRLS and AFFRLS algorithms and (b) 

Estimation error for the two algorithms 

 

 
Figure. 8 Percentage of absolute relative error points for 

FFRLS and AFFRLS in DST 

 

      True Terminal voltage and estimated terminal 

voltage using FFRLS and AFFRLS are depicted in 

Fig. 7(a). The terminal voltage error for the two 

algorithms is shown in Fig. 7(b). 

     Both algorithms were very close from the true 

terminal voltage, although AFFRLS showed small 

voltage error compared with FFRLS. This can be well 

observed in Fig. 8 where we display the distribution 

statistics of absolute relative errors. 

 Fig. 8 is obtained by counting the points of 

absolute relative errors falling into each interval 

(0~0.5%,0.5~1%...) and then express it in percentage.   

     As reflected from Fig.8, AFFRLS has a more 

accurate parameter identification ability than the 

original FFRLS algorithm. As can be seen in this 

figure, the percentage of absolute relative error 

distribution of AFFRLS for small errors is 

substantially higher than that of FFRLS: 83% for 

AFFRLS versus 76.73% for FFRLS in the scale of 0 

to 0.5%. 15.34% versus 14.19% for errors in the 

range of (0.5-1%). The distribution lowers down for 

higher ranges: 8.63% for FFRLS against 1.4% for 

absolute relative errors between 1-2%, and 0.46% for 

FFRLS over 0.26% for  AFFRLS.The superiority of 

the new AFFRLS over the classic FFRLS will be 

much clearer in the FUDS test drive which is 

considered more aggressive than the DST dynamic 

profile. 

5.2 Federal urban driving schedule (FUDS)  

      The current profile for this test can be visualised 

in Fig. 5. We can see that the current profile of FUDS 

is more unstable and has more oscillation than that of 

DST.  

      We proceeded in the same manner as we did in 

the DST case. We initialised both algorithms with the 

required parameters: (θ(0), G(0),  P(0) , U1 (0)) ,and 

the forgetting factor λ. 

      After that the algorithms iterate (we run the 

algorithms separately in MATLAB) to estimate the 

battery parameters hold in  θ(k) Eq. (6)  and then 

predict the terminal voltage V(k) Eq. (3),in every 

iteration we fed the algorithms with the required 

parameters (current voltage, time.) stored in the 

dataset.Fig. 9 illustrates the parameter identification 

results of the FFRLS and AFFRLS for FUDS test.  

      As obtained for the first test, it can be seen that 

the parameters identified by the FFRLS algorithm 

have more fluctuations and more spikes but the 

identification ability is insufficient. This means that 

the algorithm doesn’t accurately reflect the complex 

characteristics of real-time variation when battery is 

charged and discharged rapidly compared with 

AFFRLS. Fig. 11 demonstrate this observation where 

we can see that FFRLS has a high distribution for 

large error than AFFRLS 

      The parameters identified by the AFFRLS on the 

other side are more stable except the forgetting factor 

λ which oscillate vigorously, due to the fact that 

current changes rapidly in this dynamic profile. 

Allowing λ to change gives more flexibility and 

adaptability to identify parameters in vigorous tests 

such as FUDS. 

https://www.powerthesaurus.org/as_reflected/synonyms


Received:  March 31, 2020.     Revised:  May 13, 2020.                                                                                                     81 

International Journal of Intelligent Engineering and Systems, Vol.13, No.5, 2020           DOI: 10.22266/ijies2020.1031.08 

 

           
(a)                                                                        (b) 

 

           
          (c)                                                                        (d) 

 

           
(e)                                                                        (f) 

 

          
(g)                                                                        (h) 

Figure. 9 Parameter identificatio1n results for FFRLS and AFFRLS algorithm: (a), (b), (c) Identification curve of Nernst 

parameters equation K0, K1 and K2 respectively, (d) Identification curve of R1, (e) Identification curve of R2, (f) 

Identification curve of C1, (g) Identification curve of M, and (h) Identification curve of Lambda(λ) 
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(a) 

 

 
(b) 

Figure.10 (a) True terminal voltage vs terminal voltage 

estimated by FFRLS and AFFRLS algorithms and (b) 

Estimation error for the two algorithms 

 

      Fig. 10 shows the true terminal voltage and both 

identified voltage by FFRLS and AFFRLS, the 

estimated voltage error is plotted in the same figure. 

      From Fig. 10 we can observe that both algorithms 

are close from each other, but looking deeper we can 

see that AFFRLS is more accurate and precise Fig.11. 

 

Figure. 11 Percentage of absolute relative error points for 

FFRLS and AFFRLS in FUDS 

 

      Fig. 11 is plotted in the same manner as Fig. 8. 

We draw the same conclusion as for the DST test : 

AFFRLS algorithm is more precise than FFRLS in 

term of parameter identification ability. As we can 

observe in Fig. 11 , AFFRLS has high distribution in 

small error range and low distribution for higher 

range compared to FFRLS in terms of absolute 

relative error:  for absolute relative error between 0 

and 0.5% AFFRLS scored 62.75% compared to 

60.19% for FFRLS, 33.22% of the point in the FUDS 

test were between 0.5 and 1% for AFFRLS against 

25.83% for FFRLS.As the relative error range goes 

up (the magnitude of the errors) the distribution 

lowers down for AFRRLS ,as we can see 3.67% of 

the errors were between 1 and 2% versus 9.36% for 

FFRLS and only 0.22% against 4.55% for errors 

above 2%. 

Conclusion 

      In this work, a parallel resistance-capacitance 

(RC) network is used as a model of lithium-ion 

battery for electric vehicle application,with OCV 

(open circuit voltage) SOC (state of charge) 

relationship   discribed with an adaptation of Nernst 

equation.A zero state correction term is used to 

characterize the hysterisis phenomenon.  

      The identification of the equivalent circuit model 

parameters based on a proposed algorithm (AFFRLS) 

is studied and  compared with the original FFRLS.  

      The estimated terminal voltage obtained by both 

algorithms (AFFRLS and FFRLS) is compared with 

the actual terminal voltage.  The correctness of the 

equivalent circuit model parameter identification was 

confirmed using data collected from the center for 

advanced life cycle engineering (CALCE) battery 

group for two EV cycles named Dynamic Stress Test 

(DST) and Federal Urban Driving Schedule (FUDS). 

      We supplied the data and compared the estimated 

output voltage by the two algorithms (AFFRLS and 

FFRLS) in both dynamic tests (DST and FUDS).and 

showed that the absolute relative error distribution of 

AFFRLS in high range (relative error above 2%) is 

low up to 4% less than FFRLS.This means AFFRLS 

is more superior over FFRLS for battery model 

parameter identification in term of accuracy. 
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