
Received: February 28, 2020. Revised: May 11, 2020. 271

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

ACAIOT: A Framework for Adaptable Context-Aware IoT applications

Manar Elkady1* Abeer ElKorany1 Amin Allam1

1Computer Science Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

* Corresponding author’s Email: m.elkady@fci-cu.edu.eg

Abstract: Recently, the Internet of Things (IoT) and context-aware IoT applications are involved in various domains

such as healthcare, traffic, and smart homes. The main challenge, while developing context-aware IoT applications,

is managing the massive amounts of data and events to get relevant context information. This paper proposes a

semantic-based and domain-independent framework called ACAIOT. It hides the details of context management

from the high-level services. It proposes a programming abstraction for adapting services’ execution to various

domains easily. We demonstrate the features and effectiveness of ACAIOT by its execution on a real smart home

dataset. We evaluated ACAIOT against previous work in developing a set of services such as monitoring, prediction,

and notification. Results show that ACAIOT achieves an average F1-score of 0.82, which is comparable with the

current state-of-the-art methods. Moreover, ACAIOT is able to incorporate important compound activities that

cannot be handled by previous work.

Keywords: Context-awareness, Context modeling, Ontology, Internet of things.

1. Introduction

Future Internet applications require access to

information generated from a variety of

heterogeneous devices. As a result, the Internet of

Things (IoT) [1] has appeared as an innovative

paradigm to enrich the communication between

human beings and the smart things that include

sensors, services, and other Internet-connected

objects. IoT has been evolved to acquire different

types of context information with the aid of sensing

abilities. IoT utilizes context information processing

and storing capabilities for generating knowledge

and offering services [2]. Accordingly, IoT

applications that rely on the context information to

react and adapt its current state are known as

context-aware IoT applications [3]. The context

information is managed through context-aware

middleware. The context-aware middleware acts as

an integration point that manages the context to

enable applications to be context-aware [4].

Moreover, context-aware middleware provides a

homogeneous interface for IoT applications and

services development that involves generic context

management solutions. Increasing the level of

context awareness is still an open issue in designing

middleware [5]. Multiple comparative studies have

revealed that there is no context-aware middleware

architecture that complies with all IoT middleware

requirements. Additionally, context-aware

middleware solutions still face multiple challenges

[5-7]. First, managing the heterogeneous and

massive amount of data acquired from multiple

things. Second, Organizing and handling events and

how to recognize higher activities from a set of

simple events. Finally, using the developing

framework to implement applications in various

domains. This paper proposes a domain-independent

framework that enables flexible development for

adaptive context-aware IoT applications by

enhancing different characteristics for IoT

middleware. Two main categories of middleware

characteristics are enhanced. The first category is

the services that a middleware should provide such

as data management and event management. While,

the other one emphasizes the characteristics that a

context-awareness middleware architecture should

https://paperpile.com/c/tuRb1s/5hb2
https://paperpile.com/c/tuRb1s/RYXp
https://paperpile.com/c/tuRb1s/hNN7r
https://paperpile.com/c/tuRb1s/VODuV
https://paperpile.com/c/tuRb1s/GCFtc
https://paperpile.com/c/tuRb1s/jNjeT

Received: February 28, 2020. Revised: May 11, 2020. 272

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

support such as programming abstraction,

interoperability, service-based, and adaptability.

Those characteristics are supported by providing

the IoT application developer with a framework that

contains a set of API and Service templates that

facilitates the implementation of cloud services.

Furthermore, the framework’s Context Management

is responsible for encapsulating and hiding the

details of data and event management. Also, it

provides context-aware as a service for cloud

service developers, as will be explained in section 4.

Let us define the following example, in a smart

home domain, activity recognition inside a smart

home highly depends on the context information

acquired from smart home sensors and devices.

Therefore, it is required to manage the all types of

data and events acquired from sensors and devices

to generate relative context information. For

example, simple events (such as the door is opened)

and recognized activities (e.g., the person goes out

of home) are translated to context information. It

could be accessed by services as monitoring home

events (e.g., sleep, eat), and notification with

emergencies for a patient or an elder (e.g., go out of

home after midnight, sleeping more than 10 hours).

Therefore, the proposed framework aims to provide

the developer with templates that support an easy

way to develop monitoring service, notification

service, and prediction of current patient status.

Furthermore, the same set of services (e.g.,

monitoring, notifying, prediction) could be applied

for different domains such as road traffic, smart city,

smart grid with different execution parameters. Thus,

designing templates for such standard services will

ease the development of context-aware IoT

applications in different domains. Designing such

abstractions should support scalability and

interoperability between applications and services

[8].

Therefore, the main objective of this paper is to

develop a framework for Adaptive Context-Aware

IoT applications (ACAIOT) that supports the

following:

 Encapsulating and managing both of the data

and events in a separate context management

Layer that responsible for generating relevant

context information.

 Support semantic interoperability by using

ontology in order to propose a domain-

independent context management process.

 Incorporate a novel rule structure used to

facilitate activity recognition.

 Providing a high-level API and Service

templates (ACAIOT Library) that facilitates the

implementation of cloud services.

We justify the effectiveness of the proposed

framework by comparing its architecture with recent

research studies. Also, we use ACAIOT to

implement smart home application services by using

a real dataset. To evaluate ACAIOT capability, we

compared those services' outputs with the dataset

annotations, and an average of 0.82 F1-score is

obtained. With comparisons with other approaches,

we conclude that ACAIOT rule structure for

compound activity recognition outperformed other

various types of services in the smart home domain.

This paper is organized as follows: Section 2

presents the background of the research work.

Section 3 illustrates some of the related works.

Section 4 presents the general architecture of the

proposed framework for Adaptive Context-Aware

IoT (ACAIOT) applications. Section 5 describes the

detailed context management process. The proposed

services' templates are described in section 6. A

smart home domain case study is applied for testing

the ACAIOT framework is shown in section 7. The

paper is concluded in section 8.

2. Background

2.1 IoT applications and middleware

One of the critical technology in realization of

IoT systems is middleware, which usually described

as a software system designed to be the intermediary

between IoT devices and applications [5] and to

facilitate the interaction between a multitude of

different devices and data [9]. Middleware should

have specific characteristics that cover both services

requirements and architecture requirements. Service

requirements are concerned with managing and

discovering available resources, data management

event management, and code management [5]. In

this paper, we target data management and event

management improvements. An IoT middleware

needs to provide data management services to

applications, including data processing,

preprocessing, and data storage. Preprocessing

concerns applying data filtering and data

aggregation. Also, data management components

are utilized to get relevant context information and

storing context information in standard form. Event

management concerns how to get meaningful events

from the simply observed events. Events can be

simple or complex. Most middlewares statically

predefine how an event is handled, but they are not

considering complex events and not considering the

difference between discrete (e.g., a door opens) and

continuous events (e.g., driving a car)

https://paperpile.com/c/tuRb1s/Cx68O
https://paperpile.com/c/tuRb1s/GCFtc
https://paperpile.com/c/tuRb1s/vAHGG
https://paperpile.com/c/tuRb1s/GCFtc

Received: February 28, 2020. Revised: May 11, 2020. 273

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Middleware architecture requirements are

programming abstraction, interoperability, service-

based, and adaptability. Programming abstraction

is supported by providing an API to isolate the

development of the applications or services from the

underlying low-level programming details.

Interoperability in a middleware can be viewed

from the network, syntactic, and semantic

perspectives. A network should exchange

information across different networks. Syntactic

interoperation should allow for heterogeneous

formatting and encoding structures of any

exchanged information or service. Semantic

interoperability refers to the meaning of information

or a service. Semantic interoperability, which is the

focus of this paper, should allow for information

exchange between applications. Semantic

interoperability is a challenge due to the lack of

standard in context-awareness ontologies [10].

Applying the middleware functionality in a service-

based architecture offers high flexibility when new

functions need to be added to the middleware.

Moreover, the middleware needs to adapt or adjust

its component execution to fit the user satisfaction

and effectiveness of the IoT application and services.

2.2 Context-awareness

The context-aware application uses context to

provide relevant information and services to the user

as needed, where relevancy depends on the user's

task [11]. Developing context-aware IoT

applications requires a well-formed context

information handling process for managing the

context of life cycle phases. Context life cycle

phases start by context acquisition from various

context sources. The acquired data needs to be

modeled and represented according to a meaningful

manner through the context modeling phase. Context

modeling approaches are surveyed in [12]. The most

popularly adopted approach is the ontological

approach. Ontologies provide an application-

independent representation of a specific subject

domain that is usable by multiple applications [13].

The ontology model is used to formalize the context

information with a more high-level organization to

establish a common understanding and unification

of its concepts’ meanings [14]. Then, the context

reasoning phase gets the value from the collected

data and conveys it to a high-level knowledge.

Through context reasoning, deriving high-level

context information from the low-level information

could be applied. Finally, the context dissemination

phase delivers context information needed to the IoT

application's user who is interested in it [3,15]. The

context lifecycle approach needs to be standardized.

This will improve the interoperability between

different middleware components as well as

reusability and applicability of extracted context

information [5].

3. Related works

Different frameworks have been proposed to

improve the development of adaptive context-

awareness applications. In this section, some of

those frameworks are presented.

ELIoT [16] is a development platform for

Internet-connected smart devices. It concerns

improving development flexibility and reducing

network latency. It supports abstraction and

adaptation by enabling interactions through the

REST and CoAP interface with the ability of

reconfiguration. On the other hand, there is no

context information modeling defined. Only

network interoperability is supported by the

dedicated language constructs to concentrate on

different communication guarantees.

Authors in [17] defined and implemented a

service-oriented domain-oriented language (DSL),

allowing the straightforward definition of object-

oriented context modules in applications related to

different domains. A context manager is responsible

for defining context entities and filtering irrelevant

contexts. On the other hand, there is no semantic

definition of the context model to enable further

extensions and interoperability between different

domains.

Econtxt [18] is a model for context-aware

applications that are running in the digital ecosystem.

The context information is represented as a

consource object type. It supports multiple

operations, such as filtering and aggregation

operations. Adaptation is implemented by applying

reactive variables, which permit the propagation of

data changes in a push model. However, developers

cannot customize their events and rules required for

data processing. Moreover, it does not support

semantic interoperability at the data level, and it

lacks considering complex events.

A cooperative middleware [19] is designed to

enable context-aware services for users in a smart

home. Its goal is to reduce the context computation

cost of providing services on time. An OWL-based

ontology technique was used to define the context

semantically. Middleware implementation was

performed using Java and adopted Open Service

Gateway Initiative (OSGi) platform to ease the

control and management of services. Although rules

over ontology items are used for activity recognition,

https://paperpile.com/c/tuRb1s/N8gwu
https://paperpile.com/c/tuRb1s/WzoNx
https://paperpile.com/c/tuRb1s/jJFim
https://paperpile.com/c/tuRb1s/AyZBv
https://paperpile.com/c/tuRb1s/YYEQj
https://paperpile.com/c/tuRb1s/awGqh
https://paperpile.com/c/tuRb1s/GCFtc
https://paperpile.com/c/tuRb1s/fSexM
https://paperpile.com/c/tuRb1s/6bIZZ
https://paperpile.com/c/tuRb1s/vo86d
https://paperpile.com/c/tuRb1s/rgfU

Received: February 28, 2020. Revised: May 11, 2020. 274

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Table 1. Different frameworks support to Middleware requirements
 Service Requirements Architectural Requirements Context-awareness Components

D
at

a

M
an

ag
em

en
t

E
v

en
t

M
an

ag
em

en
t

A
b

st
ra

ct
io

n

S
em

an
ti

c

In
te

ro
p

er
ab

il
it

y

S
er

v
ic

e-
b

as
ed

A
d

ap
ta

b
il

it
y

C
o

n
te

x
t

M
o

d
el

li
n

g

C
o

n
te

x
t

R
ea

so
n

in
g

S
er

v
ic

es

ELIOT [16] P,PP No Yes No Yes Yes No No Monitoring

iCasa Ext [17] P,PP No Yes No Yes Yes OO OO Monitoring

Econtxt [18] P, PP NC Yes No No NC OO OO Monitoring

Cooperative

Middleware[19]

P NC No No Yes Yes Ontology Ontology

Rule

Monitoring

IOTVar [20] P No Yes No Yes NC OO No Monitoring

ESDP_IoT [21] P,PP

NC

Yes Yes Yes Yes Ontology Rule Monitoring,

Notification

ACAIOT P, PP Yes Yes Yes Yes Yes Ontology Ontology

Rule

Monitoring,

Notification,

Reminder,

Prediction

 Processing: P Pre-processing: PP Yes: supported No: Not supported

NC: Not Completely supported OO: Object-Oriented

but there is no management mechanism for event

composition. Moreover, there is no programming

abstraction for accessing and adapting the

middleware services execution.

IoTVar middleware [20] is designed to

overcome the lack of standardization in abstractions

and APIs in IoT platforms. It is offering to

application developers on the client side the

possibility to declare variables that are mapped to

sensors and whose values are transparently updated

with sensor observations by using proxies. However,

there is no semantic context modeling that can fit

the development of IoT applications in different

domains.

To address the heterogeneity aspect of IoT data,

authors in [21], designed an approach for sensory

data processing on IoT gateways. This approach

manipulates data based on semantic rules to filter

out redundant and insignificant data. Also, it applies

a complex event processing module to analyze the

coming events for detecting the most critical ones

and assigning them the processing priority.

Although the event handler is used to perform the

aggregation and classification tasks, it is not used to

recognize complex event structure. Moreover, there

is no service template defined for context

dissemination.

Overall, the reviewed studies have some

limitations. They describe entities in an environment

and applying different context management, but

applying a set of operations for pre-processing is not

always exist. Although using object-oriented for

context modeling supports a high level of

abstraction, it lacks reasoning, validation,

standardization, and hierarchical structure modeling

support. Moreover, most of these studies do not

specify how to separate the domain knowledge

components in a loosely coupled manner to be able

https://paperpile.com/c/tuRb1s/fSexM
https://paperpile.com/c/tuRb1s/6bIZZ
https://paperpile.com/c/tuRb1s/vo86d
https://paperpile.com/c/tuRb1s/rgfU
https://paperpile.com/c/tuRb1s/VsDk
https://paperpile.com/c/tuRb1s/AcEK
https://paperpile.com/c/tuRb1s/VsDk
https://paperpile.com/c/tuRb1s/AcEK

Received: February 28, 2020. Revised: May 11, 2020. 275

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

to develop IoT applications in different domains and

to support interoperability. In addition, in most of

these researches, the monitoring service is supported,

but there are no unified service definitions that can

be customized according to the application

requirements and tailored to other types of services

such as notification, reminder, and prediction which

will be proposed by ACAIOT framework.

Comparison between different research studies and

our ACAIOT framework is shown in Table1.

4. ACAIOT framework overview

In this section, an overview of a proposed

framework for Adaptive Context-Aware IoT

(ACAIOT) applications is presented. The proposed

framework aims to enhance middleware service

requirements as well as architectural requirements

by utilization of semantic technology. For the

middleware service requirements, ACAIOT would

enhance both data and event management. While for

architectural requirements, it would support the

following requirements: context-awareness,

adaptability, abstraction, service-based, and

semantic interoperability, as will be discussed in this

section. The design of ACAIOT architecture is

based on the following principles:

 Encapsulating and managing both of the data

and events in a separate context management

Layer that responsible for generating relevant

context information.

 Providing a high-level API (ACAIOT Library)

to access the backend processing to support

abstraction requirements.

 Support semantic interoperability by using

ontology and rules in order to enhance the

context management process.

Generally, a context-aware service is adapted

according to the context information, and the

application requirements. In order to enhance both

data and event management, different types of

context information are collected from different

resources such as sensors, databases, web services,

or others. All context information would be

analyzed and processed through the Context

Management layer shown in Fig. 1. This layer is

responsible for providing context-aware as a service

for cloud service users [22]. While, the general-

purpose ACAIOT_Ontology that is extended based

on the target application domain into domain-

oriented ontology (in this paper, a smart home

domain will be considered). The next layer

Figure. 1 ACAIOT Architecture

(ACAIOT Library) provides ACAIOT API, and

ACAIOT Service templates. It is significant to

mention that the ACAIOT framework is generally

applicable for different domains as it facilitates the

implementation of cloud services without re-

thinking of how to handle such data and events and

how to manage and deliver the context information.

In the following, a brief about each of these layers

that constitute ACAIOT architecture is presented.

4.1 Context management layer

Through this layer, context management is

accomplished through the Context Manager. It is

responsible for handling context modeling and

context reasoning by applying a semantic solution

by utilizing ontologies. The main components of the

Context Manager, as shown in Fig. 2, are Ontology

manager, Rule Engine, Context modeling, Context

Reasoning. ACAIOT_Ontology is a general-purpose

ontology for context-aware IoT applications. It

includes common concepts used in IoT applications,

which provides a unified interface that could be

extended to various IoT domains.

ACAIOT_Ontology will be extended by the IoT

application developer during the application

development process to meet the evolving

application's domain concepts. Details of the context

management process will be illustrated in section 5.

4.2 ACAIOT library layer

The ACAIOT Library is supporting context

dissemination by delivering the context information

to the application during its running, such that it

https://paperpile.com/c/tuRb1s/Ui8TU

Received: February 28, 2020. Revised: May 11, 2020. 276

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

could adapt its execution. Therefore, ACAIOT

Library is a programming interface that is

responsible for accessing the Context Management

at the backend. ACAIOT Library has an API for

registering application data sources and the domain-

oriented ontology and adding rules to the Context

Management. ACAIOT Library has predefined

services templates such as Notification, Monitoring,

Reminder, and Prediction. The IoT developer can

adapt these services templates to fit his application

requirements. The adapted services will be ready to

use by the application's user through the ACAIOT

Service layer. The details of the structure of the

services and how they can be delivered and adapted

during the application running inside ACAIOT will

be illustrated in detail in section 6.

4.3 ACAIOT service layer

Here, the ACAIOT Adapted Services are ready to

be used by application users. The user could use

them based on his application data without any prior

knowledge about the backend processing. The

ACAIOT Service layer is responsible for delivering

context information. Context information is

delivered to the application's user as a knowledge

delivered through the adapted service executions

output. ACAIOT Service layer will be described in

detail in section 6.

5. ACAIOT context management process

ACAIOT context management process is

applied through the Context Manager, which is

presented in Fig. 2 The main functional components

of the context management layer are organized

according to context life cycle phases that are

mentioned above. Assuming that the context

acquisition process is done and its output is a stream

of real-time data for all data sources that are

registered through the ACAIOT Library by the

developer. In the following subsection, a description

of the Context Manager components is presented.

5.1 Context modeling

Context Modeling module is responsible for

transforming the input data into context information

by the aid of both of Ontology Manager and Rule

Engine. The process of context modeling should

follow the following steps: Data pre-processing,

aggregation, and modeling. Data pre-processing is

done by filtering irrelevant or redundant information

as relevant information should only be considered as

context information. For example, in the smart home

Figure. 2 ACAIOT context management process

domain, filtering the room temperature values

should be done such that the values that have a

significant change over the previously stored value

are only considered. The amount of this change is a

parameter instantiated by the developer.

Aggregation is the function of getting high-level

context information by aggregating data from one or

more data sources. For example, in the smart home

case study, we implement an aggregator for

generating no motion context information inside the

home by ensuring that there is no input from any

motion sensor inside the home. Modeling is the step

of representing the context information in the form

of domain-oriented ontology. So, we can get

information about the location of an entity, his

current activity, and the current temperature at a

specific date and time.

5.2 Ontology manager

The primary role of the Ontology Manager is

combining the domain ontology concepts and rules

to the generic ontology (ACAIOT_Ontology). Each

domain concept is a sub-class of one of the

ACAIOT_Ontology concepts. Accordingly, the

domain-oriented ACAIOT Ontology is ready to be

used by the other ACAIOT components.

The main concepts of ACAIOT_Ontology, as

illustrated in Fig. 3, are Entity, Context, Activity,

Location, Date, and Time concepts. An Entity

represents a person, application, or object that is

considered relevant to the interaction between a user

and an application. Context represents any

information that can be used to characterize the

situation of an entity such as Location, Date, Time,

and Temperature. The date and time are useful in

the inference phase to get a conclusion about the

entity's behavior pattern. The location of an entity is

vital information while recognizing the current

entity activity. The activity represents the actions

Received: February 28, 2020. Revised: May 11, 2020. 277

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Figure. 3 ACAIOT_Ontology

performed by an entity based on its context. Activity

is classified into simple activity or compound

activity. A Simple_activity instance is generated as a

result of a simple event occur by changing a group

of sensors' values. For example, when the door

sensor is changed from close to open, then an

Open_door_activity is generated. A compound

activity is recognized by the occurrence of a

sequence of activities. For example, a compound

activity such as Leave_home is recognized by a

sequence of leave_home_begin and

leave_home_end activities after applying a set of

constraints illustrated in the activity reasoning rule

as described in the Rule Engine below.

5.3 Rule engine

The Rule Engine is concerning the logic of how

to process and manage the context information

through ACAIOT context management processing.

Such logic is applied over the application data that

are organized as instances of the Domain-oriented

ACAIOT Ontology. There are two sets of rules that

are ready to be used by rule engine: Activity rules

and service rules. Activity rules are applied to

recognize activities done by the target entity.

Context reasoning could be applied to recognizing

current activity by applying the activity rules. The

recognized activity will be added as instances to

ACAIOT: Activity class or any of its subclasses.

Service rules are used through ACAIOT services

templates to customize each service execution

according to the application requirements, as shown

in Fig. 4 that represents the general structure of

service rules. For example, the notification service is

triggered when elder people sleep more than their

expected sleeping duration by applying the

following rule:

Figure. 4 Service Rule structure

Figure. 5 Simple Activity Reasoning Rule

Service_Rule_Begin: notify_long_sleep

 Sleep, sleep_duration, “>”, 10

Service_Rule_End

5.3.1. Simple activity

A simple activity is instantiated when one rule is

fire. The general structure of the Activity rule is

shown in Fig. 5. The simpleActivity is the activity

recognized by this rule. runningActivity is the

prerequisite activity that must be accomplished to

fire this rule. Pair (alarmSensors, alarmValue)

represent the group of sensors that at least one of

them must produce the alarmValue to fire this rule.

The Pair (endAlarmSenors, endAlarmValue)

represents another group of sensors that terminate

the activity. TimeCondition is a time constraint for a

mandatory duration with the sensors' values to be

considered. The algorithm used to recognize the

simple activity is stated in Fig. 6.

For example, recognition of sleep_begin activity

is fired after the target entity location is on the bed

for more than 15 min to be sure that the target entity

is start sleeping:

Simple_Activity_Rule_Begin: sleep_Begin

 Go_to_Bed, (bed_sensors,”ON”),

(out_bed_sensors, “ON”), tc(“>”,15)

Simpel_Activity_Rule_End

Received: February 28, 2020. Revised: May 11, 2020. 278

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Figure. 6 Simple activity execution algorithm

Figure. 7 The compound activity reasoning rule

Figure. 8 Compound activity execution algorithm

5.3.2. Compound activity

The compound activity is instantiated when a

chain of activities has occurred sequentially with

time conditions between each activity, as shown in

Fig. 7. For example, the OutHome activity is

composed of LeaveHome and EnterHome activities

with time condition greater than 30 minutes. The

algorithm used to evaluate the compound activity

rule is presented in Fig. 8.

6. ACAIOT services template

In context-aware IoT applications, there are four

types of services that usually implemented;

Monitoring, Notification, Reminder, and Prediction.

Figure. 9 Monitoring service template

Figure. 10 Prediction service template

ACAIOT services templates are proposed to support

these functionalities. ACAIOT services templates

are adapted by the developer, as shown below, to fit

his application requirements. Then, the adapted

service is executed based on the context information

available in the ACAIOT repository and the adapted

service rules.

The first service, Monitoring service, is used to

get the updated status of the monitored entity. The

developer determines the activity he wants to

monitor and customize the monitor template defined

in Fig. 9 to fit the application requirements. For

example, The Developer defines a service for

monitoring the sleep start_time property for sleep

activity. The developer must implement the function

outputfunction to determine how the service output

will be shown. The second service, Notification

service, is used to generate an alarm about an

emergency case that happened to the target entity.

Notification service has a similar template as

monitoring, but it has additional service rules to set

the emergency condition. For example, notification

is needed when the "sleep_duration > 12" and a

notification message is sent to the caregiver person

for the alert about that case. The developer must

implement the outputfunction to be used to adapt the

notification service output. The third service,

Prediction service, delivers an expectation of

occurrence of a particular activity that may be

happened due to the context changes. The prediction

service template is shown in Fig. 10. It is

implemented after defining a set of parameters; the

activity wanted to predict its occurrences such as

sleep, a specific property of activity such as sleep

start_time property, and then a prediction algorithm

that can be used for prediction. Here, the developer

should select one from the predefined prediction

Received: February 28, 2020. Revised: May 11, 2020. 279

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

algorithms (or define his own algorithm). One

more parameter is the service rule, it is used to

customize the prediction to be adopted to specific

situations such as a rule for predicting night sleep

only. Finally, a function used to show the prediction

service output. The fourth template, Reminder

service, is delivered to the target entity itself in any

form of alarm notification. It reminds him of doing a

particular action according to his context and his

previous behavior pattern. The reminder service

pattern is similar to the prediction service template.

7. Experiments

For confirming the proposed framework's

effectiveness, an experiment has been applied to a

real dataset. The case study focused on activity

recognition in the smart home domain. The primary

data sources were smart home sensors that represent

the smart home resident context.

7.1 Dataset

Our framework was tested with the Aruba

dataset from the Washington State University

CASAS smart-home project [23]. The smart home

layout was attached to the dataset folder. It includes

continuous recordings of home sensors events.

Sensor data that was collected in the home is of a

volunteer adult. The dataset contains 1719558

records that represent sensor inputs of 220 days

(about 7 months). Aruba smart home is equipped

with a network of wireless motion and door sensors

and houses a single older adult resident who

performs regular daily routines.

7.2 Experimental setup

The developer starts using ACAIOT by

registering application ontology (in our case a smart

home ontology as an extension to

ACAIOT_Ontology). Then, data source registration

is also done by the developer. Identifying sensors is

applied through setting the location and type of each

sensor. Finally, the developer customizes activity

rules, services rules, and ACAIOT services

templates according to the application requirements.

The developer adds activity rules for the

sleeping compound activity with a minimum of 30

minutes of sleeping duration constraint. Therefore,

sleeping durations of less than 30 minutes are not

recognized. Both of sleeping begin, and sleeping

end activities are recognized according to the elder

person location detected using the motion sensor

events.

The developer adds rules for Leave Home

compound activity. Leave home recognized if the

door is opened and closed, and then followed with

no motion detection duration inside the home for at

least 10 min.

ACAIOT framework is executed and starts

detecting activities that occur in the smart home.

The ACAIOT adapted services outputs were

evaluated and compared with the manual activity

annotation attached with the Aruba dataset, as

illustrated below.

7.3 Evaluation metric

Each service has its own evaluation parameters.

For example, both Notification and monitoring

services are evaluated by using precision, recall, and

F1-Score [24], as shown in the following equations:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
 𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
 𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 (𝐹1) =
2(𝑃×𝑅)

(𝑃+𝑅)
 (3)

Where TP is the number of activities recognized

by ACAIOT framework and is included in the

dataset annotated activities, FP is the number of

activities recognized by ACAIOT, but they are not

included in the annotated dataset, and FN is the

number of activities in the annotated dataset that are

not recognized by ACAIOT.

While for both prediction and reminder services,

the performance of these services in terms of

accuracy is evaluated by the measure of Mean

Absolute Error (MAE). Pattern Sequence-based

Forecasting (PSF) algorithm [25] was applied as an

embedded prediction algorithm in prediction and

reminder service. In addition, the Average

prediction (AVE_P) algorithm is implemented. It

calculates the average of predicted values from

previous days. A threshold is set according to the

type of experiment to enhance the results. The

output compared with the annotated activities in the

dataset as follow:

𝑀𝐴𝐸 = ∑
|𝑎𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑−𝑎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|

𝑁
 (4)

Where N is the total count of predicted activities,

aannotated is the activity’s property values in the

dataset annotation, and a predicted is the activity’s

property values generated from the prediction

algorithm.

https://paperpile.com/c/tuRb1s/bkVPx
https://paperpile.com/c/tuRb1s/nEsKl
https://paperpile.com/c/tuRb1s/Pelh6

Received: February 28, 2020. Revised: May 11, 2020. 280

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Table 2. ACAIOT evaluation
Activity Name ACAIOT LSTM STA AISAL

Sleep R: 0.75

P: 0.76

F1: 0.75

P: 0.81

F1: 0.77

R: 1.0

P: 1.0

F1:1.0

LeaveHome R: 0.70

P: 0.97

F1: 0.81

P: 0.80

F1: 0.78

R: 0.59

P: 0.83

F1: 0.69

EnterHome R:0.83

P:0.94

f1:0.88

P: 0.60

F1: 0.64

R: 0.40

P: 0.64

F1: 0.48

Average

F1-score

0.82 0.73 0.72 0.41

7.4 Results and discussion

We have carried out experiments on Aruba

dataset. The experiments applied to support Sleep,

EnterHome, and LeaveHome activities. The

monitoring service is used for monitoring the

recognition of each activity by using the ACAIOT

monitoring service. The recognized activities were

evaluated by comparing it to the annotated dataset

using recall, precision, and F1-score defined in

equations 1, 2, and 3, respectively. To evaluate the

effectiveness of the proposed framework, it has been

compared with a set of recent studies using the

same dataset for evaluations. The results are

summarized in Table 2 and Fig. 11. Through the

first experiment, activity recognition is applied and

compared to the approach that uses feature

learning using LSTM [26]. LSTM is applied on

Aruba dataset for training, and then it tested its

model based on another version of Aruba without

annotation. It cannot detect the simple activity go-

to-Bed because it is not trained on it, while the

proposed activity recognition mechanism is better

in detecting simple as well as compound activities.

Also, ACAIOT is better in EnterHome and

LeaveHome activities. Another research used the

10-fold cross-validation for an activity classification

method with the tolerance level of the Scanpath

Trend Analysis (STA) algorithm [27]. Furthermore,

we get a better result than STA in EnterHome and

LeaveHome activities. Another approach presents a

rule-based architecture for a complete AAL system

(AISAL) [28]. It supports notification for an

emergency as ACAIOT, but its average F1-score

(0.413) is less than ACAIOT.

On the other hand, as shown in Fig. 11 ACAIOT

sleep implementation provides lower value than the

others. This is because of the time condition that we

restrict the recognition rule, which is changeable

according to the developer's point of view.

Figure. 11 F1-Score of our ACAIOT activities

recognition and comparison with others

Figure. 12 average F1-Score of our ACAIOT

implementation and comparison with related work

Moreover, we find our approach is more robust than

the others. It is found that the other approaches can’t

differentiate between entering and leave home due

to their high-frequency occurrence in the dataset.

Overall, we achieved F1-score 0.82, which is

comparable with the state of the art [29], as shown

in Fig. 12.

0

0.2

0.4

0.6

0.8

1

1.2

Sleep Leave_Home Enter_Home

F1
-S

co
re

Activity name

ACAIOT LSTM STA

0 0.2 0.4 0.6 0.8 1

ACAIOT

LSTM

 STA

AISAL

Average F1-score

R
es

e
ar

ch
 N

am
e

https://paperpile.com/c/tuRb1s/xxDe
https://paperpile.com/c/tuRb1s/JdT4
https://paperpile.com/c/tuRb1s/raxR

Received: February 28, 2020. Revised: May 11, 2020. 281

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

Table 3. Reminder and prediction services evaluation
Service Activity Property PSF AVE_

P

Prediction Sleep Start time 1.060 0.996

Reminder Sleep Wakeup

time

1.063 0.771

Reminder and Prediction Services

implementation are evaluated using MAE defined in

equation 4. We applied two different algorithms;

PSF and AVE_P, as illustrated in Table 3. Here, we

noticed that the AVE_P algorithm has MAE less

than the PSF. This is depending on the domain and

the pattern of data. In this dataset, we find that the

sleeping start time and end time are almost in a

similar duration every day, so applying the AVE_P

algorithm is better in this case. ACAIOT is flexible

enough to run more than on algorithm and then the

developer can select the more suitable one to fit the

application requirements.

8. Conclusions

In summary, this paper proposes a semantic-

based and domain-independent framework ACAIOT

that enables adaptive context-awareness

management for data acquired by the IoT

applications. ACAIOT includes high-level

programming constructs and services, which

encapsulate application domain constructs and their

actions during the implementation phase to raise the

level of programming abstraction, enabling

developers to implement context-aware IoT

applications without worrying about the complexity

of low-level connections and sensors data streams.

In addition, it enables developers to customize the

proposed services to fit different domains and

various application requirements. We have

evaluated the feasibility of our framework to process

real-world sensory data in the context of the daily

activity monitoring scenario. It is significant to

mention that the ACAIOT framework is generally

applicable for different domains as it facilitates the

implementation of cloud services without re-

thinking of how to handle such data and events and

how to manage and deliver the context information.

Our future work will focus on testing the proposed

approach considering application with several

residents with a focus on abnormal cases

notification. Also, we will implement ACAIOT on a

cloud infrastructure to evaluate its performance on a

real implementation.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Conceptualization, ME and AE; methodology,

ME and AE; software, ME and AA; validation, ME,

AA; formal analysis, ME and AA; investigation,

ME, AE and AA; resources, AE; data Curation, ME;

writing—original draft and preparation, ME and AE;

writing—review editing, ME, AE and AA;

visualization, ME; supervision, AE and AA; project

administration, AE.

References

[1] P. Rodrigues, YD. Bromberg, L. Réveillère,

and D. Négru, “ZigZag: A Middleware for

Service Discovery in Future Internet”, In: Proc.

of IFIP International Conference on

Distributed Applications and Interoperable

Systems, Berlin, Heidelberg, pp. 208–221, 2012.

[2] E. Borgia, “The Internet of Things vision: Key

features, applications and open issues”,

Computer Communication, Vol. 54, pp. 1–31,

2014.

[3] C. Perera, A. Zaslavsky, P. Christen, and D.

Georgakopoulos, “Context Aware Computing

for The Internet of Things: A Survey”, IEEE

Communications Surveys Tutorials, Vol. 16,

No. 1, pp. 414–454, 2014.

[4] P. Pradeep and S. Krishnamoorthy, “The MOM

of context-aware systems: A survey”,

Computer Communication, Vol. 137, pp. 44–69,

2019.

[5] M. A. Razzaque, M. Milojevic-Jevric, A.

Palade, and S. Clarke, “Middleware for Internet

of Things: A Survey”, IEEE Internet of Things

Journal, Vol. 3, No. 1, pp. 70–95, 2016.

[6] X. Li, M. Eckert, J. F. Martinez, and G. Rubio,

“Context Aware Middleware Architectures:

Survey and Challenges”, Sensors, Vol. 15, No.

8, pp. 20570–20607, 2015.

[7] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal,

and Q. Z. Sheng, “IoT Middleware: A Survey

on Issues and Enabling Technologies”, IEEE

Internet of Things Journal, Vol. 4, No. 1, pp. 1–

20, 2017.

[8] U. Alegre, J. C. Augusto, and T. Clark,

“Engineering context-aware systems and

applications: A survey”, Journal of Systems

and Software, Vol. 117, pp. 55–83, 2016.

[9] S. A. Chelloug and M. A. El-Zawawy,

“Middleware for Internet of Things: Survey and

Challenges”, Intelligent Automation & Soft

Computing, pp. 1–9, 2017.

[10] E. de Matos, R. T. Tiburski , C. R. Moratelli, S.

J. Filhoa, L. A. Amaral, G. Ramachandran, B.

Krishnamacharif, and F. Hessel, “Context

http://paperpile.com/b/tuRb1s/5hb2
http://paperpile.com/b/tuRb1s/5hb2
http://paperpile.com/b/tuRb1s/5hb2
http://paperpile.com/b/tuRb1s/5hb2
http://paperpile.com/b/tuRb1s/5hb2
http://paperpile.com/b/tuRb1s/RYXp
http://paperpile.com/b/tuRb1s/RYXp
http://paperpile.com/b/tuRb1s/RYXp
http://paperpile.com/b/tuRb1s/hNN7r
http://paperpile.com/b/tuRb1s/hNN7r
http://paperpile.com/b/tuRb1s/hNN7r
http://paperpile.com/b/tuRb1s/hNN7r
http://paperpile.com/b/tuRb1s/VODuV
http://paperpile.com/b/tuRb1s/VODuV
http://paperpile.com/b/tuRb1s/GCFtc
http://paperpile.com/b/tuRb1s/jNjeT
http://paperpile.com/b/tuRb1s/jNjeT
http://paperpile.com/b/tuRb1s/V2GYb
http://paperpile.com/b/tuRb1s/V2GYb
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/Cx68O
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/vAHGG
http://paperpile.com/b/tuRb1s/N8gwu

Received: February 28, 2020. Revised: May 11, 2020. 282

International Journal of Intelligent Engineering and Systems, Vol.13, No.4, 2020 DOI: 10.22266/ijies2020.0831.24

information sharing for the Internet of Things:

A survey”, Computer Networks, Vol. 166, p.

106988, 2020.

[11] G. D. Abowd, A. K. Dey, P. J. Brown, N.

Davies, M. Smith, and P. Steggles, “Towards a

Better Understanding of Context and Context-

Awareness”, In: Proc. of International

symposium on handheld and ubiquitous

computing, Springer, Berlin, Heidelberg, pp.

304–307, 1999.

[12] C. Bettini, O. Brdiczka, K. Henricksen, J.

Indulska, D. Nicklas, A. Ranganathan, and D.

Riboni, “A survey of context modelling and

reasoning techniques”, Pervasive Mobile

Computer, Vol. 6, No. 2, pp. 161–180, 2010.

[13] C. M. Keet, “An introduction to ontology

engineering”, University of Cape Town, 2018.

[14] O. Cabrera, X. Franch, and J. Marco,

“Ontology-based context modeling in service-

oriented computing: a systematic mapping”,

Data & Knowledge Engineering, Vol. 110,

pp.24-53, 2017.

[15] P. Temdee and R. Prasad, Context-Aware

Communication and Computing: Applications

for Smart Environment, Cham: Springer

International Publishing, 2018.

[16] A. Sivieri, L. Mottola, and G. Cugola,

“Building Internet of Things software with

ELIoT”, Computer Communication, Vol. 89–90,

pp. 141–153, 2016.

[17] A. Colin, E. Gerbert-Gaillard, G. Vega, P.

Lalanda, and S. Chollet, “Autonomic Service-

Oriented Context for Pervasive Applications”,

In: Proc. of 2016 IEEE International

Conference on Services Computing (SCC), San

Francisco, CA, USA, pp. 491–498, 2016.

[18] A. Averian, “A Programming Model for

Context-Aware Applications in Digital

Ecosystems”, In: Proc. of 17th International

Multidisciplinary Scientific

GeoConference(SGEM), Bulgaria, pp.37-44,

2017.

[19] M. R. Hoque, M. H. Kabir, and S. H. Yang,

“Development of a Cooperative Middleware to

Provide Context-Aware Service in Smart

Home”, International Journal of Smart Home,

Vol. 11, No. 5, pp. 33–40, 2017.

[20] P. V. Borges, C. Taconet, S. Chabridon, D.

Conan, T. Batista, E. Cavalcante, and C. Batista,

“Mastering Interactions with Internet of Things

Platforms through the IoTVar Middleware”,

Proceedings, Vol. 31, No. 1, p. 78, 2019.

[21] M. Al-Osta, A. Bali, and A. Gherbi, “Event

driven and semantic based approach for data

processing on IoT gateway devices”, Journal

of Ambient Intelligence and Humanized

Computing, Vol. 10, pp. 4663–4678, 2019.

[22] M. Elkady, A. M. El-Korany, and R. Bahgat,

“Towards a Semantic-based Context-as-a-

Service For Internet of Things”, International

Journal of Computer Science and Information

Security, Vol. 15, No. 8, pp. 284–293, 2017.

[23] D. J. Cook, “Learning Setting-Generalized

Activity Models for Smart Spaces”, IEEE

Intelligent Systems, Vol. 2010, No. 99, p. 1,

2010.

[24] M. Sokolova, N. Japkowicz, and S. Szpakowicz,

“Beyond accuracy, F-score and ROC: a family

of discriminant measures for performance

evaluation”, In: Proc. of Australasian joint

conference on artificial intelligence, Berlin,

Heidelberg, pp. 1015-1021, 2006.

[25] N. Bokde, G. Asencio-Cortés, F. Martínez-

Álvarez, and K. Kulat, “PSF : Introduction to R

Package for Pattern Sequence Based

Forecasting Algorithm”, The R Journal, Vol. 9,

No. 1, pp. 324-333, 2016.

[26] N. Sarma, S. Chakraborty, and D. S. Banerjee,

“Activity Recognition through Feature

Learning and Annotations using LSTM”, In:

Proc. 2019 11th International Conference on

Communication Systems & Networks

(COMSNETS), Bengaluru, India, pp. 631 - 636,

2019.

[27] H. Y. Yatbaz, S. Eraslan, Y. Yesilada, and E.

Ever, “Activity Recognition Using Binary

Sensors for Elderly People Living Alone:

Scanpath Trend Analysis Approach”, IEEE

Sensor Journal, Vol. 19, No. 17, pp. 7575-7582,

2019.

[28] A. De Paola, P. Ferraro, S. Gaglio, G. L. Re, M.

Morana, M. Ortolani, and D. Peri, “An

Ambient Intelligence System for Assisted

Living”, In: Proc. of 2017 AEIT International

 Annual Conference, Cagliari, Italy, pp. 1-6,

2017.

[29] B. Quigley, M. Donnelly, G. Moore, and L.

Galway, “A Comparative Analysis of

Windowing Approaches in Dense Sensing

Environments”, Proceedings, Vol. 2, No. 19, p.

1245, 2018.

http://paperpile.com/b/tuRb1s/N8gwu
http://paperpile.com/b/tuRb1s/N8gwu
http://paperpile.com/b/tuRb1s/N8gwu
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/WzoNx
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/jJFim
http://paperpile.com/b/tuRb1s/AyZBv
http://paperpile.com/b/tuRb1s/AyZBv
http://paperpile.com/b/tuRb1s/AyZBv
http://paperpile.com/b/tuRb1s/AyZBv
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/awGqh
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/fSexM
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/6bIZZ
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/rgfU
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/VsDk
http://paperpile.com/b/tuRb1s/AcEK
http://paperpile.com/b/tuRb1s/AcEK
http://paperpile.com/b/tuRb1s/AcEK
http://paperpile.com/b/tuRb1s/AcEK
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/Ui8TU
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/bkVPx
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/Pelh6
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/xxDe
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/JdT4
http://paperpile.com/b/tuRb1s/raxR
http://paperpile.com/b/tuRb1s/raxR
http://paperpile.com/b/tuRb1s/raxR
http://paperpile.com/b/tuRb1s/raxR
http://paperpile.com/b/tuRb1s/raxR

