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Abstract: Classification of a brain tumor is a critical step in the design of computer-aided diagnosis systems for 

Magnetic Resonance Image (MRI) analysis. This work presents an efficient algorithm to classify a tumor in brain MRI 

images using statistical-based features and deep neural network. Data, within the region of interest, is transformed into 

two-dimensional discrete Gabor filter and wavelet transform. These filters are combined in this algorithm as directional 

transformation methods for utilizing all information in all orientations of the MRI input image. MRI Features are 

extracted based on the first and second order statistics from both domains. Two types of neural network classifiers are 

employed: Stacked Sparse Autoencoder (SSA) and Softmax Classifier (SMC). Two regularization functions are used 

in the training of the SA, sparsity regularization and L2-weight regularization. Sparsity regularization controls the 

firing of the neurons in the hidden layer, whereas L2-weight regularization reduces the effect of the overfitting and 

improves the performance of the SA. Two datasets are used to evaluate the proposed algorithm. The first dataset 

consists of 3,064 of T1-weighted MRI slices with three kinds of tumors: Pituitary, Glioma, and Meningioma. The 

second dataset consists of 200 MRI slices with low-grade and high-grade Glioma tumor collected from the BRATS 

dataset. The performance of the proposed algorithm is validated using the experimental results in terms of accuracy, 

specificity, and sensitivity compared to the existing algorithms. For the first dataset, the accuracy obtained is 94.0%, 

the sensitivity of Meningioma, Glioma, and Pituitary is 87.44%, 97.29%, and 94.27%, respectively, and the specificity 

of Meningioma, Glioma, and Pituitary is 98%, 96.89%, and 96.78%, respectively. For the BRATS dataset, the accuracy, 

the specificity, and the sensitivity achieved are 98.8%, 100%, and 100%, respectively. 

Keywords: Autoencoder, Brain tumor, Gabor filter, Softmax classifier, Statistical features. 

 

 

1. Introduction 

Based on the American Cancer Society, 23,890 

malignant tumors in the Central Nervous System 

(CNS) will be diagnosed in 2020. In addition, 18,020 

patients will die due to a CNS tumor [1]. 

Consequently, scientists in the field of medicine, 

computer science, and engineering are working on 

developing new techniques to diagnose and treating 

brain tumors effectively [2]. Two approaches are 

used to diagnose a brain tumor, invasive and non-

invasive. In invasive, the radiologist takes a sample 

from the affected area of the brain for the exam using 

biopsy or spinal tap methods. The most common 

modality for non-invasive diagnoses of brain tumors 

is the Magnetic Resonance Imaging (MRI) due to its 

high sensitivity to local changes in tissue water, its 

high resolution especially in differentiating soft 

tissues, and its ability to create multiple images with 

different contrast visualization when examining the 

same tissue.  

This is how it helps physicians and radiologists 

to study the scanned tissue more precisely [3]. 

Manual diagnosis is based on the radiologist’s 

viewing, which is time consuming due to the large 

amount of MRI slices to be analyzed [4]. Usually, 

physicians and radiologists have faced some 

difficulties in some sophisticated cases in the 

classification stage. These sophisticated cases require 

specialists having expertise in order to find and 

localize the tumor, test the tumor tissue with the 
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surrounding region, employ filters if necessary, 

adjust the tumor’s region to be more clear for 

physicians and radiologists vision, and finally 

conclude whether there is a tumor or not along with 

specifying the tumor type and grade level if available. 

These tasks to be accomplished will consume time 

and might end up with wrong diagnosis. Therefore, 

other tools are needed to support both physicians and 

radiologists in their diagnosis [5]. Naturally, an 

invasive based diagnosis such as spinal tap and 

biopsies are risky, time-consuming, expensive, and 

painful [6]. All these drawbacks and concerns 

encourage the radiologists to take advantage of any 

aided diagnosis tools that are available. Computer-

aided diagnosis system (CAD) is aimed to support the 

radiologists and not to replace them. Indeed, the 

proposed algorithm can be considered as a second 

opinion for radiologists. The information obtained 

from the MRI images is also considered as a second 

diagnosis. Moreover, a well-designed CAD system 

will minimize or prevent human errors, such as 

missing readings that are caused by fatigue, 

overlooking, and data overloading when analyzing 

the MRI slices, and allow for better health care [7].  

The main contribution of this paper is the 

implementation of the Stacked Sparse Autoencoder 

(SSA) and the Softmax classifier (SMC) for 

classifying the type and the grade of the MRI brain 

tumors. Unlike the BPNN classifier, the proposed 

classification technique trains each layer separately, 

controls the firing of each neuron in the hidden layer, 

and reduces the overfitting. This ability is resulted 

from using sparsity regulation in the training of the 

SA. Also, the Softmax function used by the SMC is 

designed for the multiclass logistic regression (LR), 

while the sigmoid function used by the BPNN 

classifier is restricted to two-class LR.  

Brain tumors included in this study are: 

Meningioma, Glioma including the high-grade and 

low-grade, and Pituitary tumors. Meningioma is a 

homogeneous tumor with high intensity region. 

Glioma is a heterogeneous tumor with low intensity 

region and the tumor border is brighter than inside 

region. Pituitary is a heterogeneous tumor ranging 

from high to low intensity [8]. 

The main image attributes used to describe these 

types and grades of the brain tumors are the intensity 

and texture of the tumor regions. Therefore, statistical 

features that can be extracted from these two main 

image attributes are proposed in this algorithm along 

with other measures to quantify the image attributes. 

Features are generated using first and second order 

statistics in addition to other measures such as energy 

and entropy. The features allow the identification of 

these types/grades of brain tumors via machine 

learning algorithms. To enhance classification 

performance, the high level of accountability of all 

tumors’ characteristics can be accomplished by 

performing efficient model and feature representation. 

The proposed algorithm is not only extracting 

features from the spatial domain, but also from other 

domains to achieve high recognition rates that yield 

to better class discrimination. Hence, another set of 

features obtained by other domains, Wavelet and 

Gabor, is proposed. Based on the results shown later 

in the Tables 4-7, the proposed algorithm shows 

significant improvements in the classification rates, 

specificity, as well as sensitivity in comparison with 

the existing algorithms. 

The remainder of this paper is organized as: a 

brief background is presented in section 2, a 

description of the methodology used is described in 

Section 3. Section 4 presents the experimental setup 

and the simulation results. Concluding remarks are 

presented in Section 5. 

2. Background 

     CAD system is an application of pattern 

recognition that aims to help physicians and 

radiologists to make a proper diagnosis decision 

taking into consideration that the final opinion about 

the examined case is made by the radiologists [9]. 

Different methods have been proposed to develop a 

CAD system that can detect or classify abnormal 

tissues from brain MRI images [10]. These methods 

have three main steps: feature extraction, 

dimensionality reduction, and classification. Two-

Dimensional Discrete Wavelet Transform (2D DWT) 

and texture features are the most common techniques 

used to extract features from brain MRI images. The 

wavelet transform is a useful tool for image analysis 

since it provides significant information with less 

time [11]. Texture features are extracted from the 

image using either statistical features or the Gabor 

filter [12]. Statistical features are determined by first 

or second order statistics. The histogram of an image 

is used to extract the first order statistical features 

[13], while the second order features are determined 

by using Gray-Level Co-occurrence matrix (GLCM), 

Gray Level Run Length Matrix (GLRM) [14], or 

Neighborhood Gray Tone Difference Matrix 

(NGTDM) [15] are employed to extract the second 

order statistical features. Statistical features can be 

extracted from the sub-band images that resulted 

from the 2D DWT. In the literature, some authors 

extract these features from the low-low frequency 

(LL) sub-band [12, 16] while other works suggested 

using the low-high (LH) and high-low frequencies 

(HL) sub-bands images for statistical features 
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calculations [6, 17]. The Gabor filter has been widely 

used to classify the brain tumor by the texture 

features [12]. The Gabor filter has good 

characteristics in both time and frequency domains. 

Hence, statistical features can be obtained in the 

spatial frequency domain using the images resulting 

from the 2D Gabor filter implemented with different 

frequencies and orientations [18]. Dimensionality of 

the images is the main challenge that faces the 

classification process. The extra features increase the 

time and memory storage required for the CAD 

system implementation [7]. The most common 

technique used in the literature for the feature 

reduction in brain tumor classifications is the 

Principal Component Analysis (PCA) [4, 19]. PCA is 

an efficient tool that transforms a high dimensional 

input feature with correlated variables into a low 

dimensional uncorrelated feature vector using 

orthogonal transformation [3, 4]. 

       There are other techniques for feature selection 

and dimensionality reduction that are employed in the 

classification of brain tumors, such as the Genetic 

Algorithm (GA) [20] and the Cumulative Variance 

Method (CVM) [12]. Classification is the most 

significant step in the CAD system since it gives the 

final decision about the required class based on the 

extracted features of the MRI image [4, 7]. To 

classify the brain tumor in MRI images, authors have 

used many different techniques. The most widely 

used classification techniques are neural networks 

(NN) and support vector machines (SVM). The NN 

has been proved as an efficient tool for classification 

purposes due to its ability to adjust data and 

approximate any function with arbitrary accuracy. 

Few architectures were used to implement NN 

classifications, such as the feedforward NN, the 

multilayer perceptron NN trained with 

backpropagation algorithm (BPA) and the 

Probabilistic NN (PNN) [21]. SVM is a new type of 

classifier based on a statistical learning technique that 

minimizes the error by maximizing the margin 

between the separating hyperplane and the data [22]. 

Three kernels were used to implement the SVM 

classifier: Gaussian radial basis function, 

inhomogeneous polynomial, and homogenous 

polynomial [13, 19]. J. Cheng H. Wei and C. 

Shuangliang [23] proposed a technique to extract 

features using three methods, which are GLCM, the 

Bag of Words model, and the intensity histogram,  

and the SVM for recognition. In [24], Vani and 

Geetha proposed a classification algorithm for brain 

tumor using three types of classifiers: SVM, KNN, 

and Decision Tree. Wasule and Sonar in [25] 

suggested an algorithm based on SVM and KNN  
 

Figure. 1 Block diagram of the proposed algorithm 

 

classifiers for brain tumor using the GLCM. In [26], 

Farhi and Yusuf presented a survey on MRI image 

classification using machine learning techniques. 

Furthermore, five different classifiers are used: ANN, 

Decision Tree, KNN, Nave Bayes, and SVM. Also, 

in [26], GLCM and PCA were employed for feature 

selection and dimensionality reduction. 

3. Proposed algorithm  

The proposed algorithm contains two phases: the 

training phase and the testing phase as shown in Fig. 

1. In each phase, there are two main steps: feature 

extraction and classification. The feature extraction 

step is implemented by using 2D DWT in conjunction 

with the 2D Gabor filter followed by a statistical 

calculation. In the classification step, the SSA is 

trained and stacked with the SMC during the training 

step. Afterward, SSA is used to classify the generated 

features to its classes during the testing phase. The 

image in each phase is either the tumor region or ROI. 

ROI is extracted either manually by a radiologist or 

automatically by using a preprocess automated 

segmentation algorithm. 

3.1 Feature extraction 

      The choice of the feature extraction technique 

plays a vital role in the performance of the classifier. 

High order statistical features that are related to the 

spatial domain tumor attributes are obtained from the 

2D DWT and the 2D Gabor filter. The 2D DWT is an 

efficient tool for image representation, and the Gabor 

filter is a powerful tool in measuring the 

heterogeneity and the textural analysis. The 2D DWT 

decomposes the input image into four sub-band 

images: the approximation sub-band (LL), the 

horizontal detail sub-band (LH), the vertical detail 

sub-band (HL), and the diagonal detail sub-band 

(HH). As a result, three-directional features (i.e.,  
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Table 1. A list of selected statistical features 

Feature Description Formula 

Mean (m) The average intensity of the image 𝑚 = ∑𝑖 𝑝(𝑖) 

𝐿−1

𝑖=0

 

Variance (𝜇) The second moment about the mean 𝜇 = ∑(𝑖 − 𝑚)2 𝑝(𝑖) 

𝐿−1

𝑖=0

 

Skewness The third moment about the mean Skewness = ∑(𝑖 − 𝑚)3 𝑝(𝑖) 

𝐿−1

𝑖=0

 

Kurtosis The fourth moment about the mean Kurtosis = ∑(𝑖 − 𝑚)4 𝑝(𝑖) 

𝐿−1

𝑖=0

 

Contrast 
A measure of the local variations in the 

GLCM 
Contrast = ∑∑ (𝑖 − 𝑗)2 𝑝(𝑖, 𝑗)

𝐴

𝑗=1
 

𝐴

𝑖=1

 

Correlation 
A measure of the correlation of a pixel 

with its neighbor 
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑∑ (𝑖 − 𝑚1)(𝑗 − 𝑚2) 

𝑝(𝑖, 𝑗)

𝜎1𝜎2

𝐴

𝑗=1

𝐴

𝑖=1

 

Energy A measure of uniformity Energy = ∑∑(𝑝(𝑖, 𝑗))
2

𝐴

𝑗=1

𝐴

𝑖=1

 

Homogeneity 
Measures the spatial closeness of 

GLCM elements to the diagonal 
Homogeneity = ∑∑

𝑝(𝑖, 𝑗)

1 + | 𝑖 − 𝑗|

𝐴

𝑗=1

𝐴

𝑖=1

 

Entropy 
A measure of the randomness in the 

GLCM 
Entropy = −∑∑ 𝑝(𝑖, 𝑗)  𝑙𝑜𝑔(𝑝(𝑖, 𝑗))

𝐴

𝑗=1
 

𝐴

𝑖=1

 

Maximum 

probability 
The maximum probability in GLCM Maximum probability = 𝑀𝐴𝑋𝑖,𝑗   𝑝(𝑖, 𝑗) 

 

horizontal, vertical, and diagonal features) are three 

directions are not enough for expressing all the 

directional features in the images, especially for the 

medical images. Other types of transformation such 

as Gabor filter are needed for better directional 

features’ representation [27]. The Gabor filter 

analyzes the edges of the input image and produces 

several images with different wavelengths and 

orientations. In addition, Gabor filter captures visual 

properties of the image represented by spatial 

localization, orientation selectivity, and spatial 

frequency [28].   

       In this paper, to utilize all the directional features 

of the MRI image, 2D DWT and 2D Gabor filters are 

combined as directional transformation methods. 

Then, the statistical features are obtained from the 

resulting images for the classification. Combining the 

2D DWT is able to obtain better accuracies in 

comparison with those obtained using each filter 

separately.  

3.1.1. Gabor filter and multi-resolution analysis 

Gabor filter is a linear band pass filter whose 

kernel function is generated by modulating a 

Gaussian function with sinusoidal wave, and it is 

described by a specific frequency and orientation. 

The Gabor filter has an advantageous in computer 

vision and image processing, especially for texture 

characterization. This is due to its frequency and 

orientation are like human visual system as well as its 

optimal localization properties in both spatial and 

frequency domains [29, 30]. The general form of the 

2D Gabor filter is defined as: 

 

𝐺(𝑥, 𝑦, 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = 𝑒
− 

𝑥′2+𝛾2𝑦′2

2𝜎2  𝑒
𝑖 (2𝜋

𝑥′

𝜆
+𝜓)

  (1) 
 

where G is the output of the Gabor filter, x and y are 

the indices of the input image, ,  𝜓 is the phase offset, 

𝜃  is the orientation of the Gabor function, 𝜆 is the 

wavelength of the sinusoidal form, σ is the standard 

deviation of the Gaussian envelope, 𝛾 is the spatial 

aspect ratio, and 𝑥′ = 𝑥 𝑐𝑜𝑠(𝜃) + 𝑦 𝑠𝑖𝑛(𝜃) and 𝑦′ =
− 𝑥 𝑠𝑖𝑛(𝜃) + 𝑦  𝑐𝑜𝑠(𝜃) [18]. 

The wavelet transform is used for image 

representation due to its ability to analyze the time 

and frequency contents of an image simultaneously 
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 convolved with a function called the mother wavelet 

ψa,b(x), where  𝑎 ∈ ℝ+\{0} and 𝑏 ∈ ℝ  are the 

dilation and the translation of the ψa,b(x). This is 

expressed as: 

 

𝑊𝜓(𝑎, 𝑏) = ∫ 𝑓(𝑥)
∞

−∞

𝜓𝑎,𝑏(𝑥) 𝑑𝑥                        (2) 

 

where 𝑊𝜓(𝑎, 𝑏)  is the wavelet coefficients of the 

function f(x). For the discrete input signal, the DWT, 

multi-resolution analysis (MRA), is obtained by the 

dilation and the translation of the two functions: the 

mother wavelet ψ(x) and the scaling function φ(x). 

These are defined by: 

 

𝜑(𝑥) = √2 ∑ ℎ𝑜[𝑛] 𝜑(2𝑥 − 𝑛), 𝑛 ∈ ℤ

∞

𝑛=−∞

        (3) 

 

𝜓(𝑥) = √2∑ ℎ1[𝑛] 𝜑(2𝑥 − 𝑛), 𝑛
∞

𝑛=−∞
∈ ℤ    (4) 

 

where ℎ𝑜[𝑛]  and ℎ1[𝑛]  are the scaling and the 

wavelet functions coefficients, respectively [32]. For 

image analysis, the 2D DWT, which is an extension 

of the 1-D DWT, is applied to the row variable and 

then to the column variable [27]. The detail and the 

approximation coefficients are utilized for better 

texture representation. 

3.1.2. Statistical features 

In the classification of the biomedical images, 

statistical features are used to describe the texture of 

the input image [17]. First-order statistical features 

are obtained by employing the histogram of an image, 

whereas the second-order statistical features are 

calculated from the GLCM [32]. In this algorithm, 

four first-order statistics, which are kurtosis, 

skewness, variance, and mean, are used. Also, six 

second-order statistics, which are Contrast, 

Homogeneity, Energy, Correlation, Maximum 

probability, and Entropy are employed as shown in 

Table 1. 

In Table 1:𝑝(𝑖) is the image histogram, 𝑝(𝑖, 𝑗) is 
the element of GLCM, (𝑖, 𝑗) ∈ ℤ+, m1 and m2 are the 

mean of rows and columns, respectively, 𝜎1and 𝜎2 

are the standard deviation of rows and columns, 

respectively, A is the GLCM size, and 𝐿  is the 

number of intensity levels. 

3.2 Classification 

For classification, the advantage of a classifier 

model that comprises the two types of NNs, the SSA 

and SMC, is taking into consideration. The SSA is 

designed for feature learning while the SMC is 

designed for multiclass classification. 

3.2.1. Autoencoder  

The basic autoencoder is a NN that is trained to 

learn deep NN for concise feature representation. It 

consists of three layers, the input layer, the hidden 

layer, and the output layer as shown in Fig. 2. The 

hidden layer is called the code layer since it describes 

a code used to represent the input. The training is 

employed using the BPA with unsupervised learning 

to make the output of the network akin to the input. 

The autoencoder has an encoder-decoder architecture, 

where the encoder maps or encodes the input vector 

(X) into another vector (Y) with less dimensions. The 

drawback of the basic autoencoder is the problem of 

inconsiderable solutions that affect the performance 

of the network. In addition, it is unable to learn useful 

features when the size of the hidden layer is greater 

than the size of the input layer. To avoid this problem 

is to introduce a regularization function in the hidden 

layer and control the firing of neurons in that layer. 

In this case, each neuron in the hidden layer will fire 

to a small number of training examples or vectors [33, 

34].  

For training set {𝑋(𝑖), 𝐷(𝑖)} , 𝑋(𝑖)  is the input 

features and 𝐷(𝑖) is the labels. The cost function ℂ(𝑖) 
of sparse autoencoder is given as [35]: 

 

ℂ(𝑖) =
1

𝑆
∑∑(𝑋𝑘(𝑖) − �̂�𝑘(𝑖))

2

𝑀

𝑘=1

𝑆

𝑖=1

+ 𝑎1𝑆𝑅               

                                                                    +𝑎2𝐿𝑅     (5) 
 

The first term is the cost function of the basic 

autoencoder, 𝑋𝑘(𝑖) is the input vector, �̂�𝑘(𝑖) is the 

estimated input vector,  (𝑖, 𝑘) ∈ ℤ+, S is the number 

of samples, and M is the size of the input vector. The 

second and third terms are the sparsity regularization 

(SR) and L2-weight regularization (LR), respectively, 
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Figure. 2 The basic autoencoder 
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 where 𝑎1 and 𝑎2 are the coefficients of the second 

and third terms, respectively. The SR is calculated 

using the Kullback-Leibler divergence method, 

which is a measure of how two distributions are 

different. It is expressed as [34]: 

 

𝑆𝑅 = ∑𝜂 𝑙𝑜𝑔 (
𝜂

�̂�𝑗
)

𝑁

𝑗=1

+                                             

                                    (1 − 𝜂) 𝑙𝑜𝑔 (
1 − 𝜂

1 − �̂�𝑗
)         (6) 

 

where 𝑁 is the number of neurons in the hidden layer, 

𝜂 is the sparsity parameter that is close to 0, and �̂�𝑗 

refers to the average of activation of neuron in the 

hidden layer, and 𝑗 ∈ ℤ+. �̂�𝑗 is calculated as: 

 

�̂�𝑗 =
1

𝑆
∑𝑓(∑(𝑤𝑗𝑘  𝑥𝑘(𝑖))

𝑁

𝑘=1

+ 𝑏𝑗)

𝑆

𝑖=1

          (7) 

 

where 𝑤𝑗𝑘 is the weight between neuron k in layer l1 

and neuron j in layer l1+1, 𝑙 ∈ ℤ+ , 𝑥𝑘(𝑖) is the 𝑘𝑡ℎ 

training sample, and 𝑏𝑗  is the 𝑗𝑡ℎ entry of the bias 

vector. The third term is introduced herein to 

decrease the magnitude of the weight and reduce the 

effect of overfitting. LR is determined as [34, 36]: 

 

𝐿𝑅 =
1

2
∑∑ ∑(𝑊𝑗𝑖

(𝑙))2

𝑁𝑙+1

𝑗=1

𝑁𝑙

𝑖=1

𝐿−1

𝑙=1

                (8) 

 

where 𝐿 ∈ ℤ+  is the number of layers, 𝑁𝑙  and 𝑁𝑙+1 

are the number of neurons in the layers l, l+1, 

respectively, and 𝑊𝑗𝑖
(𝑙) is the weight between neuron 

i in layer l1 and neuron j in layer l1+1 . 

3.2.2. Softmax classifier (SMC) 

The Softmax classification layer is a multi-class 

generalized logistic regression. It is a type of NNs 

designed in such a way such that the activation 

function of the output layer guarantees that the 

outputs sum up to unity and lie within the range [0 1]. 

The Softmax activation function is given as [9]: 

 

ℴ𝑘 =
𝑒𝑦𝑘

∑ 𝑒𝑦𝑗𝐶
𝑗=1

 ,  𝑘 = 1,… , 𝐶, 𝑦 = {𝑦1, . . , 𝑦𝐶}    (9) 

 

where ℴ𝑘  is the output of the Softmax activation 

function, i.e. ℴ𝑘 is the output of the output layer, 𝑦𝑘 

is an element in the input vector 𝑦, which is the entry 

to the Softmax activation function ℴ𝑘, to the output 

layer, 𝐶 is the number of neurons in the output layer, 

i.e. the number of classes 𝐶. 

4. Experimental results 

Two databases are used to train and test the 

algorithm proposed. 233 patients with 3,064 brain 

MRI slices are in the first dataset. The first dataset 

contains three types of brain tumors: Pituitary, 

Glioma, and Meningioma. These slices were 

acquired from Nanfung Hospital, Guangzhou city, 

and Tianjin Medical University General Hospital in 

China during the period from 2005 to 2010. These 

slices were generated using a T1-weighted MRI 

sequence with 512 × 512 size pixels and were 

manually segmented by three expert radiologists to 

generate a tumor region. Each tumor has a number of 

slices, which are: 930 slices for Pituitary tumor, 708 

slices for Meningioma, and 1,426 slices for Glioma 

[23]. 

Meningioma Glioma Pituitary High-grade Glioma Low-grade Glioma 

(a) (c) (d) (e) (b) 

Figure. 3 Sample images from the databases, (a), (b), (c), (d), (e), and its tumour region respectively 
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The second database was obtained from the 

BRATS (Multimodal Brain Tumor Image 

Segmentation) database, which has high-grade and 

low-grade MRI images of patients [37]. For 

classification purpose, 200 MRI slices were collected 

from 30 patients with Glioma tumors, 20 patients 

with high-grade Glioma tumors and 10 patients with 

low-grade Glioma tumors. Samples of the two 

databases along with their tumor regions are shown 

in Fig. 3.  

The first dataset is partitioned into two sets: the 

training set represented by 70 % of the dataset, which 

contains 633, 493, and 1,019 slices for Pituitary, 

Meningioma, and Glioma tumors, respectively. The 

testing set represented by 30% of the dataset, which 

is results in 297, 215, and 407 slices for Pituitary, 

Meningioma, and Glioma tumors, respectively. The 

second dataset is divided to: the training set with 120 

slices in which there are 64 high-grade Glioma 

tumors and 56 low-grade Glioma tumors, and the 

testing set with 80 slices in which there are 36 high-

grade Glioma tumors and 44 low-grade Glioma 

tumors. 

The 2D DWT is applied to the MRI tumor image 

using three levels of decompositions employing 

Symlets4 filter. Hence, 12 images are resulted from 

using all wavelet sub-bands features of each level. 

The 2D Gabor filter is applied to the MRI tumor 

image using three wavelengths, which are 2, 4, and 8, 

and five orientations, which are 0°, 45°, 90°, 135°, 
and 180° resulting in 15 images. The 10 statistical 

features mentioned in Table 1 are applied to each 

image resulted from the 2D DWT and Gabor filter. 

Thus, the total number of statistical features of each 

tumor slice obtained from the 2D DWT, the 2D 

Gabor filter, and the combination are 120, 150, and 

270, respectively. 

Proposed classifier model is constructed by 

stacking two neural networks, which are SSA and 

SMC. The SSA network comprises four layers: an 

input layer, two hidden layers, and an output layer. 

 

The size of the input and output layers is M, which is 

the same size of the input features that are 270 

neurons. The size of the first hidden layer is n1 with 

150 neurons, while the size of the second hidden layer 

is n2 with 75 neurons. The sparsity regularization 

coefficient and the L2-weight regularization 

coefficient are set to be 1 and 0.001, respectively. The 

SMC network has two layers: input and output layer 

as shown in Fig. 4. The input layer is of size 75 

neurons. The output layer is of size C. where C is 

either 3 for the first dataset or 2 for the BRATS 

dataset. 

Three stages are utilized to train the classifier. In 

the first stage, the autoencoder is trained by the BPA 

to optimize the cost function in an unsupervised 

manner. In the second stage, the SMC is trained using 

a supervised learning method, which is based on BPA 

with a cross-entropy cost function. The third stage is 

performed after training the autoencoder. The 

encoder part is separated and combined with the SMC 

to generate a multilayer deep NN, which is trained by 

fine-tuning its weights using the BPA. 

The classification capability is quantified by 

three commonly used performance criteria: accuracy, 

sensitivity, and specificity [38]. 

 

Accuracy % =
𝑁𝑇𝑃 + 𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝐹𝑁 + 𝑁𝑇𝑃 + 𝑁𝑇𝑁
         (10) 

 

Sensitivity % =
𝑁𝑇𝑃

𝑁𝐹𝑁 + 𝑁𝑇𝑃
                                 (11) 

 

Specificity % =
𝑁𝑇𝑁

𝑁𝐹𝑃 + 𝑁𝑇𝑁
                                 (12) 
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Figure. 4 Architecture of the proposed classifier model 
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Table 2. Performance analysis for the first dataset using 

the wavelet features 

Classifier Performance LL% 
LH and 

HL% 

All sub-

bands% 

Accuracy 

Meningioma 89.55 75.95 92.38 

Glioma 94.23 81.06 96.08 

Pituitary 89.66 85.53 91.73 

Sensitivity 

Meningioma 80 50.23 83.72 

Glioma 94.1 83.05 96.56 

Pituitary 81.48 70.37 85.86 

Specificity 

Meningioma 92.47 83.81 95.03 

Glioma 94.34 79.49 95.7 

Pituitary 93.57 92.76 94.53 

 

Table 3. Performance analysis for the BRATS dataset 

using the wavelet features 

Classifier 

Performance 

LL sub-

band% 

LH and 

HL sub-

bands% 

All sub-

bands% 

Accuracy 92.5 92.5 95 

Sensitivity 97.22 100 100 

Specificity 88.64 86.36 90.9 

 

where 𝑁𝑇𝑃 and 𝑁𝑇𝑁 are number of true positive and 

negative, respectively, 𝑁𝐹𝑃 and 𝑁𝐹𝑁  are number of 

false positive and negative, respectively. 

To examine the effect of the wavelet filter types 

on the performance of the proposed algorithm, 

different types of wavelet filters are used. These 

filters are: Haar, Daubechies 2, Coiflets1, Coiflets2, 

Coiflets3, Symlets2, Symlets4, Symlets8, and 

Discrete Meyer. Fig. 5 summarizes the accuracies of 

the proposed algorithm employing each type of the 

wavelet filters. Using the wavelet transform, the 

statistical features can be extracted from either the LL 

sub-band [12, 16] or from the LH and HL sub-bands 

[6, 17]. Combining the detail and approximation 

coefficients can enhance the discrimination 

capability of the recognition [17]. The proposed 

algorithm is implemented using the features obtained 

from the LL sub-band, the LH and HL sub-bands, and 

all the wavelet sub-bands of the three levels of the 2D 

DWT decompositions. The performance of the 

proposed algorithm of the two databases is shown in 

the Tables 2 and 3. 

The intensity and the texture of the MRI tumor 

image are mostly described using the LL sub-band, 

whereas the LH and HL sub-bands capture either the 

edges or the high-frequency components. Since the 

intensity and the texture are the main concerns in 

classifying the tumor types/grades in the MRI images, 

the features extracted from the LL sub-bands are 

better than those obtained using the LH and HL sub-

bands. Combining all the wavelet sub-bands features 

improves the performance of the classifier compared 

to other sub-bands since it has all the features 

contained in the MRI image. 

The classifier is trained using: 1. Wavelet 

statistical features, 2. Gabor statistical features, and 3. 

An integration of Gabor and Wavelet statistical 

features. The proposed algorithm is assessed by 

sensitivity, accuracy, and specificity for each type/ 

grade of the tumor. In Tables 4 and 5, the proposed 

  

 
Table 4. Results of the proposed algorithm for the first dataset (100%) 

Classifier Performance 
Wavelet statistical 

Features 

Gabor statistical 

Features 

Wavelet and Gabor 

statistical Features 

The 

Proposed 

Algorithm 

Using the 

SSA and 

SMC 

Accuracy 

Meningioma 92.38 93.03 95.54 

Glioma 96.08 93.14 96.52 

Pituitary 91.73 94.23 95.97 

Sensitivity 

Meningioma 83.72 85.12 87.44 

Glioma 96.56 93.36 97.29 

Pituitary 85.86 89.56 94.27 

Specificity 

Meningioma 95.03 95.45 98 

Glioma 95.7 92.97 95.89 

Pituitary 94.53 96.46 96.78 

The 

Proposed 

Algorithm 

Using the 

BPNN 

Classifier 

Accuracy 

Meningioma 90.1 91.62 93.91 

Glioma 94.89 91.73 95.75 

Pituitary 90.21 92.27 94.23 

Sensitivity 

Meningioma 82.33 83.72 86.97 

Glioma 94.1 91.65 95.1 

Pituitary 82.5 85.52 91.24 

Specificity 

Meningioma 92.47 94.03 96 

Glioma 95.51 91.8 96.29 

Pituitary 93.89 95.5 95.66 
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Table 5. Results of the proposed algorithm for BRATS 

dataset (100%) 

Classifier Performance 
Wavelet 

statistical 

Features 

Gabor 

statistical 

Features 

Wavelet 

and 

Gabor 

statistical 

Features 

The Proposed 

Algorithm 

Using the SSA 

and SMC 

Accuracy 95 96.3 98.8 

Sensitivity 100 100 100 

Specificity 90.9 93.18 100 

The Proposed 

Algorithm 

Using the 

BPNN 

Classifier 

Accuracy 93.8 95 96.3 

Sensitivity 100 100 100 

Specificity 88.64 90.9 93.18 

 

algorithm is performed using the SSA and SMC and 

the BPNN classifier. The BPNN classifier is 

employed using the multilayer perceptron, which 

comprises the 3 layers: 270 neurons for the input 

layer, 90 neurons for the hidden layer, and 3 neurons 

for the output layer. As can be seen in Tables 4 and 5, 

the results achieved by employing the proposed 

classifier are higher than those obtained using the 

BPNN classifier in terms of accuracy, specificity, as 

well as sensitivity. 

In Fig. 6 (a), the receiving operating 

characteristics (ROC) curves are showing the 

performance of the proposed algorithm and the 

relation between the true positive rate and the false 

positive rate for both datasets. The area under the 

ROC curve of the first dataset is 0.927, 0.966, and 

0.955 for Meningioma, Gliomas, and Pituitary 

tumors, respectively. In Fig. 6 (b), the area under the 

ROC curve for the BRATS dataset is 0.9886. 

Regularization constraints increase the 

performance of the autoencoder network by 

controlling the firing of the neurons in the hidden 

layer and reducing the magnitude of the weight. This 

regularization is introduced in the design of the 

autoencoder network using two regularization terms, 

sparsity regularization and L2-weight regularization. 

For each term, there is a coefficient that controls the 

functionality of its regularization inside the cost  
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ura

cy 

% 

(a) (b) 

Figure. 7 The effect of regularization coefficients on the accuracy: (a) Sparsity and (b) L2-wight  
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Figure. 6 ROC Curves for the classification model, (a) first dataset, (b) BRATS dataset 
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Table 6. Comparison Results for first dataset 

Classifier 

Performance 

The Proposed 

Algorithm% 
Method [23]% 

Accuracy 94 91.28 

Sensitivity-

Meningioma 
87.44 86.0 

Sensitivity -

Glioma 
97.29 96.4 

Sensitivity -

Pituitary 
94.27 87.3 

Specificity-

Meningioma 
98 95.5 

Specificity-

Glioma 
96.89 96.3 

Specificity-

Pituitary 
96.78 95.3 

 

Table. 7 Comparison Results for BRATS dataset 

Classifier 

Performance 

The 

Proposed 

Algorithm

% 

Method 

[24]% 

Method 

[25]% 

Method 

[26]% 

Accuracy 98.8 85.45 85 97.6 

Sensitivity 100 88.89 76 95.6 

Specificity 100 _____ 100 100 

 

of each coefficient, the accuracy of the algorithm was 

determined using different values of sparsity 

regularization and L2-weight regularization 

coefficients as shown in Fig. 7. The overall accuracy 

of the proposed algorithm is calculated using the 

values of the sparsity regularization coefficient 

ranging from 0 to 10 in the step of 0.5, while the value 

of the L2-weight regularization coefficient is fixed at 

0.001. For the first dataset, the maximum and 

minimum accuracy achieved is 94.0% at a coefficient 

of 1 and 91.4% at a coefficient of 3, respectively. For 

the BRATS dataset, the maximum and minimum 

accuracy achieved is 98.8% and 92.5%, respectively. 

Similarly, the L2-weight regularization coefficient is 

tested with different values ranging from 0 to 0.01 in 

the step of 0.0005. The value of the sparsity 

regularization coefficient gets fixed at 1. For the first 

dataset, the maximum accuracy of 94.0% occurred at 

a coefficient value of 0.001, while the minimum 

accuracy attained to 90.5% with a coefficient value 

of 0.0085. For the second dataset, the maximum 

accuracy achieved is 98.8%, while the minimum 

accuracy is 93 .8%. 

To show the superiority of the algorithm 

proposed, the performance of the proposed algorithm 

is compared with the existing algorithm using the 

same datasets. For the first dataset, the proposed 

algorithm is compared with the algorithm proposed 

by J. Cheng H. Wei and C. Shuangliang [23]. For the 

second dataset, BRATS dataset, the performance of 

the proposed algorithm is compared with the existing 

algorithm presented by [24-26]. 

The existing techniques used either 2D DWT or 

PCA or Gabor filter to extract features along with 

applying different classifiers. Three-directional 

features (i.e., horizontal, vertical, and diagonal 

features) are obtained by utilizing 2D DWT to the 

MRI image. Eigenvalues and eigenvectors are 

determined by applying PCA to the MRI images. The 

Gabor filter analyzes the edges of the MRI image and 

produces several images with different wavelengths 

and orientations. For the medical image analysis, 

directional features or Eigen decomposition features 

or Gabor features don’t express all the substantial 

features of the MRI image. Therefore, in this paper, 

the 2D DWT and 2D Gabor filters are combined 

herein as directional transformation methods to take 

advantage by taking into consideration all features of 

all orientations of the MRI image. Also, some authors 

used the statistical features from the raw images, 

which lacks the directional information contained in 

the transformation methods (2D DWT and 2D Gabor 

filters). Therefore, robust algorithm that extracts the 

statistical features from the combined of the two 

transformation methods is proposed. 

The features extracted using the algorithm 

proposed, statistical features obtained from the 

combination of 2D DWT and Gabor filter, are more 

efficient than those features extracted by using each 

filter alone and the algorithm presented by [23-26]. 

Furthermore, the classification technique 

implemented by stacking SSA and SMC shows better 

performance compared with BPA classifier and those 

classification techniques discussed in [23-26]. 

Therefore, the accuracies obtained by the algorithm 

proposed are higher than those accomplished by the 

existing algorithms proposed in [23-26] as shown in 

Tables 6 and 7 and higher than those accuracies 

obtained by using the proposed algorithm with BPNN 

classifier as shown in Tables 4 and 5. 

Table 6 shows the accuracies of the algorithm 

proposed in comparison with the existing one for the 

first dataset in terms of the total accuracy, sensitivity, 

and specificity for Pituitary, Glioma, and 

Meningioma tumors. The accuracies of the algorithm 

proposed compared with the existing algorithms for 

the BRATS dataset in terms of accuracy, specificity, 

and sensitivity are illustrated in Table 7. 

Algorithm proposed is executed using MATLAB 

R2017a. The proposed algorithm is implemented 

using a computer having Intel Core i7-6700HQ 

processor@ 2.60GHz and 16GB RAM. For example, 

in the training phase of the first dataset, 161 seconds 
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are the elapsed time to train 2,145 slices. In the testing 

phase, the time is computed based on the maximum 

tumor segment of size 228×346 in order to know the 

time required in the real application to process each 

ROI separately.  In the algorithm proposed, the time 

required to classify the slice with maximum tumor 

region is 1.2969 seconds.  

5. Conclusion  

The brain tumor is usually examined by 

radiologists employing either noninvasive or invasive 

techniques or a combination of both. Noninvasive 

diagnosis relies on using Magnetic Resonance 

Imaging (MRI). In this work, a new algorithm is 

presented to recognize three types of brain tumors, 

which are Pituitary, Glioma with both high and low 

grade, and Meningioma. Two datasets are used to 

evaluate the algorithm proposed. The first dataset has 

all the three types of tumors, while the second dataset, 

which is call BRATS, has only the Glioma brain 

tumor. The 2D DWT, the 2D Gabor filter, and the 

first and the second order statistics of the transform 

domain data are employed to create a features pool 

that represents all possible individual tumors 

attributes. The classifier model is built by combining 

two models of NNs, which are SSA and SMC. 

Simulation results show the effectiveness of the 

overall performance of the algorithm proposed 

implemented by stacking the SMC with the SSA to 

accomplish, in instant, the accuracy of 94.0% for the 

first dataset and 98.8% for the BRATS dataset. The 

performance of the adopted algorithm can be 

improved by adding features corresponding to the 

patient’s gender and age. 
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