
Received:  February 20, 2020                                                                                                                                            422 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

 
An Efficient Load Balancing Technique based on Cuckoo Search and Firefly 

Algorithm in Cloud 

 

Kethavath Prem Kumar1*       Thirumalaisamy Ragunathan2       Devara Vasumathi3 

       Pamulapati Krishna Prasad2 

 
1Department of Computer Science & Engineering, ACE Engineering College, Hyderabad, India 

2Department of Computer Science & Engineering, SRM University, Amaravathi, India 
3 Department of Computer Science & Engineering, Jawaharlal Nehru Technological University, Hyderabad, India 

* Corresponding author’s Email: kpremkumarcs@gmail.com 

 

 
Abstract: In recent years, cloud Load balancing (CLB) is the significant research area because vast data are stored 

on the servers leads to increase the loads on cloud servers. A trade-off on servers are maintained by LB techniques 

by distributing less power with equal load. In this paper, Cuckoo Search with Firefly Algorithm (CS-FA) is proposed 

for LB in a cloud environment. Initially, the capacity and load of each virtual machine are calculated. If the load of 

the virtual machine is greater than the balanced threshold value then, the LB algorithm is used for allocating the 

tasks. The CS-FA algorithm selects the best Virtual Machines (VMs) for assigning the tasks and migrate the 

overloaded VMs tasks to under-loaded VMs task. This algorithm majorly avoids the imbalanced workload 

performances in a cloud environment. The performance of proposed CS-FA method is compared with existing LB 

techniques such as Dynamic LB (DLB), Hybrid Dynamic LB (HDLB) and Honey Bee Behavior LB (HBB-LB) to 

evaluate the capacity and load of methods. The results showed that the existing HDLB method migrate seven tasks 

whereas the CS-FA method migrates only two tasks. The experimental result shows that proposed CS-FA method 

migrate only two tasks when number of loads is 40 and existing method migrate 6 tasks. 

Keywords: Cloud computing, Cuckoo search, Firefly algorithm, Honey bee behavior, Load balancing, Virtual 

machine. 

 

 

1. Introduction 

Cloud Computing (CC) is a well-developed 

business model for distributed computing 

environment because of its services to users. 

According to individual demand, the IT resources 

are shared, allocated and accessed by users, which is 

provided by CC model [1, 2]. Moreover, CC 

provides various kinds of services such as Software-

as-a-Service (SaaS), Platform-as-a-Service (PaaS) 

and Infrastructure-as-a-Service (IaaS). These 

services are useful in different domain applications 

such as scientific, business, industrial, etc. [3]. In 

general, CC platform includes three significant 

problems such as Virtualization problem, 

Distributed framework and Load balance problem 

[4]. The LB is the heart of cloud system because it 

sustains the entire system workloads [5]. The major 

benefit of LB aspect is to improve the performance 

of large scale computing systems and applications. 

Subsequently, the tasks are designed to redistribute 

over the components of the computing system and 

reduce the response time, increase the resource 

utilization, throughput and avoid the overload 

possibilities [6, 7]. The LB methods are significantly 

classified into two groups such as static and 

dynamic LB [8]. An existing CLB research work 

employs several algorithms such as Particle Swarm 

Optimization (PSO) [9], Genetic Algorithm (GA) 

[10], Artificial Bee Colony (ABC), Ant Colony 

Optimization (ACO) [11], etc.    

In traditional research work many optimization 

methods are used for CLB to minimize the task 

overloading and under loading problems. The GA 



Received:  February 20, 2020                                                                                                                                            423 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

algorithms are used to generate the better solutions 

to the optimization problems but genetic operations 

are more complicated as well as time consuming. 

The major problems faced by traditional PSO and 

ABC algorithms are more number of iteration time 

and they fall into local extremes [12]. In this 

research work, an efficient CLB hybrid cuckoo 

search-firefly optimization algorithm is proposed. 

The proposed model includes the several major 

steps such as (i) At first, scheduling the task with the 

help of Round Robin (RR) method (ii) Calculate the 

capacity of each VMs. (iii) Based on the capacity 

calculate the load of the each VM (iv) the load 

values are passed to the proposed hybrid CS-FA, as 

a result the under-loaded and overloaded VMs are 

grouped. Also, if VMs are overloaded then migrate 

the task to the under-loaded VMs. The proposed 

algorithm finds the best VM in less time and 

improves the LB efficiency. The major contribution 

of the current research work is addressed below. 

• The VM loads are randomly selected by CS 

algorithm, which causes the imbalance in 

cloud system that is overcome by 

implementing the firefly approach. 

• Design the proposed hybrid cuckoo search-

firefly algorithm to decrease the time 

complexity of Task Scheduling (TS) and 

improves the performance of LB in a cloud 

environment. 

• Develops the proposed model to handle the 

multiple objectives in cloud platform such as 

the capacity of VMs, load of VMs, number 

of processors, bandwidth and Million 

Instruction Per Second (MIPS). 

This paper is composed as follows. Section 2 

presents the survey of several recent research work 

on CLB techniques. Section 3 represents the system 

model of the proposed CLB method. Section 4 

shows comparative experimental result for proposed 

and existing segmentation strategies in a cloud 

environment. The conclusion is made in section 5. 

2. Literature review  

Numerous methods have been proposed by 

researchers in LB in cloud environment using 

optimization technique. In this section, a brief 

review of some important contributions to the 

existing literature is presented. 

V. Jeyakrishnan, and P. Sengottuvelan, [13] 

proposed Bacterial Swarm Optimization (BSO) 

Algorithm for resource allocation and LB in data 

centers. The proposed BSO algorithm used different 

set of jobs and calculated the list of resources for 

each job. The capabilities of local and global search 

and fast merging optimal points were identified by 

this study. This algorithm reduces the operational 

cost, make span and improves the resource 

utilization. But, BSO algorithm employed number of 

live migration and cloud data which were not 

secured.  

V. A. Xavier, and S. Annadurai, [14] presented 

Chaotic Social Spider (CSS) Algorithm for TS in 

different heterogeneous VMs. This proposed 

algorithm avoids the local convergence and search 

the best optimized VM for user tasks. The 

throughput of the cloud system was increased by 

CSS method which decreased the overall 

computational cost and balanced resource utilization. 

But, CSS algorithm is only flexible to work for 

assigned tasks not for independent task.   

V. Polepally, K. S. Chatrapati, [15] proposed 

Dragonfly Optimization (DO) and Constraint 

Measure LB (CMLB) algorithm for cloud. When 

VMs were imbalanced, then the tasks were 

reallocated to the corresponding VMs by using 

CMLB algorithm. The DO algorithm was employed 

to generate the optimal threshold values. If the load 

of the PM was greater than the balanced threshold 

value, then CMLB algorithm reallocates the tasks to 

VM. In this research work, if the number of tasks 

were increased, then variation in system work 

balance.  

 G. Reddy, N. Reddy, and S. Phanikumar, [16] 

presented Modified ACO algorithm for TS in cloud. 

The major objective of MACO was to reduce the 

make span and the corresponding relevant VMs 

performed the Multi-Objective (MO) TS process. 

This algorithm enhances the performance of TS by 

decreasing make span and degree of imbalance with 

the help of MO nature. In this literature, if VM 

workloads were varied then difficult to handle the 

entire system so, improvements were required in LB.    

K. A. Sultanpure, and L. S. S. Reddy, [17] 

proposed ABC algorithm for energy efficient job 

scheduling in VM migration. The ABC algorithm 

significantly balances the load and to sustain the 

SLA violation with less execution time by optimal 

objective function. An energy for the conception of 

VM must be lower than the energy required for the 

allocations of jobs. The major drawback of this 

algorithm was if the number of workloads were 

increased then gradually increase the SLA violation. 

L. D. Dhinesh Babu, and P. Venkata Krishna, 

[18] proposed Honey Bee behavior inspired Load 

Balancing (HBB-LB) provides load balancing in the 

VM for maximizing the throughput. The proposed 

method balances the priority of task and minimize 

the waiting time of the method. The developed 

method is compared with other existing methods 



Received:  February 20, 2020                                                                                                                                            424 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

such as Dynamic Load Balancing (DLB), and 

Hybrid Dynamic Load Balancing (HDLB). The 

experimental result shows that the developed 

method has the significant performance than 

existing method. The developed method 

convergence rate is low and this affects the 

performance of the method. 

To rectify these issues, hybrid CS-FA is 

proposed and it’s reduced the make span and 

improves the TS efficiency.  

3. Proposed load balancing in cloud   

A vast amount of information can be stored in 

cloud servers which increases the load on servers. 

The goal of LB is to maintain the trade-off on 

servers by distributing less power with equal load. 

In this research paper, hybrid CS-FA is proposed for 

LB in cloud environment. The proposed CS-FA 

algorithm decreases the make span and improves the 

TS policy. Moreover, proposed algorithm considers 

the multiple parameters such as processing speed, 

bandwidth, and memory and so on while estimating 

the VM capacity. The general system model of 

proposed LB mechanism is shown in Fig. 1.    

3.1 System model  

To balance the entire system workloads, the task 

allocation to the VM is a vital process in cloud. In 

some situations, the VM is overloaded that is 

Number of Tasks (No. Ts) is allocated to it which 

increases the response time. Thus the LB algorithm 

is introduced to allocate the tasks to the VMs. Fig. 1 

represents the proposed LB system model which 

includes various components such as number of data 

centers, physical machines, VMs and etc.          

 

 
Figure. 1 General structure of LB in cloud 

Each data center has some computing resources 

to perform the user’s tasks. The multiple cloud users 

include numerous tasks and each task is assigned to 

the different VMs. According to the processing time 

of each task, the load of VM can be calculated. 

Hence the processing time of each task differs which 

leads to variations in load of VM. Suppose, the VM 

are overloaded, the loads are shared to VM which is 

under loaded for achieving optimal resource 

utilization. 

Let us consider that 𝐶  is the cloud system, 

number of PM is represented as 𝑃  which includes 

multiple VMs and it’s indicated as V. The 𝑛 number 

of PM is represented in Eq. (1). 

 

𝐶 = {𝑃1, 𝑃2, … . . 𝑃𝑘 … . . 𝑃𝑛}    1 < 𝑘 ≤ 𝑛 (1) 

 

Whereas, 𝑃𝑘 is indicated as 𝑘𝑡ℎ number of PMs 

and 𝑃𝑛 indicated as 𝑛𝑡ℎ number of PMs. Each PM is 

consisting of multiple VMs and it’s mathematically 

shown in the Eq. (2). 

 

𝑉 = {𝑉1, 𝑉2, … . . 𝑉𝑖 … . . 𝑉𝑚}    1 < 𝑖 ≤ 𝑚 (2) 

 

Whereas, 𝑚 is the total number of VMs in the 

𝑘𝑡ℎ PM. Moreover, cloud system includes multiple 

users so, 𝑙 No. Ts are mathematically shown in the 

Eq. (3),  

 

𝑇 = 𝑇1, 𝑇2, … . . 𝑇𝑗 … . . 𝑇𝑙   (3) 

 

Whereas, 𝑇  is represented as set of tasks, 𝑙  is 

indicated as total No.Ts. Each task is assigned to the 

VM. When the workload status of VM is normal, 

then tasks are processed without any problem in the 

cloud system. If VM workload status is overloaded, 

then LB strategy is required for migrate the task 

form overloaded VMs to under-loaded VMs. The 

VMs are depending on the few parameters for LB, 

which are represented in Eq. (4), 

 

𝑉𝑖 = {𝑟𝑖, 𝑠𝑖, 𝑏𝑖, 𝑔𝑖, 𝑚𝑖}   (4) 

 

Whereas, number of processors are represented 

as 𝑟𝑖, number of MIPS is indicated as 𝑠𝑖, the variable 

𝑏𝑖 is indicated as bandwidth, task migration cost is 

signified as 𝑔𝑖, memory usage is represented as 𝑚𝑖. 

Every task has various execution time as well as 

priority value. Additionally, the tasks are assigned to 

the VMs based on two major key points such as (i) 

Higher priory task (ii) Minimum execution time 

related tasks are first assigned to the VM. These two 

points significantly reduce the task communication 

cost.          



Received:  February 20, 2020                                                                                                                                            425 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

3.2 Proposed cuckoo search-firefly algorithm  

In this section, the proposed hybrid CS-FA is 

used for LB in cloud system. The major objective of 

this algorithm is to schedule the tasks and allocate 

the overloaded VMs tasks to the under-loaded VMs. 

Hence, it avoids the task imbalanced situations in 

the entire system. Generally, the cloud system 

consists of numerous data centers and each data 

center includes number of PMs also, each PMs 

includes several VMs. The multiple cloud users 

have sent the requests (task) which are submitted to 

the data centers. After that, those tasks are executed 

by the VMs. Here, the different requests assigned to 

the VMs by using proposed hybrid CS-FA. The 

proposed LB system includes several processes such 

as (i) scheduling the task by RR method (ii) 

calculate the capacity of VM (iii) calculate load of 

each VM (iv) Hybrid CS-FA used for identifying the 

overloaded and under-loaded task and, (v) task 

migration from overloaded VMs to under-loaded 

VMs. The block diagram of proposed CS-FA based 

LB on cloud is described in Fig.2.  

 

 
Figure. 2 Block diagram of proposed LB model 

3.2.1. Task scheduling  

In this proposed CS-FA model, TS is the first 

step which reads the tasks and assigned to VM by 

using the RR algorithm. The time quantum is a short 

time period for planning and scheduling the tasks for 

execution in each round which plays most 

significant role in RR algorithm. The RR algorithm 

allocates the tasks to the processor and providing 

time quantum to every task. If execution of the task 

is not completed within the time quantum, then the 

task will be stopped and tasks stored back to the 

queue waiting for next turn. Similarly, other tasks 

are used their time quantum and executes the tasks. 

The benefit of RR algorithm is that each task will be 

executed in turn and they don’t have to be waited for 

the previous one to get completed. But if the load is 

too high, then RR will take a long time to complete 

all the jobs. The chains RR scheduling strategy is 

used for internal scheduling of jobs. Here, in order 

to balance the loads LB algorithm is used namely 

Cuckoo Search-Firefly Algorithm.  

3.2.2. Capacity of VMs 

The estimation of VM capacity depends on the 

number of processors, MIPS, memory and 

bandwidth. It represented as 𝐶𝑉𝑖  which is 

mathematically shown in the Eq. (5), 

 

𝐶𝑉𝑖 = [
𝑟𝑖×𝑠𝑖×𝑚𝑖

1000
+ 𝑏𝑖] ×

1

2
                                (5) 

 

Whereas, 𝑟𝑖  is the number of processors in 𝑖𝑡ℎ 

VMs, 𝑠𝑖  is represented as MIPS, bandwidth is 

represented as 𝑏𝑖 . The capacity of the 𝐶𝑉𝑖  takes a 

value in the range [0, 1] . The highest capacity is 

required for VM task allocation.  

3.2.3. Calculation of VM load 

The load of VMs is computed based on two 

approximates, called maximum bound and minimum 

bound approximates, in addition to the execution 

time of the task and the capacity of VMs. The VM 

load calculation is mathematically shown in the Eq. 

(6). 

 

𝐿(𝑉𝑀𝑖) =
1

𝑇
∑ (𝐸𝑚×𝐷𝑚

𝑖 )𝑇
𝑚=1

𝑏𝑚𝑖𝑛+(𝑏𝑚𝑎𝑥−𝑏𝑚𝑖𝑛)×𝐶𝑉𝑖
  (6) 

 

Whereas, 𝐸𝑚 is the execution time of 𝑚𝑡ℎ  task, 

𝐶𝑉𝑖 is the capacity of VMs. 𝑏𝑚𝑎𝑥 is indicated as the 

maximum bound approximate, 𝑏𝑚𝑖𝑛 is indicated as 

minimum bound approximate. 𝑇 is indicated as total 

No.Ts, 𝐷𝑚
𝑖  is a function that indicates all the tasks in 



Received:  February 20, 2020                                                                                                                                            426 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

VMs as given in the following condition shown in 

Eq. (7), 

 

𝐷𝑚
𝑖 = {

1   ;   𝑖𝑓 𝑚𝑡ℎ 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑖𝑡ℎ 𝑉𝑀
0 ;           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

               (7) 

 

Whereas, 𝐿(𝑉𝑀𝑖)  is indicated as VM loads and 

𝐿(𝑉𝑀𝑖) value is between 0 to 1. Moreover, 𝐿(𝑉𝑀𝑖) 

preferred minimum value to handle the LB.  After 

the calculation of VM’s capacity and load, hybrid 

CS-FA is applied to select the best VM for task 

allocation. In next section, the detail description of 

CS-FA algorithm is presented. 

3.2.4. Proposed cuckoo search-firefly algorithm 

The proposed technique has to find appropriate 

under loaded VMs to reallocate the task that is taken 

out from the overloaded VM. The PMs may have 

more than one VM that can perform the task. 

Therefore, it is essential to consider the suitable VM 

that has the capacity to accept the task. The 

proposed technique not only performs LB but also 

considers the communication cost, priority level and 

execution time of the task. Let considers the VM’s 

load and its capacity, which are the important 

parameters for determining the under loaded VMs.  

The special lifestyle and reproduction strategy 

are the inspiration for constructing the CS algorithm 

which contains a population of eggs or nests. The 

solutions represent each egg in nest, whereas new 

solution describes the cuckoo eggs. If the host's egg 

is very similar to cuckoo egg, then host's egg is high 

which needs to calculate the fitness function in 

solutions. The solution which is not good in nest is 

replaced with better solution (cuckoo). A Lévy flight 

is performed in Eq. (8) to generate new solutions 

𝑥(𝑡+1) for cuckoo 𝑖. 
 

𝑥(𝑡+1) = 𝑥𝑖
(𝑡)

+ 𝑎 ⊕ 𝐿𝑒𝑣𝑦(𝜆)  (8) 

 

Where 𝑎 > 0 is the step size which should be 

related to the scales of the problem of interest. The 

product ⊕ is entry wise multiplications. While the 

random steps of Levy distribution for large steps are 

drawn, the Levy flights provides random walk and 

the CS algorithm contains the following rules as 

below, 

• At a time, only one egg can be laid by 

cuckoo which can dump into a randomly 

chosen nest. 

• The next generations will be carried out by 

high-quality eggs from the best nests. 

• The host species with probability is used to 

find out the laid egg by a cuckoo and the 

number of host nests are fixed. In this 

situation, the host species can either abandon 

the nest or take the egg and create the new 

nest. 

• Consider 𝑝𝑎 ∈  [0, 1]  as a probability of 

discovery of an alien egg in its nest of a host 

bird. 

The new nests with new random solutions 

replaced the last assumption can be approximated by 

a fraction 𝑝𝑎 of the 𝑚 host nests. The major issue in 

CA algorithm is selected the nests (VMs) in random 

process to rectify this problem firefly algorithm is 

used.  

The local search is provided by the FA algorithm 

which is faster than the CA which has only a single 

parameter along with population size. So a hybrid 

algorithm is adopted to find better results. The FA 

algorithm majorly concentrates on its position and 

fitness value of the objective function. The 

optimistic position shows the firefly has better 

objective value and it can attract more fireflies to 

move towards their direction, as each firefly has its 

own range of view. 

Let’s Consider, firefly swarm id 𝑁, the 𝑖 firefly’s 

position 𝑥𝑖 , 𝑦𝑖  matches the objective function 

𝑓(𝑥𝑖, 𝑦𝑖) and the firefly’s fluoresce value is 𝑇𝑖 , the 

updating formula of each firefly’s range of view in 

Eq. (9). 

 

 𝑓𝑘
𝑖(𝑢 + 1) = 𝑚𝑖𝑛{𝑓𝑡, 𝑚𝑎𝑥{0, 𝑓𝑘

𝑖(𝑢) 

+𝛽(𝑡𝑢 − |𝑡𝑢(𝑢)|)}}    (9) 

 

Whereas, 𝑓𝑘
𝑖(𝑢 + 1)  is the 𝑖𝑡ℎ  firefly in 𝑢 + 1 

range, 𝑡𝑢  is the threshold value of the neighbor 

firefly’s number. 𝛽 is the control constant, 𝑡𝑢(𝑢) is 

the range in number of fireflies with high fluoresce. 

Therefore, the formula of 𝑡𝑢(𝑢) is mathematically 

represented in Eq. (10), 

 

𝑡𝑢(𝑢) = {𝑗: ‖𝑦𝑗(𝑢) − 𝑦𝑖(𝑢)‖ ≺ 𝑓𝑘
𝑖𝑙𝑖(𝑡) ≺ 𝑙𝑗(𝑢)} 

(10) 

 

Whereas, 𝑦𝑖(𝑢)  is the position of 𝑗  firefly in 𝑡 

generation, 𝑙𝑗(𝑢) is the 𝑗 firefly’s fluoresce value in 

𝑡 generation, the neighbor firefly range is in 𝑓𝑘
𝑖. The 

firefly neighbors selecting the probability are shown 

in Eq. (11). 

 

𝑓𝑖𝑗(𝑢) =
𝑙𝑖(𝑢)−𝑙𝑗(𝑢)

∑ 𝑙𝑘(𝑢)−𝑙𝑖(𝑢)𝑘∈𝑛𝑖(𝑢)
  (11) 

 



Received:  February 20, 2020                                                                                                                                            427 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

The position updating formula of firefly is 

shown in Eq. (12). 

 

𝑓𝑖(𝑢) = 𝑓𝑖(𝑢 − 1) + 𝑠
𝑓𝑗(𝑢−1)−𝑓𝑖(𝑢−1)

‖𝑓𝑗(𝑢−1)−𝑓𝑖(𝑢−1)‖
        (12) 

 

The value of Fluoresce is shown in the Eq. (13). 

 

𝑓𝑖(𝑢 + 1) = (1 − 𝑡)𝑙𝑖(𝑢) + 𝛾𝑘(𝑐𝑖(𝑢 + 1))  (13) 

 

In above equation, 𝛾 is the parameter to measure 

the function value, 𝑘(𝑐𝑖(𝑢 + 1)) is the fitness value 

of the function. The Hybrid CS-FA is selecting the 

best VM for migrate the over task from overloaded 

VMs to under-loaded VMs.        

4. Result and discussion  

In this section, the experimental results of the 

proposed CS-FA and the comparative discussion of 

the CS-FA method with the existing LB methods, 

such as DLB, HBB-LB, HDLB and CMLB are 

described. 

4.1 Experimental setup  

The proposed LB method is experimented in a 

personal computer with Intel Core i3 processor and 

2GB memory using Windows 8 operating system. 

The CS-FA method is implemented using Java with 

cloudsim and the performance is evaluated with 

various cloud set up for load and capacity. 

4.2 Evaluation metrics  

The proposed LB method is evaluated for the 

evaluation metrics load and capacity.  

Load: The load can be defined as the total 

No.Ts assigned to the virtual machines. 

Capacity: The capacity of the virtual machine is 

calculated by the following Eq. (14), 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑉𝑀) = 𝑌 × 𝐼 + 𝐵    (14) 

 

Where, 𝑌 represents the number of processors, 𝐼 

represents the number of instructions, and  𝐵 

represents the bandwidth. 

4.3 Analysis for the maximum task size of 20 

In this section, the experimental result of the 

proposed CS-FA LB method is described for setup 

one and setup two. The first set up contains five 

physical machines and the second set up contains 10 

physical machines which are running with seven 

virtual machines. Here, maximum number of the 

task size is the 20 and task migration performance is 

shown in the Table 1.   

Fig. 3 describes the number of migrated tasks 

and the load value of VM, when the No.Ts are 5, 10, 

15 and 20 for three threshold values such as 0.7, 0.8 

and 0.9. Fig. 3 (a) represents the number of migrated 

tasks when the No.Ts are 5, 10, 15, and 20 for the 

threshold value of 0.7, 0.8, and 0.9. When the 

numbers of tasks are five, one task is migrated for 

the threshold value 0.7. When the No.Ts are ten, one 

task is migrated while applying the threshold value 

0.8 and 0.9. For the all the three threshold values, 

one task is migrated when the No.Ts are 15, and two 

tasks are migrated when the No.Ts are 20. The 

proposed method has the higher efficiency due to 

convergence rate is high and has simple parameter 

tuning. 

 
Table 1. Performance of number of task migration 

Numbe

r of 

Tasks 

Setup 1 Setup 2 

T=0.

7 

T=0.

8 

T=0.

9 

T=0.

7 

T=0.

8 

T=0.

9 

5 1 0 0 1 0 0 

10 0 1 1 1 1 0 

15 1 1 1 2 1 0 

20 2 1 1 2 2 1 

 

 
(a)       (b) 

Figure. 3 Illustration of number of migrated tasks of: (a) setup 1 and (b) setup 2 

 

0

1

2

3

5 10 15 20

N
u

m
b

er
 o

f 
M

ig
ra

te
d

 

T
a

sk
s

Number of Tasks

Setup 1 T=0.7 Setup 1 T=0.8

Setup 1 T=0.9

0

0.5

1

1.5

2

2.5

5 10 15 20

N
u

m
b

er
 o

f 
M

ig
ra

te
d

 

T
a

sk
s

Number of Tasks

T=0.7 T=0.8 T=0.9



Received:  February 20, 2020                                                                                                                                            428 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

 
(a)       (b) 

Figure. 4 Illustration of number of migrated loads of: (a) setup 1 and (b) setup 2 

 

 

Fig. 3 (b) represents the performance of the 

different No.Ts migration of setup 2. When the 

No.Ts are five, one task is migrated for the threshold 

value 0.7. When the No.Ts are 10, one task is 

migrated while applying the threshold value 0.7 and 

0.8. When the number of tasks is 15, two and one 

task is migrated for the threshold value 0.7 and 0.8 

respectively. In two setups, the proposed method has 

the capacity to migrate task in three different 

threshold value. When the No.Ts are 20, two tasks 

are migrated for the threshold value 0.7 and 0.8 

respectively also, one task migrate for the threshold 

value 0.9.the number of different load performance 

is shown in the Table 2. 

Fig. 4 (a) shows the load of the VM when the 

No.Ts. are 5, 10, 15, and 20. When the No.Ts are 5, 

10, 15, and 20, loads of the VM are 0.65, 0.64, 0.68, 

and 0.65 for the threshold value of 0.7. For the 

threshold value of 0.8, loads of the VM are 0.72, 

0.68, 0.75, and 0.74 when the numbers of tasks are 5, 

10, 15, and 20. For the threshold value of 0.9, loads 

of the VM are 0.76, 0.67, 0.78, and 0.69 when the 

numbers of tasks are 5, 10, 15, and 20. 

Fig. 4 (b) represents the performance of the 

workload with respect to the different No.Ts. Fig. 4 

(b) shows the load of the VM when the No.Ts are 5, 

10, 15, and 20 while applying the threshold values 

0.7, 0.8, and 0.9. For the threshold value of 0.7, 

loads of the VM are 0.68, 0.63, 0.61 and 0.66 when 

the No.Ts are 5, 10, 15, and 20. For the threshold 

value of 0.8, loads of the VM are 0.73, 0.65, 0.74, 

and 0.72 when the No.Ts are 5, 10, 15, and 20. For 

the threshold value of 0.9, loads of the VM are 0.78, 

0.81, 0.73 and 0.71 when the No.Ts are 5, 10, 15, 

and 20.    

4.4 Analysis for the maximum task size of 40 

This section describes the performance of 

maximum task size is 40 with respect to the various 

threshold value. The two different setup values are 

tabulated in the Table 3. Fig. 5 depicts the number 

of migrated tasks and the load of the virtual machine 

when the No.Ts are 25, 30, 35, and 40 while 

providing the threshold value of 0.7, 0.8, and 0.9 for 

setup 1 and setup 2 respectively.  

Fig. 5 (a) illustrates the number of migrated 

tasks when the No.Ts are 25, 30, 35, and 40 for the 

threshold values of 0.7, 0.8, and 0.9. When the 

No.Ts are 25, two tasks are migrated for the 

threshold values of 0.7. For the threshold value of 

0.7, three tasks are migrated when the No.Ts is 35. 

For the threshold value of 0.8 and 0.9, two tasks are 

migrated when the No.Ts is 35. When the No.Ts is 

30, two tasks are migrated for the threshold value of 

0.7 and 0.8, zero tasks are migrated for the threshold 

value of 0.9. When the No.Ts is 40, two tasks are 

migrated for the threshold value of 0.7,and 0.9.The 

convergence rate of the proposed method is high and 

has less number of tuning in parameter. This helps 

in increases the efficiency of the developed method. 

 
Table 2. Performance of different Load 

Numbe

r of 

Tasks 

Setup 1 Setup 2 

T=0.

7 

T=0.

8 

T=0.

9 

T=0.

7 

T=0.

8 

T=0.

9 

5 0.65 0.72 0.76 0.68 0.73 0.78 

10 0.64 0.68 0.67 0.63 0.65 0.81 

15 0.68 0.75 0.78 0.61 0.74 0.73 

20 0.65 0.74 0.69 0.66 0.72 0.71 

 
Table 3. Performance of different No.Ts 

Numbe

r of 

Tasks 

Setup 1 Setup 2 

T=0.

7 

T=0.

8 

T=0.

9 

T=0.

7 

T=0.

8 

T=0.

9 

25 2 1 0 1 2 1 

30 2 2 0 2 2 2 

35 3 2 2 3 2 2 

40 2 1 2 3 3 3 

 

 

0

0.5

1

5 10 15 20

L
o

a
d

Number of Tasks

T=0.7 T=0.8 T=0.9

0

0.5

1

5 10 15 20

L
o

a
d

Number of Tasks

T=0.7 T=0.8 T=0.9



Received:  February 20, 2020                                                                                                                                            429 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

 
(a)       (b) 

Figure. 5 Illustration of number of migrated loads of: (a) setup 1 and (b) setup 2 

 

 
(a)       (b) 

Figure. 6 Illustration of number of migrated loads of: (a) setup 1 and (b) setup 2 

 

 

Table 4. Performance of different loads 

Numbe

r of 

Tasks 

Setup 1 Setup 2 

T=0.

7 

T=0.

8 

T=0.

9 

T=0.

7 

T=0.

8 

T=0.

9 

25 0.67 0.74 0.78 0.69 0.78 0.8 

30 0.65 0.77 0.83 0.68 0.79 0.83 

35 0.68 0.73 0.87 0.68 0.78 0.82 

40 0.63 0.79 0.87 0.69 0.79 0.85 

 

Fig. 5 (b) depicts the No.Ts migration 

performance of the setup 2. When the No.Ts are 25, 

two tasks are migrated for the threshold values of 

0.8. For all the threshold value, two tasks are 

migrated when the No.Ts is 30. For the threshold 

value of 0.7, three tasks are migrated when the 

No.Ts is 35. When the number of the tasks is 40, 

three tasks are migrated for all the threshold values. 

The number of load migration performance is shown 

in the Table 4.   

Fig. 6 represents the number of migrated tasks 

and the load of the virtual machine when the 

numbers of tasks are 25, 30, 35, and 40 while 

applying the threshold value of 0.7, 0.8, and 0.9 for 

setup two. Fig. 6 (a) shows loads of the virtual 

machine when the numbers of tasks are 25, 30, 35, 

and 40 for the threshold values of 0.7, 0.8, and 0.9. 

For the threshold value of 0.7, loads of the virtual 

machines are 0.67, 0.65, 0.68 and 0.63 when the 

numbers of tasks are 25, 30, 35, and 40. For the 

threshold value of 0.8, loads of the virtual machines 

are 0.74, 0.77, 0.73, and 0.79 when the numbers of 

tasks are 25, 30, 35, and 40. For the threshold value 

of 0.9, loads of the virtual machines are 0.78, 0.83, 

0.87, and 0.87 when the numbers of tasks are 25, 30, 

35, and 40. Similarly Fig.6 (b) shows the 

performance of the setup 2 with respect to load 

migration. 

4.5 Worst performance  

In this section, Table 5 shows the worst 

performance for both setup 1 and 2 with worst 

number of migrated tasks for the threshold values of 

0.7, 0.8, and 0.9. For the setup 1, the worst 

performance occurs when the threshold value is 0.7. 

For the threshold value of 0.7, there are three 

migration and the load value of VM is high with 

0.689. The load value of the CS-FA at the threshold 

0.7, and 0.8 are 0.68, and 0.73 respectively.  

0

1

2

3

4

25 30 35 40

N
u

m
b

er
 o

f 
M

ig
ra

te
d

 

T
a

sk
s

Number of Tasks

T=0.7 T=0.8 T=0.9

0

1

2

3

4

25 30 35 40

N
u

m
b

er
 o

f 
M

ig
ra

te
d

 

T
a

sk
s

Number of Tasks

T=0.7 T=0.8 T=0.9

0

0.5

1

25 30 35 40

L
o

a
d

Number of Tasks

Setup 1  T=0.7 Setup 1  T=0.8

Setup 1  T=0.9

0

0.2

0.4

0.6

0.8

1

25 30 35 40

L
o

a
d

Number of Tasks

T=0.7 T=0.8 T=0.9



Received:  February 20, 2020                                                                                                                                            430 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

Table 5. Performance of worst value of migrated tasks 

and the load for setup 1 and setup 2 

Threshold Setup 1 

Number 

of 

Migrated 

Tasks 

Load of 

the 

VMs 

Setup 2 

Number 

of 

Migrated 

Tasks 

Load 

of the 

VMs 

0.7 3 0.689 3 0.691 

0.8 2 0.736 3 0.782 

0.9 2 0.754 3 0.834 

 
Table 6. Performance of average value of migrated tasks 

and the load for setup 1 and setup 2 

Threshold Setup 1 

Number 

of 

Migrated 

Tasks 

Load 

of the 

VMs 

Setup 2 

Number 

of 

Migrated 

Tasks 

Load 

of the 

VMs 

0.7 1 0.64 1 0.66 

0.8 0 0.79 1 0.73 

0.9 0 0.74 0 0.85 

 

For the setup 2, the worst performance occurs 

when the threshold value is 0.9. For the threshold 

value of 0.9, there are three migrations besides the 

load value is high with the value of 0.834. The load 

value of the CS-FA at the threshold 0.7, and 0.8 are 

0.691, and 0.782 respectively. 

4.6 Average performance  

In this section, Table 6 shows the average 

number of migrated tasks and the average load of 

the VMs for setup one and setup two for the 

threshold values of 0.7, 0.8, and 0.9. In setup one, 

the average number of migrated tasks is one for the 

threshold value of 0.7 and there is no need of task 

migration for the threshold values 0.8 and 0.9. The 

average load of the virtual machine is 0.64, 0.79, 

and 0.74 for the threshold values 0.7, 0.8, and 0.9 

respectively.  

In setup two, the average number of migrated 

tasks is one for the threshold value of 0.7 and 0.8, 

and no migrated task for the threshold value of 0.9. 

The average load of the virtual machine is 0.66, 0.73, 

and 0.85 for the threshold values 0.7, 0.8, and 0.9 

respectively. 

4.7 Best performance  

In this section, Table 7 shows the best number of 

migrated tasks and the corresponding load of the 

VM for setup one and set up two. For the setup 1, 

the best performance occurs when the threshold 

value is 0.7. For the threshold value of 0.7, there 

zero migration since the load of the system is 

 

Table 7. Performance of Best value of migrated tasks and 

the load for setup 1 and setup 2 

Threshold Setup 1 

Number 

of 

Migrated 

Tasks 

Load 

of 

the 

VMs 

Setup 2 

Number 

of 

Migrated 

Tasks 

Load of 

the VMs 

0.7 0 0.63 0 0.61 

0.8 0 0.66 0 0.63 

0.9 0 0.68 0 0.650 

 
Table 8. Comparative analysis 

Numbe

r of 

Task 

HBB-

LB 

[18] 

DLB 

[18] 

HDLB 

[18] 

CML

B [15] 

Propose

d CA-FA 

10 0 1 1 0 0 

20 1 1 2 1 0 

30 3 4 4 2 2 

40 4 6 7 3 2 

 

balanced with the value of 0.63. The load value of 

the CS-FA at the threshold 0.8, and 0.9 are 0.66 and 

0.68 respectively.  

For the setup 2, the best performance occurs 

when the threshold value is 0.7. For the threshold 

value of 0.7, the load is balanced with the value of 

0.61. The load value of the CS-FA at the threshold 

0.8, and 0.9 are 0.63 and 0.65 respectively.   

4.8 Comparative discussion 

Table 8 shows the comparative discussion of the 

proposed CA-FA LB with the existing methods, 

such as HBB-LB, DLB, HDLB and CMLB. At 10th 

task, the existing methods such as DLB and HDLB 

migrates one task, whereas the proposed CA-FA 

need no task migration. The proposed CA-FA LB 

migrates zero when the No.Ts is 20 while the 

existing HDLB migrates two tasks for the same 

No.Ts.  

If the No.Ts is 30, the proposed LB method 

migrates two tasks while the existing LB methods, 

such as HBB-LB, DLB, and HDLB migrate three, 

four, and four tasks respectively. The scheduling 

method in the HBB-LB, DLB and HDLB techniques 

tends to migrate more task due to weighting method. 

The CML method has the disadvantages of low 

convergence rate. In the 40th task, the proposed CA-

FA migrates two task and other existing method 

migrates the 4, 6 and 7 tasks respectively. The 

convergence rate of the proposed method is high and 

has less number of tuning parameter than existing 

method. So, the proposed method has the higher 

performance than existing method. Hence, compare 

to the traditional LB algorithm proposed CA-FA 

algorithm shows the better performances. 



Received:  February 20, 2020                                                                                                                                            431 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

5. Conclusion  

In this research work,LB algorithm is proposed 

namely CA-FA. The LB algorithm calculates the 

deciding factor of all the virtual machines and fills 

the deciding list. Then, it calculates the selection 

factor of each task and fills the selection list and 

checks the load of the virtual machine. If the load of 

the virtual machine is greater than the balanced 

threshold value then, the LB algorithm assigns the 

task which has better selection factor to the virtual 

machine which has a better deciding factor. Then 

the allocated task is removed from the selection list, 

and the virtual machine is removed from the 

deciding list. Similarly, all the tasks are assigned to 

the virtual machines by the proposed LB method. 

The proposed LB method is evaluated with the 

existing LB methods, such as HBB-LB, DLB, 

CMLB and HDLB for the evaluation metrics load 

and capacity. From the experimental results, 

understand that the proposed CA-FA has the better 

performance by migrating only two tasks while the 

existing LB methods, such as CMLB, HBB-LB, 

DLB, and HDLB migrates more than two tasks. The 

proposed method has the advantages of high 

convergence rate and less number of tuning 

parameter.The proposed method migrate 2 task, 

while existing method requires 7 task for 

migration.In future work is extended as energy 

consumption and SLA violation will be reduced 

using an efficient multi objective optimized strategy. 

References 

[1] M. Adhikari and T. Amgoth, “Heuristic-based 

load-balancing algorithm for IaaS 

cloud”, Future Generation Computer 

Systems, Vol. 81, pp. 156-165, 2018. 

[2] S. Suresh and S. Sakthivel, “A novel 

performance constrained power management 

framework for cloud computing using an 

adaptive node scaling approach”, Computers & 

Electrical Engineering, Vol. 60, pp. 30-44, 

2017. 

[3] M. Kumar and S. C. Sharma, “Deadline 

constrained based dynamic load balancing 

algorithm with elasticity in cloud 

environment”, Computers & Electrical 

Engineering, Vol. 69, pp. 395-411, 2018. 

[4] L. Tang, Z. Li, P. Ren, J. Pan, Z. Lu, J. Su, and 

Z. Meng, “Online and offline based load 

balance algorithm in cloud 

computing”, Knowledge-Based Systems, Vol. 

138, pp. 91-104, 2017. 

[5] T. Tamilvizhi and B. Parvathavarthini, “A 

novel method for adaptive fault tolerance 

during load balancing in cloud 

computing”, Cluster Computing, Vol. 5, No. 5, 

pp. 10425-10438, 2019. 

[6] A. S. Milani and N. J. Navimipour, “Load 

balancing mechanisms and techniques in the 

cloud environments: Systematic literature 

review and future trends”, Journal of Network 

and Computer Applications, Vol. 71, pp. 86-98, 

2016. 

[7] R. K. Naha and M. Othman, “Cost-aware 

service brokering and performance sentient 

load balancing algorithms in the 

cloud”, Journal of Network and Computer 

Applications, Vol. 75, pp. 47-57, 2016. 

[8] G. Xu, J. Pang, and X. Fu, “A load balancing 

model based on cloud partitioning for the 

public cloud”, Tsinghua Science and 

Technology, Vol. 18, No. 1, pp. 34-39, 2013. 

[9] F. Ramezani, J. Lu, and F. K. Hussain, “Task-

based system load balancing in cloud 

computing using particle swarm 

optimization”, International Journal of Parallel 

Programming, Vol. 42, No. 5, pp. 739-754, 

2014. 

[10] K. Dasgupta, B. Mandal, P. Dutta, J. K. Mandal, 

and S. Dam, “A genetic algorithm (ga) based 

load balancing strategy for cloud 

computing”, Procedia Technology, Vol. 10, pp. 

340-347, 2013. 

[11] L. Wang, Z. Wang, S. Hu, and L. Liu, “Ant 

colony optimization for task allocation in multi-

agent systems”, China Communications, Vol. 

10, No. 3, pp. 125-132, 2013. 

[12] M. Lawanyashri, B. Balusamy, and S. Subha, 

“Energy-aware hybrid fruitfly optimization for 

load balancing in cloud environments for EHR 

applications”, Informatics in Medicine 

Unlocked, Vol. 8, pp. 42-50, 2017. 

[13] V. Jeyakrishnan and P. Sengottuvelan, “A 

hybrid strategy for resource allocation and load 

balancing in virtualized data centers using BSO 

algorithms”, Wireless Personal 

Communications, Vol. 94, No. 4, pp. 2363-

2375, 2017. 

[14] V. A. Xavier and S. Annadurai, “Chaotic social 

spider algorithm for load balance aware task 

scheduling in cloud computing”, Cluster 

Computing, Vol. 22, No. 1, pp. 287-297, 2019. 

[15] V. Polepally and K. S. Chatrapati, “Dragonfly 

optimization and constraint measure-based load 

balancing in cloud computing”, Cluster 

Computing, Vol. 22, pp.1099-1111, 2019. 

[16] G. Reddy, N. Reddy, and S. Phanikumar, 

“Multi Objective Task Scheduling Using 

Modified Ant Colony Optimization in Cloud 



Received:  February 20, 2020                                                                                                                                            432 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.38 

 

Computing”, International Journal of 

Intelligent Engineering and Systems, Vol. 11, 

No. 3, pp. 242-250, 2018. 

[17] K. A. Sultanpure and L. S. S. Reddy, “Job 

Scheduling for Energy Efficiency Using 

Artificial Bee Colony through Virtualization”, 

International Journal of Intelligent Engineering 

and Systems, Vol. 11, No. 3, pp. 138-148, 2018. 

[18] P. V. Krishna, “Honey bee behavior inspired 

load balancing of tasks in cloud computing 

environments”, Applied Soft Computing, Vol. 

13, No. 5, pp. 2292-2303, 2013. 

 


