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Abstract: This paper proposes an adaptive step-size approach based on the stochastic gradient-based algorithm for 

Hammerstein spline adaptive filtering (HSAF).With the good convergence and low complexity computation, a 

normalized least mean square (NLMS) algorithm is developed with HSAF. A nonlinear Hammerstein adaptive filter 

consists of memoryless function modified during learning and the spline control point is automatically controlled by 

gradient-based method. An adaptive step-size approach based on NLMS algorithm with the HSAF is introduced how 

to derive using the direction of steepest descent method for tracking performance. Hence, the stability and steady-state 

performance are detailed. The simulation results of trajectories of both update step-size parameters are shown that the 

initial step-size are reduced, all convergence rates are correspondingly reduced to each own optimum over 100 

independent trials of the experiment. Experimental plots of learning curves of mean-squared error of the proposed 

algorithm for varying the initial step-size parameters are obtained that the proposed algorithm conducts more robust 

performance and fast convergence compared with the HSAF based on least mean square algorithm, even the large 

variations of 100-fold initial step-size parameters are used. 

Keywords: Hammerstein spline adaptive filtering, Adaptive step-size algorithm, Normalized least mean square 

algorithm. 

 

 

1. Introduction 

In the recent years, the modelling problem and 

nonlinear systems identification have been attention 

that their results used the linear filter are inadequate 

for system modelling Ref. [1]. In order to solve these 

problems, a class of nonlinear adaptive filters, named 

spline adaptive filter (SAF) has been presented in Ref. 

[1, 2]. SAFs are demonstrated efficiently for 

identification of nonlinear systems in Ref. [3, 5]. 

Against the eigen-value spread of the autocorrelation 

matrix of the input signal in the updating process of 

SAF algorithm, a class of the stochastic gradient 

algorithm has been proposed in Ref. [5-7].  

Based on SAF architecture, an adaptive and 

convex combination relied on the properties of 

adaptive combination of SAF has been proposed in 

Ref. [8] and SAF architecture extended to many 

applications Ref. [9-11]. SAF using infinite impulse 

response for nonlinear system identification Ref. [9] 

has been conducted. In Ref. [10], the authors have 

proposed the Wiener spline adaptive filter based on a 

set-membership normalized least M-estimate 

algorithm in order to perform fast convergence in the 

impulsive noise environment. In addition, the SAF 

approach based on hypothesis testing and variance 

minimization has been modified for trend analysis in 

time-series Ref. [11]. 
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Figure.1 Proposed nonlinear-linear AS-NLMS-HSAF Structure 

 

Hammerstein system is a typical nonlinear model 

described in many nonlinear systems, as the various 

system identification of Hammerstein models Ref. 

[12, 13], an adaptive Hammerstein impedance 

controller for bionic wrist Ref. [14], the robust 

Hammerstein adaptive filter using maximum 

correntropy criterion Ref. [15], and a fuzzy 

Hammerstein neural network for navigation satellite 

system Ref. [16]. An unsupervised multistage 

clustering-based Hammerstein postdistortion 

approach has presented for visible light 

communication in Ref. [17]. 

In contrast, the Hammerstein models have been 

proposed for system identification in Ref. [18-20]. 

The multiple model-based Hammerstein parameter 

varying systems have been studied in the Bayesian 

approach Ref. [18], the result simulation 

demonstrated that can work practically. In Ref. [19], 

the authors have investigated a discrete-time 

Hammerstein system identification with quantized 

observations that simulation results of convergence 

rate are established. In practice, the piecewise 

continuous Hammerstein systems for identification 

has been developed in Ref. [20]. 

A novel nonlinear Hammerstein spline adaptive 

filter (HSAF) with cubic spline function has been 

proposed in Ref. [21, 25]. The demonstration of 

HSAFs orchestrated in the several experimental 

systems can achieve the good performance as shown 

in Ref. [22-24]. A single-input single-output 

fractional-order continuous-time based on 

Hammerstein-Wiener model Ref. [23] has been 

implemented for a direct parameter estimation. In Ref. 

[24], the nonlinear digital cancellation has been 

modelled the nonlinear power amplifier using 

Hammerstein spline-based model for impulse 

response of self-interference channel. HSAF based 

on the normalized least mean square algorithm is 

presented in Ref. [25], the results show that algorithm 

can achieve the good performance compared with the 

conventional SAF based on least mean square 

algorithm. 

In this paper, we concentrate on the stability and 

steady-state performance of Hammerstein spline 

adaptive filtering based on normalized least mean 

square algorithm (NLMS-HSAF). A nonlinear 

Hammerstein adaptive filter consists of memoryless 

property function modified between learning and the 

spline control point is an automatically controlled by 

gradient-based algorithm. An adaptive step-size 

mechanism is to induce with NLMS-HSAF algorithm 

using steepest descent method for tracking 

performance. In particular, we emphasize a robust 

performance, computational analysis and 

convergence properties of proposed adaptive step-

size approach based on NLMS-HSAF algorithm in 

detail. 

We organize this paper in the following. Section 

2 introduces the Hammerstein spline adaptive filter 

based on least mean square algorithm. Section 3 

describes the proposed Hammerstein cubic spline 

adaptive filter based on adaptive step-size normalized 

least mean square algorithm. Section 4 presents the 

stability and steady-state performance and section 5 

shows the simulation results and discussion. Finally, 

section 6 concludes the work. 

Notations are used through this paper. Operator 

(⋅)𝑇  indicates the transposition operation. Matrices 

and vectors are in bold uppercase and lowercase, 

respectively. 
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2. Hammerstein spline adaptive filtering 

Following Ref. [21], the Hammerstein spline 

adaptive filter (HSAF) is called nonlinear-linear 

network, as shown in Figure 1. This network consists 

of the nonlinear and linear network. In the first part, 

the HSAF uses for the identification of Hammerstein 

nonlinear systems Ref. [3] combined with an adaptive 

look-up table Ref. [4] with an adaptive control points 

vectors and spline interpolation function to the 

nonlinear network. For the second part, an adaptive 

approach is modified to linear coefficient filter. Both 

the adaptive nonlinear and linear filters are to 

introduce with the minimization cost function. 

Consider an error 𝑒(𝑘) as 

 

𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘) = 𝑑(𝑘) − 𝒘𝑇(𝑘)𝒔(𝑘),  (1) 

 

where 𝑦(𝑘)  is the Hammerstein spline adaptive 

filtering (HSAF) output, 𝑑(𝑘)  is the desired signal 

and 𝐰(𝑘)  is the adaptive coefficient tap-weight 

vector. 

The output of nonlinearity 𝐬(𝑘) is given Ref. [1] 

 

𝒔(𝑘)  =  𝒖𝑇(𝑘)𝓒𝒒𝑖(𝑘),                           (2) 

 

𝒖(𝑘)  =  [𝑢3(𝑘), 𝑢2(𝑘), 𝑢(𝑘), 1]𝑇, (3) 

 

where the nonlinearity output vector 𝒔(𝑘) is referred 

to a nonlinear function with the span index 𝑖 and the 

local parameter 𝑢(𝑘), where 𝑢(𝑘) ∈ [0,1]. Since, the 

parameter 𝓒 is the spline basis matrix. 

The control point tap-weight vector 𝒒𝑖(𝑘) is given 

as 

 

𝒒𝑖(𝑘) = [𝑞𝑖(𝑘),  𝑞𝑖+1(𝑘),  𝑞𝑖+2(𝑘),  𝑞𝑖+3(𝑘)]𝑇.

 (4) 

 

Following Ref. [1], the local parameter 𝑢(𝑘) and 

index parameter 𝑖 can be evaluated as 

 

𝑢(𝑘) =
𝑥(𝑘)

𝛥𝑥
− ⌊

𝑥(𝑘)

𝛥𝑥
⌋,                           (5) 

 

𝑖 = ⌊
𝑥(𝑘)

𝛥𝑥
⌋ +

𝒬−1

2
,                           (6) 

 

where 𝛥𝑥  is the uniform space between two of 

adjacent control points and 𝑥(𝑘) is the input vector 

with the length of tap delay 𝑁 . The constant 

parameter 𝒬  is the number of control point and 

operator ⌊∙⌋ defines as a floor operator.  
We can obtain the minimized cost function based 

on the least mean square algorithm for Hammerstein 

spline adaptive filter (LMS-HSAF) as 

𝐽(𝒘(𝑘), 𝒒𝑖(𝑘)) = 𝑚𝑖𝑛
𝒘,𝒒

{
1

2
|𝑒(𝑘)|2}, (7) 

 

where 𝑒(𝑘) is defined in Eq. (1). 

Hence, the proposed coefficient tap-weight 

vectors 𝐰(𝑘) and 𝐪𝑖(k) of LMS-HSAF algorithm can 

be orchestrated by 

 

𝒘(𝑘 + 1) = 𝒘(𝑘) − 𝜇𝑤(𝑘){𝛻𝑤𝐽(𝒘(𝑘), 𝒒𝑖(𝑘))}, (8) 

 

𝒒𝑖(𝑘 + 1) = 𝒒𝑖(𝑘) − 𝜇𝑞(𝑘){𝛻𝑞𝐽(𝒘(𝑘), 𝒒𝑖(𝑘))}, (9) 

 

where 𝜇𝑤  and 𝜇𝑞  are the step-size parameters for 

learning rate of 𝐰(𝑘) and 𝐪𝑖(𝑘) of HSAF structure. 

Following the chain rule Ref. [21] by 

differentiating the cost function in Eq. (7) with 

respect to (w.r.t.) 𝐰(𝑘) and 𝐪𝑖(𝑘), we arrive at 

 

     𝛻𝒘𝐽(𝒘(𝑘), 𝒒𝑖(𝑘)) =
𝜕𝐽(𝒘(𝑘), 𝒒𝑖(𝑘))

𝜕𝒘(𝑘)
       

= −{𝑒(𝑘)𝒔(𝑘)},                 (10) 

      𝛻𝒒𝐽(𝒘(𝑘), 𝒒𝑖(𝑘)) =
𝜕𝐽(𝒘(𝑘),𝒒𝑖(𝑘))

𝜕𝒘(𝑘)
   

= −{𝒖(𝑘)𝓒𝑇𝒘(𝑘)𝑒(𝑘)}, (11) 

 

Substituting Eqs. (10) and (11) in Eqs. (8) and (9), 

the coefficient tap-weight vectors 𝒘(𝑘) and 𝒒𝑖(𝑘) are 

given by 

 

∴ 𝒘(𝑘 + 1) = 𝒘(𝑘) + 𝜇𝑤𝒔(𝑘)𝑒(𝑘),           (12) 

 

∴ 𝒒𝑖(𝑘 + 1) = 𝒒𝑖(𝑘) + 𝜇𝑞𝒖(𝑘)𝓒𝑇𝒘(𝑘)𝑒(𝑘),  (13) 

 

where 𝑒𝑛, 𝒔𝑛 and 𝒖𝑛 are defined in Eqs. (1), (2) and 

(3), respectively. 

3. Proposed Hammerstein cubic spline 

adaptive filtering based on adaptive step-

size normalized least mean square 

algorithm 

In addition to the normalized least mean square 

(NLMS) algorithm, this proposed modification 

makes an effort to improve the properties of the least 

mean square (LMS) algorithm. In this section, we 

provide an overview of proposed NLMS 

modification based on HSAF, including the adaptive 

step-size mechanism for dealing with a trade-off 

between the rate of convergence and excess mean 

square error (EMSE). 

Following Ref. [25], the minimized cost function 

of proposed adaptive step-size normalized least mean 
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square for Hammerstein cubic spline adaptive filter 

(AS-NLMS- HSAF) can be expressed as 

 

𝐽(𝒘(𝑘), 𝒒𝑖(𝑘)) = 𝑚𝑖𝑛
𝒘,𝒒

{
1

2

|𝑒(𝑘)|2

‖𝒖(𝑘)‖2},    (14) 

 

where 𝑒(𝑘) is defined in (1).  
Following the chain rule by differentiating the 

cost function in Eq. (14) w.r.t. 𝐰(𝑘), we arrive at 

 

𝛻𝒘𝐽 =
𝜕�̃�(𝒘(𝑘),𝒒𝑖(𝑘))

𝜕𝒘(𝑘)
= − {

𝑒(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2 }.      (15) 

 

We define the derivative of cost function in Eq. 

(14) w.r.t. 𝐪𝑖(𝑘) by the chain rule as 

 

𝛻𝒒𝐽 =
𝜕�̃�(𝒘(𝑘),𝒒𝑖(𝑘))

𝜕𝒒𝑖(𝑘)
= − {

𝒖(𝑘)𝓒𝑇𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 }.  (16) 

 

Hence, the proposed coefficient tap-weight vector 

𝐰(𝑘)  of AS-NLMS-HSAF algorithm can be 

orchestrated by 

 

𝒘(𝑘 + 1) = 𝒘(𝑘) − 𝜇𝑤(𝑘){𝛻𝒘𝐽},   (17) 

 
where 𝜇w(𝑘) is an adaptive step-size parameter for 

learning rate of 𝒘(𝑘) of HSAF structure.  

Substituting Eq. (15) in Eq. (17), the coefficient 

tap-weight vector 𝐰(𝑘) is given by 

 

∴ 𝒘(𝑘 + 1) = 𝒘(𝑘) + 𝜇𝑤(𝑘)
𝒔(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 ,      (18) 

 

where 𝑒𝑛, 𝒔𝑛 and 𝒖𝑛 are defined in Eq. (1), (2) and (3), 

respectively. 

Similarly, the proposed control points vector 

𝒒𝑖(k) of AS-NLMS-HSAF can be implemented as 

 

    𝒒𝑖(𝑘 + 1) = 𝒒𝑖(𝑘) − 𝜇𝑞(𝑘){𝛻𝒒𝐽},           (19) 

 

∴ 𝒒𝑖(𝑘 + 1) = 𝒒𝑖(𝑘) + 𝜇𝑞(𝑘)
𝒖(𝑘)𝓒𝑇𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 ,  (20) 

 

where 𝜇𝑞(𝑘)  is an adaptive step-size parameter for 

learning rate of 𝐪𝑖(𝑘) of HSAF structure. 

3.1 Adaptive step-size mechanism 

An idea of adaptive step-size mechanism is to 

select between the convergence rate, EMSE and the 

ability of filters for tracking signals Ref. [26-27]. At 

the beginning, the tap-weight vectors 𝐰(𝑘) and 𝐪𝑖(𝑘) 

are far from optimal, so the step-size parameters 

𝜇w(𝑘) and 𝜇𝑞(𝑘) should be large to make tap-weight 

vectors 𝐰(𝑘)  and 𝐪𝑖(𝑘)  close to the desired values. 

Meanwhile, the mean square error (MSE) of filters 

start converging to the steady-state, the step-size 

parameters 𝜇w(𝑘) and 𝜇𝑞(𝑘) should be decreased to 

reduce the EMSE.  

We determine an adaptive step-size mechanism 

based on NLMS-HSAF algorithm using the direction 

of steepest descent method. Considering the 

derivative of cost function in Eq. (14) w.r.t. 𝜇w(𝑘), 

that is 

 

𝛻𝐽𝜇𝑤
=

𝜕

𝜕𝜇𝑤(𝑘)

1

2
{

𝑒2(𝑘)

‖𝒖(𝑘)‖2} = {
𝑒(𝑘)𝒔𝑇(𝑘)𝝆𝒘(𝑘)

‖𝒖(𝑘)‖2 },   (21) 

 

where 𝝆𝐰(𝑘) is the derivative of 𝒘(𝑘) w.r.t. 𝜇𝑤(𝑘), 

as 𝝆𝐰(𝑘) =
𝜕𝐰(𝑘)

𝜕𝜇w(𝑘)
.  

Let us define the derivative of 𝐰(𝑘) w.r.t. 𝜇w(𝑘) 

as 

 
𝜕𝒘(𝑘 + 1)

𝜕𝜇𝑤(𝑘)
=

𝜕𝒘(𝑘)

𝜕𝜇𝑤(𝑘)

−
𝜕

𝜕𝜇𝑤(𝑘)
{

𝜇𝑤(𝑘)𝑒(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2 }   

  

=
𝜕𝒘(𝑘)

𝜕𝜇𝑤(𝑘)
− (

𝜇𝑤(𝑘)𝒔𝑇(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2 ∙
𝜕𝒘(𝑘)

𝜕𝜇𝑤(𝑘)
+

𝑒(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2 ). 

 (22) 
 

Since, 𝝆𝐰(𝑘)  as the derivative of 𝐰(𝑘)  w.r.t. 

𝜇w(𝑘) in Eq. (22) can be rewritten as 

 

       𝝆𝒘(𝑘 + 1) 

= 𝝆𝒘(𝑘) −
𝜇𝑤(𝑘)𝒔𝑇(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2 𝝆𝒘(𝑘) −
𝒔(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 .  (23) 

 

Therefore, we can obtain an adaptive step-size 

𝜇w(𝑘) of linear network part 𝐰(𝑘)  of AS-NLMS-

HSAF with the gradient points of the direction of 

steepest descent points in the negative gradient 

direction as 

 

    𝜇𝑤(𝑘 + 1) = 𝜇𝑤(𝑘) − 𝛼𝑤(𝛻𝐽𝜇𝑤
)                

 

∴ 𝜇𝑤(𝑘 + 1) = 𝜇𝑤(𝑘) − 𝛼𝑤
𝒔𝑇(𝑘)𝝆𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2     (24) 

 

where 0 < 𝛼𝑤 < 1 and 𝝆𝐰(𝑘) is given in Eq. (23). 

In a similar way, we specify an adaptive step-size 

𝜇𝑞(𝑘)approach based on AS-NLMS-HSAF algorithm. 

Hence, the derivative of cost function in Eq. (14) w.r.t. 

𝜇𝑞(𝑘) is computed as 

 

𝛻𝐽𝜇𝑞
=

𝜕

𝜕𝜇𝑞(𝑘)

1

2
{

𝑒2(𝑘)

‖𝒖(𝑘)‖2} = {
𝑒(𝑘)𝒘(𝑘)𝒖𝑇(𝑘)𝓒 𝝆𝒒(𝑘)

‖𝒖(𝑘)‖2 }, (25) 
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Algorithm 1. Hammerstein cubic spline adaptive filtering based on adaptive step-size 

normalized least mean square (AS-NLMS-HSAF) proposed 

CREATE CONSTANT: 𝛥𝑥, 𝒬, 𝛼𝑤 , 𝛼𝑞 

INITIAL: 𝒘(0), 𝐪(0), 𝛒𝐪(0), 𝜇𝑤(0), 𝜇𝑞(0), 𝓒 = the spline basis matrix 

FOR (n = 0; n < (𝑁 − 1); n++) 

𝑢(𝑘) = 
𝑥(𝑘)

𝛥𝑥
− ⌊

𝑥(𝑘)

𝛥𝑥
⌋ 

𝑖 = ⌊
𝑥(𝑘)

𝛥𝑥
⌋ +

𝒬 − 1

2
 

𝐮(𝑘) = [𝑢3(𝑘), 𝑢2(𝑘), 𝑢(𝑘), 1]𝑇 

𝐪𝑖(𝑘) = [𝑞𝑖(𝑘), 𝑞𝑖+1(𝑘), 𝑞𝑖+2(𝑘), 𝑞𝑖+3(𝑘)]𝑇 

𝒔(𝑘) = 𝒖𝑇(𝑘)𝓒𝐪𝑖(𝑘) 
𝑒(𝑘) = 𝑑(𝑘) − 𝒘𝑇(𝑘)𝒔(𝑘) 

𝒘(𝑘 + 1) = 𝒘(𝑘) +
𝜇𝑤(𝑘)𝒔(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝜇𝑤(𝑘 + 1) = 𝜇𝑤(𝑘) − 𝛼𝑤

𝒔𝑇(𝑘)𝝆𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝛒𝐰(𝑘 + 1) = 𝝆𝒘(𝑘) −
𝜇𝑤(𝑘)𝒔𝑇(𝑘)𝒔(𝑘)

‖𝒖(𝑘)‖2
𝝆𝒘(𝑘) −

𝒔(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝐪𝑖(𝑘 + 1) = 𝐪𝑖(𝑘) +
𝜇𝑞(𝑘)𝒖(𝑘)𝓒𝑇𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝜇𝑞(𝑘 + 1) = 𝜇𝑞(𝑘) − 𝛼𝑞

𝑣𝑇(𝑘)𝝆𝒒(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝛒𝐪(𝑘 + 1) = 𝛒𝐪(𝑘) −
𝜇𝑞(𝑘)𝑣𝑇(𝑘)𝑣(𝑘)

‖𝒖(𝑘)‖2
𝛒𝐪(𝑘) +

𝑣(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2
 

𝑣(𝑘) = 𝒖𝑇(𝑘)𝓒𝒘(𝑘) 
END 

 

where 𝝆𝒒(𝑘) is the derivative of 𝒒𝑖(𝑘) w.r.t. 𝜇𝑞(𝑘), 

as 𝝆𝒒(𝑘) =
𝜕𝒒𝑖(𝑘)

𝜕𝜇𝑞
 and a priori error of system 𝑒(𝑘), 

can be rewritten in forms of 𝒒𝑖(𝑘) as 

 

𝑒(𝑘)  = 𝑑(𝑘) − 𝒘𝑇(𝑘)𝒔(𝑘)                               

 = 𝑑(𝑘) − 𝒘𝑇(𝑘)(𝒖(𝑘)𝓒𝑇(𝑘)𝒒𝑖(𝑘)), (26) 

 

Let us determine the derivative of 𝐪𝑖(𝑘)  w.r.t. 

𝜇𝑞(𝑘) as 

 
𝜕𝒒𝑖(𝑘+1)

𝜕𝜇𝑞(𝑘)
  =

𝜕𝒒𝑖(𝑘)

𝜕𝜇𝑞(𝑘)
+

𝜕

𝜕𝜇𝑞(𝑘)
{

𝜇𝑞(𝑘)𝒖(𝑘)𝓒𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 }  

=
𝜕𝒒𝑖(𝑘)

𝜕𝜇𝑞(𝑘)
+

𝜇𝔮(𝑘)(𝓒𝑇𝒖(𝑘)𝒘(𝑘))(𝒘(𝑘)𝒖𝑇(𝑘)𝓒)

‖𝒖(𝑘)‖2   

∙
𝜕𝒒𝑖(𝑘)

𝜕𝜇𝑞(𝑘)
+

𝒖𝑇(𝑘)𝓒𝒘(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 . (27) 

 

Hence, 𝛒𝐪(𝑘)  as the derivative of 𝐪𝑖(𝑘)  w.r.t. 

𝜇𝑞(𝑘) in Eq. (27) can be organized as 

 

     𝝆𝒒(𝑘 + 1) 

= 𝝆𝒒(𝑘) −
𝜇𝑞(𝑘)𝑣𝑇(𝑘)𝑣(𝑘)

‖𝒖(𝑘)‖2 𝝆𝒒(𝑘) +
𝑣(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 ,     (28) 

 

where 𝑣(𝑘) is given by 

 

𝑣(𝑘) = 𝒖𝑇(𝑘)𝓒𝒘(𝑘).                              (29) 

 

Therefore, an adaptive step-size 𝜇𝑞(𝑘)  of 

nonlinear network part 𝐪𝑖(𝑘) of AS-NLMS-HSAF is 

computed similarly as 

 

𝜇𝑞(𝑘 + 1) = 𝜇𝑞(𝑘) − 𝛼𝑞 (𝛻𝐽𝜇𝑞
)            

∴ 𝜇𝑞(𝑘 + 1) = 𝜇𝑞(𝑘) − 𝛼𝑞
𝑣𝑇(𝑘)𝝆𝒒(𝑘)𝑒(𝑘)

‖𝒖(𝑘)‖2 ,   (30) 

 

where 0 < 𝛼𝑞 < 1 and 𝛒𝐪(𝑘) is given in Eq. (28).  

A summary of proposed AS-NLMS-HSAF 

algorithm shows in Algorithm 1. 

4. Stability and steady-state performance 

We address the point of stability and steady-state 

performance of adaptive step-size normalized least 

mean square algorithm based on Hammerstein cubic 

spline adaptive filtering (AS-NLMS-HSAF). The 

goals of adaptive filters 𝐰(𝑘) and 𝐪𝑖(𝑘) are to track 

the optimum filters 𝐰𝑜𝑝𝑡(𝑘)  and 𝐪𝑜𝑝𝑡(𝑘)  as fast as 

possible. 
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Since, we can investigate the performance by 

measuring the deviation of the coefficient tap-weight 

vectors as 

 

∆𝒘(𝑘 + 1) = 𝒘(𝑘) − 𝒘𝑜𝑝𝑡(𝑘),              (31) 

 

∆𝒒(𝑘 + 1) = 𝒒𝑖(𝑘) − 𝒒𝑜𝑝𝑡(𝑘).              (32) 

 

Performance of adaptive filters is primarily 

measured by evaluating the value of the mean square 

error (MSE). Hence, measuring the deviation of 

adaptive filters from the corresponding optimum 

filters can be determined to investigate their 

performance.  

Consequently, the mean square deviation (MSD) 

of coefficient vector 𝐰(𝑘) as 

 

𝔇𝑤(𝑘) = 𝐸 {‖𝒘(𝑘) − 𝒘𝑜𝑝𝑡(𝑘)‖
2

}         

= 𝐸{‖∆𝒘(𝑘 + 1)‖2},               (33) 

 

measures the distance between the coefficient vectors 

of adaptive 𝐰(𝑘) and optimum 𝐰𝑜𝑝𝑡(𝑘) filters. 𝐸{∙} is 

an expectation operator and ‖∙‖  defines as an 

operator norm. 

In a similar way, the MSD of coefficient vector 

𝐪𝑖(𝑘) as 

 

𝔇𝑞(𝑘)  = 𝐸 {‖𝒒𝑖(𝑘) − 𝒒𝑜𝑝𝑡(𝑘)‖
2

}                 

= 𝐸{‖∆𝒒(𝑘 + 1)‖2},                 (34) 

 

calculates the distance between 𝐪𝑖(𝑘) and optimum 

filters 𝒒
opt

(𝑘). 

4.1 Stability 

We consider the convergence properties of 

adaptive coefficient vector 𝐰(𝑘) by using the Taylor 

series expansion Ref. [5] of the first order of 

differentiating error 𝑒𝑤(𝑘) and deviation of 𝐰(𝑘) as 

 

𝑒𝑤(𝑘 + 1)  ≈ 𝑒𝑤(𝑘) +
𝜕𝑒(𝑘)

𝜕𝒘(𝑘)
∆𝒘(𝑘)            

= 𝑒𝑤(𝑘) − 𝜇𝑤(𝑘)
𝒔𝑇(𝑘)𝒔(𝑘)𝑒𝑤(𝑘)

‖𝒖𝑇(𝑘)‖
2                

= 𝑒𝑤(𝑘) {1 − 𝜇𝑤(𝑘)
𝒔𝑇(𝑘)𝒔(𝑘)

‖𝒖𝑇(𝑘)‖
2 }   .  (35) 

 

Then, we assume the 𝑒𝑤(𝑘 + 1) < 𝑒𝑤(𝑘)  in Eq. 

(35), that is 

 

|1 − 𝜇𝑤(𝑘)
𝒔𝑇(𝑘)𝒔(𝑘)

‖𝒖𝑇(𝑘)‖
2 | < 1.       (36) 

 

Clearly, the learning rate of adaptive step-size 

referring to coefficient vector 𝐰(𝑘) is simplified as 

 

∴ 0 < 𝜇𝑤(𝑘) <
2‖𝒖𝑇(𝑘)‖

2

𝒔𝑇(𝑘)𝒔(𝑘)
.           (37) 

 

According to the nonlinear and nonstationary 

input signals, an adaptive regularized term 𝛿𝑤(k) of 

𝐰(𝑘) can be added in the denominator of Eq. (37). 

Then, the learning rate with the regularized term is 

given as 

 

0 < 𝜇𝑤(𝑘) <
2‖𝒖𝑇(𝑘)‖

2

𝒔𝑇(𝑘)𝒔(𝑘)+𝛿𝑤(𝑘)
.          (38) 

 

Following Ref. [3], the adaptive regularized term 

𝛿𝑤(k) of 𝐰(𝑘) can be expressed as 

 

𝛿𝑤(𝑘 + 1) = 𝛿𝑤(𝑘) − 𝜂𝑤(𝛻𝛿𝑤
𝐽), (39) 

 

where 𝜂𝑤(𝑘) is the learning rate referring to 𝐰(𝑘).  

Differentiating 𝐽(𝐰(𝑘), 𝐪𝑖(𝑘))  in Eq. (14) w.r.t. 

𝛿𝑤(k) by using the chain rule, we get 

 

𝛻𝛿𝑤
𝐽 =

𝜕𝐽(𝒘(𝑘),𝒒𝑖(𝑘))

𝜕𝛿𝑤(𝑘)
                                             

=
𝜕𝐽(𝒘(𝑘),𝒒𝑖(𝑘))

𝜕𝑒(𝑘)
∙

𝜕𝑒(𝑘)

𝜕𝑦(𝑘)
∙

𝜕𝑦(𝑘)

𝜕𝒘(𝑘)
∙

𝜕𝒘(𝑘)

𝜕𝜇𝑤(𝑘)
∙

𝜕𝜇𝑤(𝑘)

𝜕𝛿(𝑘)
. 

=
4𝑒(𝑘)𝑒(𝑘−1)𝒔𝑇(𝑘)𝒔(𝑘−1)

[𝒔𝑇(𝑘)𝒔(𝑘−1)+𝛿𝑤(𝑘−1)]2.               (40) 

 

Therefore, we obtain the proposed adaptive 

regularized term 𝛿𝑤(𝑘) of 𝐰(𝑘) as 

 

∴ 𝛿𝑤(𝑘 + 1) = 𝛿𝑤(𝑘) − 𝜂𝑤
𝑒(𝑘)𝑒(𝑘−1)𝒔𝑇(𝑘)𝒔(𝑘−1)

[𝒔𝑇(𝑘)𝒔(𝑘−1)+𝛿𝑤(𝑘−1)]2.

 (41) 

 

Since, we develop the convergence properties of 

adaptive coefficient vector 𝐪𝑖(𝑘)  using the Taylor 

series expansion Ref. [5] of the first order of 

differentiating error 𝐪𝑖(𝑘) as 

 

𝑒𝑞(𝑘 + 1)  ≈ 𝑒𝑞(𝑘) +
𝜕𝑒(𝑘)

𝜕𝒒𝑖(𝑘)
∆𝒒𝑖(𝑘)                

= 𝑒𝑞(𝑘) − 𝜇𝑞(𝑘)
𝑣𝑇(𝑘)𝒘(𝑘)𝑣(𝑘)𝑒𝑞(𝑘)

‖𝒖𝑇(𝑘)‖
2          

= 𝑒𝑞(𝑘) {1 − 𝜇𝑞(𝑘)
𝑣𝑇(𝑘)𝒘(𝑘)𝑣(𝑘)

‖𝒖𝑇(𝑘)‖
2 }. (42) 

 

So, we assume the 𝑒𝑞(𝑘 + 1) < 𝑒𝑞(𝑘) in Eq. (42), 

that is 

 

|1 − 𝜇𝑞(𝑘)
𝑣𝑇(𝑘)𝒘(𝑘)𝑣(𝑘)

‖𝒖𝑇(𝑘)‖
2 | < 1.             (43) 
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Obviously, the learning rate of adaptive step-size 

𝜇q(k) of coefficient vector 𝒒𝑖(𝑘) is determined as 

 

∴ 0 < 𝜇𝑞(𝑘) <
2‖𝒖𝑇(𝑘)‖

2

𝑣𝑇(𝑘)𝒘(𝑘)𝑣(𝑘)
.         (44) 

 

Imposing on the learning rates in Eqs. (38) and 

(44), the restrictive constraint must be satisfied by 

using 𝜇w(𝑘) and 𝜇𝑞(𝑘). Hence, we rewrite the output 

error expansion as 

 

𝑒(𝑘 + 1)   = 𝑒(𝑘) + ∆𝒘(𝑘) ∙
𝜕𝑒(𝑘)

𝜕𝒘(𝑘)
|
𝒒𝑖(𝑘)=𝑐𝑜𝑛𝑠𝑡

  

 +∆𝒒𝑖(𝑘) ∙
𝜕𝑒(𝑘)

𝜕𝒒𝑖(𝑘)
|
𝒘(𝑘)=𝑐𝑜𝑛𝑠𝑡

  

= 𝑒(𝑘) − 𝜇𝔴(𝑘)
‖𝒔(𝑘)‖2𝑒(𝑘)

‖𝒖(𝑘)‖2 .                  

  −𝜇𝑞(𝑘)
‖𝒖(𝑘)𝓒𝑇𝒘(𝑘)‖

2
𝑒(𝑘)

‖𝒖(𝑘)‖2 . 

 = 𝑒(𝑘) − [1 − 𝜇𝔴(𝑘)
‖𝒔(𝑘)‖2

‖𝒖(𝑘)‖2             

−𝜇𝑞(𝑘)
‖𝒖(𝑘)𝓒𝑇𝒘(𝑘)‖

2

‖𝒖(𝑘)‖2 ]. (45) 

 

By using the condition that |𝑒(𝑘 + 1)| < |𝑒(𝑘)|, 

we obtain the constraint as 

 

    1 + 𝜇𝑤(𝑘)
‖𝒔(𝑘)‖2

‖𝒖(𝑘)‖2 + 𝜇𝑞(𝑘)
‖𝒖(𝑘)𝓒𝑇𝒘(𝑘)‖

2

‖𝒖(𝑘)‖2 < 1  

∴ 0 < 𝜇𝑤(𝑘)
‖𝒔(𝑘)‖2

‖𝒖(𝑘)‖2 + 𝜇𝑞(𝑘)
‖𝒖(𝑘)𝓒𝑇𝒘(𝑘)‖

2

‖𝒖(𝑘)‖2 < 2 . 

 (46) 

4.2 Mean square error performance 

In this section, we investigate the mean square 

error (MSE) performance of the proposed AS-

NLMS-HSAF structure at the steady-state. Following 

Ref. [28], the MSE can be decomposed as 

 

𝐽𝑀𝑆𝐸𝑤
(𝑘) = 𝐸{‖𝜖𝑤(𝑘)‖2} = 𝐽𝑀𝑀𝑆𝐸𝑤

(𝑘) + 𝐽𝐸𝑋𝑤
(𝑘),

 (47) 

 

where 𝐽𝑀𝑀𝑆𝐸𝑤
(𝑘) is the minimum mean square error 

(MMSE) given by 

 

𝐽𝑀𝑀𝑆𝐸𝑤
(𝑘) = 𝐸 {‖𝜖𝑜𝑝𝑡,𝑤(𝑘)‖

2
},                   (48) 

 

where 𝜖𝑜𝑝𝑡,𝑤(𝑘) is the a posteriori optimum filtering 

error of 𝐰(𝑘) as 

 

𝜖𝑜𝑝𝑡,𝑤(𝑘) = 𝑑(𝑘) − 𝒘𝑜𝑝𝑡
𝑇(𝑘)𝒔(𝑘).       (49) 

 

Obviously, the a posteriori excess mean square 

error (EMSE) 𝐽EXw
(𝑘) is given by 

 

𝐽𝐸𝑋𝑤
(𝑘) = 𝐽𝑀𝑆𝐸𝑤

(𝑘) − 𝐽𝑀𝑀𝑆𝐸𝑤
(𝑘).       (50) 

 

For a priori EMSE 𝐽′𝐸𝑋𝑤
(𝑘), we can express as 

 

𝐽′𝐸𝑋𝑤
(𝑘) = 𝐽′𝑀𝑆𝐸𝑤

(𝑘) − 𝐽′𝑀𝑀𝑆𝐸𝑤
(𝑘), (51) 

 

where 

 

𝐽′𝑀𝑆𝐸𝑤
(𝑘) = 𝐸{‖𝑒𝑤(𝑘)‖2},              (52) 

 

𝐽′𝑀𝑀𝑆𝐸𝑤
(𝑘) = 𝐸 {‖𝑒𝑜𝑝𝑡,𝑤(𝑘)‖

2
}, (53) 

 

with 

 

𝑒𝑜𝑝𝑡,𝑤(𝑘) = 𝑑(𝑘) − 𝒘𝑜𝑝𝑡
𝑇(𝑘)𝒔(𝑘), (54) 

 

as the a priori optimum filtering error of 𝐰(𝑘). 

ASSUMPTION I: We assume the adaptive filters 

working in a stationary signal operated environment, 

we have 

 

𝐸{𝜖𝑜𝑝𝑡,𝑤(𝑘)} ≈ 𝑒𝑜𝑝𝑡,𝑤(𝑘),   

𝐸{𝜖𝑜𝑝𝑡,𝑞(𝑘)} ≈ 𝑒𝑜𝑝𝑡,𝑞(𝑘),  

 

that the a priori and a posteriori optimum errors are 

identical. 

 

ASSUMPTION II: We consider the convergence 

condition, that are of 

 

𝐸{𝜖𝑜𝑝𝑡,𝑤(𝑘)} → 0, 𝑎𝑠 𝑘 → ∞,   

      𝐸{𝒘(𝑘)} → 𝒘𝑜𝑝𝑡(𝑘), 𝑎𝑠 𝑘 → ∞,  

𝐸{𝜖𝑜𝑝𝑡,𝑞(𝑘)} → 0, 𝑎𝑠 𝑘 → ∞,   

      𝐸{𝒒𝒊(𝑘)} → 𝒒𝑜𝑝𝑡(𝑘), 𝑎𝑠 𝑘 → ∞.  

 

By using ASSUMPTION I, the MSE of 𝐪𝑖(𝑘) can 

be expressed as 

 

𝐽𝑀𝑆𝐸𝑞
(𝑘) = 𝐸 {‖𝜖𝑞(𝑘)‖

2
} = 𝐽𝑀𝑀𝑆𝐸𝑞

(𝑘) + 𝐽𝐸𝑋𝑞
(𝑘),

 (55) 

 

where 𝐽𝑀𝑀𝑆𝐸𝑞
(𝑘) is the minimum mean square error 

(MMSE) of 𝐪𝑖(𝑘) using ASSUMPTION II given by 

 

𝐽𝑀𝑀𝑆𝐸𝑞
(𝑘) = 𝐸 {‖𝜖𝜊𝑝𝑡,𝑞(𝑘)‖

2
},               (56) 
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where 𝜖𝑜𝑝𝑡,𝑞(𝑘) is the a posteriori optimum filtering 

error of 𝐪𝑖(𝑘) as 

 

𝜖𝑜𝑝𝑡,𝑞(𝑘) = 𝑑(𝑘) − 𝒘(𝑘)𝒖𝑇(𝑘)𝓒𝒒𝑜𝑝𝑡(𝑘)  

= 𝑑(𝑘) − 𝑣𝑇(𝑘)𝒒𝑜𝑝𝑡(𝑘), (57) 

 

where 𝑣(𝑘) is given in Eq. (29). 

Similarly, the a posteriori EMSE 𝐽𝐸𝑋𝑞
(𝑘) is given 

by 

 

𝐽𝐸𝑋𝑞
(𝑘) = 𝐽𝑀𝑆𝐸𝑞

(𝑘) − 𝐽𝑀𝑀𝑆𝐸𝑞
(𝑘). (58) 

 

Therefore, the a priori EMSE 𝐽′𝐸𝑋𝑞
(𝑘) of 𝐪𝑖(𝑘) 

can be evaluated as 

 

𝐽′𝐸𝑋𝑞
(𝑘) = 𝐽′𝑀𝑆𝐸𝑞

(𝑘) − 𝐽′𝑀𝑀𝑆𝐸𝑞
(𝑘). (59) 

 

where 

 

   𝐽′𝑀𝑆𝐸𝑞
(𝑘) = 𝐸 {‖𝑒𝑞(𝑘)‖

2
},                         

𝐽′𝑀𝑀𝑆𝐸𝑞
(𝑘) = 𝐸 {‖𝑒𝑜𝑝𝑡,𝑞(𝑘)‖

2
}, (60) 

 

with 

𝑒𝑜𝑝𝑡,𝑞(𝑘) = 𝑑(𝑘) − 𝑣𝑇(𝑘)𝒒𝑜𝑝𝑡(𝑘), (61) 

 

as the a priori optimum filtering error of 𝐪𝑖(𝑘). 

5. Simulation experiments 

In this simulation experiments, we consider the 

random process for input colour signal that is also 

generated by this equation 

𝑥(𝑘) = 𝛼 ∙ 𝑥(𝑘) + √1 + 𝛼2 ∙ 𝜉(𝑘), (62) 

 

where ξ(𝑘)  is unit variance and zero mean white 

Gaussian noise and α = [0.01, 0.99]. 

With a two-coefficient LMS-based adaptive 

filters as update coefficient FIR filter 𝐰(𝑘)  and 

adaptive control points LUT vector 𝐪𝑖(𝑘) , the 

performance of proposed AS-NLMS-HSAF 

algorithm is evaluated with LMS-HSAF Ref. [21] 

algorithm over 20,000 samples and 100 Monte Carlo 

trials. In the system identification, an unknown 

system consists of a linear component and a nonlinear 

memoryless function using a 23-point of LUT 

interpolated by cubic spine function as detailed in [1]. 

We refer the readers to Ref. [1, 3] for more details. 

Initial parameters for both AS-NLMS-HSAF and 

LMS-HSAF algorithms are summarized in the 

following: 𝐰(0) = 𝐪(0) = 0.01 ∙ [100 … ]𝑇 , SNR = 

40dB, an interval sampling ∆𝑥 = 0.2 Ref. [9] and tap 

length 𝑀 = 7. 

We obtain the learning curves of mean square 

error (MSE) with α = 0.85 shown in Fig.2 and with α 

= 0.15 illustrated in Fig. 3, respectively. Comparing 

these results, we note that the learning curves of 

proposed AS-NLMS-HSAF are similar and fast 

convergence with varying large initial step-size 

parameters compared with the fixed step-size 

parameter of LMS-HSAF Ref. [21]. According to 

Fig.2 and Fig. 3, we observe a property of LMS 

algorithm from these curves is that, the convergence 

of adaptive algorithm to its steady-state value is 

slower meanwhile the steady-state MSE is smaller, 

when the step-size is declined. 

Trajectories of adaptive step-size parameters 

𝜇w(𝑘) of adaptive coefficient FIR filter and 𝜇q(𝑘) of 

update control points vector of proposed AS-NLMS-

HSAF are illustrated with varying initial step-size 

setting at α = 0.15 in Fig. 4 and Fig. 5, respectively. 

We remark that both of trajectories of 𝜇w(𝑘)  and 

𝜇q(𝑘) appear to converge into the steady-state with 

initial variation. 

6. Conclusion 

A Hammerstein structure in forms of cubic spline 

adaptive filtering has been proposed with adaptive 

step-size approach using the steepest descent scheme 

for both the coefficient FIR filter and control points 

vector of HSAF architecture. The proposed HSAF-

based algorithm using normalized version of LMS 

has been introduced how to derive with the method 

of adaptive step-size mechanism based on the 

negative gradient vector.  

Stability and steady-state performance have been 

investigated with the methods of mean square error 

using a few assumptions related to adaptive FIR 

coefficient and update control points LUT vectors.  

For the experimental simulation, the learning curves 

of mean square error of proposed AS-NLMS-HSAF 

algorithm is able to converge towards their steady-

state and performance can reach the noise power at 

SNR = 40dB, despite varying 100-fold initial step-

size parameters over 100 Monte Carlo trials. 

Moreover, the experiment trajectories of adaptive 

step-size parameters of the update coefficient FIR 

filter and control points LUT vectors are also 

converged to their equilibrium points for varying the 

initial step-size parameters in the steady-state.  

In particular, Hammerstein structure can be 

interestingly modified in several applications of 

engineering fields as signal processing, data analysis 

in biomedical engineering and chemistry nonlinear 

processes. 
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Figure.2 Comparison of experiment learning curves of adaptive HSAF-based algorithm based on 

mean square error for varying step-size parameters, when SNR = 40dB and α = 0.85. 

 

 

 
Figure.3 Comparison of experiment learning curves of adaptive HSAF-based algorithm based on mean square error for 

varying step-size parameters, when SNR = 40dB and α = 0.15. 
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Figure.4 Approximations to the trajectories of update step-size 𝜇w(𝑘) of 𝐰(𝑘) based on proposed 

AS-NLMS-HSAF algorithm with the varying initial condition. 

 

 
Figure.5 Approximations to the trajectories of update step-size 𝜇q(𝑘) of 𝐪𝑖(𝑘) based on proposed 

AS-NLMS-HSAF algorithm with the varying initial condition. 



Received:  February 8, 2020                                                                                                                                              122 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.11 

 

References 

[1] M. Scarpiniti, D. Comminiello, R. Rarisi, and A. 

Uncini, “Nonlinear Spline Adaptive Filtering”, 

Signal Processing, Vol.93, No.4, pp.772–783, 

2013. 

[2] M. Scarpiniti, D. Comminiello, G. Scarano, R. 

Parisi, and A. Uncini, “Steady-State 

Performance of Spline Adaptive Filters”, IEEE 

Trans. on Signal Processing, Vol.64, No.4, 

pp.816–828, 2016. 

[3] M. Scarpiniti, D. Comminiello, R. Rarisi, and A. 

Uncini, “Novel Cascade Spline Architectures for 

the Identification of Nonlinear Systems”, IEEE 

Trans. on Circuits and Systems I: Regular 

Papers, Vol.62, No.7, pp.1825–1835, 2015. 

[4] S. Prongnuch and R. E. Valmoria, “Applied of 

Co-design in Reconfigurable System for Remote 

Image Noise Filtering via Ethernet Technology”, 

In: Proc. of International Science, Social 

Science, Engineering and Energy Conf., pp.92-

98, 2013. 

[5] S. Guan and Z. Li, “Normalized Spline Adaptive 

Filtering Algorithm for Nonlinear System 

Identification”, Neural Processing Letters, 

Vol.46, No.2, pp.595–607, 2017. 

[6] S. Sitjongsataporn and W. Chimpat, “Adaptive 

Step-size Normalized Least Mean Square 

Algorithm for Spline Adaptive Filtering”, In: 

Proc. of IEEE International Technical Conf. on 

Circuits/Systems, Computers and 

Communications, pp.544–547, 2019. 

[7] A. Saengmuang and S. Sitjongsataporn, 

“Convergence and Stability Analysis of Spline 

Adaptive Filtering based on Adaptive Averaging 

Step-size Normalized Least Mean Square 

Algorithm”, International Journal of Intelligent 

Engineering and Systems, Vol.13, No.2, pp.267-

277, 2020. 

[8] M. Scarpiniti, D. Comminiello, and A. Uncini, 

“Convex Combination of Spline Adaptive 

Filters”, In: Proc. of the European Signal 

Processing Conf., pp.1-5, 2019. 

[9] M. Scarpiniti, D. Comminiello, R. Parisi, and A. 

Uncini, “Nonlinear System Identification Using 

IIR Spline Adaptive Filers”, Signal Processing, 

Vol.108, pp.30–35, 2015. 

[10] C. Liu and Z. Zhang, “Set-membership 

Normalized Least M-estimate Spline Adaptive 

Filtering Algorithm in Impulsive Noise”, 

Electronics Letters, Vol.54, No.6, pp.393–395, 

2018. 

[11] X. Dai and M. Bikdash, “Trend Analysis of 

Fragmented Time Series for mHealth Apps: 

Hypothesis Testing Based Adaptive Spline 

Filtering Method with Importance Weighting”, 

IEEE Access, Vol.5, pp.27767–27776, 2017. 

[12] S. Cheng, Y. Wei, D. Sheng, Y. Chen, and Y. 

Wang, “Identification for Hammerstein 

Nonlinear ARMAX Systems based on Multi-

innovation Fractional order Stochastic 

Gradient”, Signal Processing, Vol.142, pp.1–10, 

2018. 

[13] B. Mu, H. Chen, L. Y. Wang, G. Yin, and W. X. 

Zheng, “Recursive Identification of 

Hammerstein Systems: Convergence Rate and 

Asymptotic Normality”, IEEE Trans. on 

Automatic Control, Vol.62, No.7, pp. 3277–

3292, 2017. 

[14] H. Yang, X. Gao, Y. Chen, and L. Hao, 

“Hammerstein Adaptive Impedance Controller 

for Bionic Wrist Joint Actuated by Pneumatic 

Muscles”, IEEE Access, Vol.7, pp.47–56, 2019. 

[15] G. Qian, D. Luo, and S. Wang, “A Robust 

Adaptive Filter for a Complex Hammerstein 

System”, Entropy, Vol.21, No.2, pp.1–12, 2019. 

[16] S. Khankalantary, S. Rafatnia, and H. 

Mohammadkhani, “An Adaptive Constrained 

Type-2 Fuzzy Hammerstein Neural Network 

Data Fusion Scheme for Low-cost SINS/GNSS 

Navigation System”, Applied Soft Computing, 

Vol.86, pp.1–14, 2020. 

[17] R. Mitra and V. Bhatia, “Unsupervised 

Multistage-Clustering-Based Hammerstein 

Postdistortion for VLC”, IEEE Photonics 

Journal, Vol.9, No.1, pp.1–10, 2017. 

[18] J. Ma, B. Huang, and F. Ding, “Iterative 

Identification of Hammerstein Parameter 

Varying Systems with Parameter Uncertainties 

Based on the Variational Bayesian Approach”, 

IEEE Trans. On Systems, Man, and Cybernetics: 

Systems, pp.1–11, 2017. 

[19] J. Guo and H. Liu, “Hammerstein System 

Identification with Quantised Inputs and 

Quantised Output Observations”, IET Control 

Theory Appl., 2017, Vol.11, No.4, pp. 593–599, 

2017. 

[20] H. Kuroda, M. Yamagishi, and I. Yamada, 

“Alternating Minimization Approach for 

Identification of Piecewise Continuous 

Hammerstein Systems”, In: Proc. of IEEE 

International Conf. on Acoustics, Speech and 

Signal Processing, pp.4389–4393, 2018. 

[21] M. Scarpiniti, D. Comminiello, R. Rarisi, and A. 

Uncini, “Hammerstein Uniform Cubic Spline 

Adaptive Filtering: Learning and Convergence 

Properties”, Signal Processing, Vol.100, 

pp.112–123, 2014. 



Received:  February 8, 2020                                                                                                                                              123 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.11 

 

[22] Z. Wu, S. Peng, B. Chen, and H. Zhao, “Robust 

Hammerstein Adaptive Filtering under 

Maximum Correntropy Criterion”, Entropy, 

Vol.17, No.10, pp.7149–7166, 2015. 

[23] W. Allafi, I. Zajic, K. Uddin, and K. J. Burnham, 

“Parameter Estimation of the Fractional-order 

Hammerstein–Wiener Model using Simplified 

Refined Instrumental Variable Fractional-order 

Continuous Time”, IET Control Theory Appl., 

Vol.11, No.15, pp.2591–2598, 2017. 

[24] P. P. Campo, D. Korpi, L. Anttila and M. 

Valkama, “Nonlinear Digital Cancellation in 

Full-Duplex Devices using Spline-Based 

Hammerstein Model”, In: Proc. of IEEE 

Globecom Workshops, pp.1-7, 2018. 

[25] S. Prongnuch, S. Sitjongsataporn, and T. 

Wiangtong, “Hammerstein Spline Adaptive 

Filtering based on Normalized Least Mean 

Square Algorithm”, In: Proc. of the 

International Symposium on Intelligent Signal 

Processing and Communication Systems, pp.1-2. 

2019. 

[26] S. Sitjongsataporn, Advanced Adaptive DMT 

Equalisation: Algorithms and Implementation, 

LAP LAMBERT Academic Publishing, 2011. 

[27] M. H. Hayes, Statistical Digital Signal 

Processing and Modeling, John Wiley & Sons: 

NJ., 2008. 

[28] S. Sitjongsataporn, “Analysis of Low 

Complexity Adaptive Step-size Orthogonal 

Gradient-based FEQ for OFDM Systems”, ECTI 

Trans. On Computer and Information 

Technology, Vol.5, pp.134–145, 2011. 

 


