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Abstract: This research depicts the utilization of a hybrid Multi Criteria Decision Making (MCDM) method for the 

determination of the best collection of operative parameters of a diesel engine. Nonetheless, selecting the best 

collection of operative parameters depends on both performance and emission properties that consist of various 

qualitative and quantitative parameters. The hybrid approach employs information entropy weight (IEW) and The 

Evaluation Based on Distance from Average Solution (EDAS) is proposed to rank available operating points for 

choosing the optimal combination of operating parameters of a diesel engine. Firstly, the strength of IWE is used to 

compute the relative weights of parameters. Then, EDAS technique is used to evaluate the alternatives ranking. The 

optimal values of performance and emission parameters: BP, SFC, Mech. Eff., BTE, CO, HC , CO2 and NOX 

emissions are 2.39kW, 0.23(kg/kwh), 52.51% , 36.72%, 0.04%, 43 ppm, 2.8% and 304 ppm, respectively, at load,  

torque and fuel blend of 11kg, 15.22Nm and B30, respectively. The results obtained by using the proposed integrated 

approach are validated by five various MCDM techniques.  Namely, TOPSIS (Technique for Order Preference by 

Similarity Ideal Solution), WASPAS (Weighted Aggregated Sum Product Assessment), MOORA (Taguchi-based 

Multi-Objective Optimization by Ratio Analysis), WPAS (Weighted Product Assessment) and VIKOR 

(VIšekriterijumsko KOmpromisno Rangiranje) methods. The results indicate that the proposed integrated approach 

is capable of accurately ranking the operating points for diesel engine and the results well consistent with the other 

techniques. The proposed approach is clear in ideas and easy in computation, and calculation results are realistic as 

well. 

Keywords: Multi criteria decision making, Information entropy weight, Evaluation based on distance from average 

solution, Technique for order preference by similarity ideal solution, Taguchi-based multi-objective optimization by 

ratio analysis. 

 

 

1. Introduction 

With passing the time, the reserves of fossil 

fuels are declining quicker, and petroleum products 

around the world are continuously increasing in 

prices. The high price of petroleum products has 

motivated the world towards searching for the 

alternative cheaper energy sources and reducing 

dependence on oil. Waste plastic oil (WPO) diesel 

blend is one of alternative source of fuels. 

Experimental studies show that numerous 

parameters influence diesel engine performance and 

emission properties [1]. However, the effect of the 

operating parameters is quite important, and the 

researchers have extensively studied their effect on 

engine performance. The optimal combinations of 
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operating parameters enable the engine to perform 

best. Load, torque, fuel blend etc. are numerous 

parameters that influence engine performance. Best 

operating point selection is a type of decision 

making process requiring weighting of several 

parameters and evaluation and classification of 

alternatives. This view suggests that the problems 

with selecting operating points are a multi-

dimensional nature and that methods for multi-

criteria decision making (MCDM) can be deal with 

them. From this viewpoint, the choice of operating 

point is multidimensional in nature and multi-

criteria -decision making (MCDM) approaches can 

be implemented. In the literature, various studies 

have been documented to solve the problem of 

optimum selection of diesel engine parameters. 

Reference [2] has applied response surface 

technique to optimize the operating engine variables 

like the compression ratio, load, and the biodiesel 

methanol palm oil blends and load to improve the 

thermal brake efficiency, the consumption of brake-

specific fuel and emission parameters. Gray 

relational analysis was used to optimize the input 

parameters of the diesel engine, to enhance 

emissions and performance characteristics [3]. In [4] 

the genetic algorithm was used to optimize the CI 

engine operating parameters. Taguchi has been 

introduced in order to optimize the input parameters 

of diesel engines, rendering Jatropha biodiesel 

compatible [5]. Using a kernel based extreme 

learning and a biodiesel fuel cuckoo search [6] has 

optimized performance and exhaust emission of 

diesel engine. In many applications, such as supplier 

choosing, project selection, risk evaluation, etc., the 

multi-criteria decision-making strategy is very 

useful. An efficient and simple multi-criteria model 

was investigated for the selection of the grinding 

circuit using Taguchi-based Multi-Objective 

Optimization by Ratio Analysis (MOORA) [7]. For 

the assessment of green supply chain management, 

the VIKOR methodology (Vlsekriterijumska 

Optimizaciya I Kompromisno Resenje) was used [8]. 

Weighted aggregated sum product assessment 

(WASPAS) approach is applied for the solution of 

eight decision-making manufacturing issues [9]. 

TOPSIS (Technique for Order Preference by 

Similarity Ideal Solution) was applied for default 

models assessment of bank loan [10]. Simple 

Additive Weighting (SAW) was utilized for 

Personnel problem Selection [11]. The literature 

review reveals that little work has been done to 

optimize diesel engine input parameters for waste 

plastic oil fuel blend so that blends of waste plastic 

oil can be optimized in terms of different 

performance and emission parameters. In the recent 

study, three combinations of waste plastic oil fuel 

blend are considered for different torques under 

different conditions of diesel load. These parameters 

are optimized with respect to different performance 

and emission parameters using Evaluation Distance 

from Average Solution approach (EDAS). 

Information entropy (IEW) method was applied to 

compute the relative weights of the response 

variables. This paper organized as follows. EDAS 

method with its computation steps an MCDM tool 

and IEW with its computation steps and the 

methodology of the proposed integrated IEW and 

EDAS approach are presented in Section 2. The 

methodology of the proposed integrated IEW and 

EDAS approach is included in section3. The 

application of the integrated approach is 

demonstrated with the optimal operating point 

selection for diesel engine in section 4. A 

comparative analysis between the integrated EDAS 

and IEW method and some relevant methods for the 

problem solution is given in Section 5. Finally, in 

section 6 the conclusions are given. 

2. Methods 

2.1 Evaluation based on distance from average 

solution (EDAS) method 

EDAS methodology was introduced by 

Keshavarz Ghorabaee [12]. EDAS, one of the 

MCDM methods, relies on an average solution to 

estimate the alternatives by taking into account two 

steps, which are PDA (average positive distance) 

and NDA (average negative distance). This 

approach defines instead of the distance from the 

ideal and negative optimal solutions as in the 

compromise MCDM methodologies like the VIKOR, 

TOPSIS, etc., the best alternative using the distance 

from the average solution (AV). The two key 

variables needed for the optimal choices are in that 

method: PDA and NDA, because the higher PDA 

and/or lower NDA values mean that the option is a 

better solution than the average. In the case of 

higher PDA values and lower NDA values, it is 

possible to analyze all solutions to a decision-

making problem based on multiple sometimes 

mutually contradictory variables. 

Assuming that there is a set of alternatives m 

and n criteria, the evaluation steps of EDAS method 

are given below [12]:  

Step1. The parameters and alternatives are selected i

n the first step of the decision problem. 

Step 2. Decision Matrix (DM) X is built as shown. 
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𝑋 = [𝑋𝑖𝑗]
𝑚𝑛

[

𝑥11𝑥12. . . 𝑥1𝑛

𝑥21𝑥22. . . 𝑥2𝑛

⋮      ⋮        ⋱   ⋮
𝑥𝑚1𝑥𝑚2. . . 𝑥𝑚𝑛

]                 (1) 

 

Step 3: Taking into account all parameters the 

average solution (AV) is calculated as follows:  

 

AV = [AVj]1×n
Where, AVj =

∑ xij
m
i=1

m
          (2) 

 

Step 4: The estimation, based on the type of 

parameters (benefit and cost), of the positive 

distance to average (PDA) and negative distance 

to the NDA matrix is as follows: 

 

PDA = [PDAij]m×n

NDA = [NDAij]m×n

                                   (3) 

 

If the selected parameter is benefit then 

 

PDAij =
max(0,(xij−AVj))

AVj

NDAij =
max(0,(AVj−xij))

AVj

                             (4) 

 

If the selected parameter is cost then 

 

𝑃𝐷𝐴𝑖𝑗 =
max(0,(𝐴𝑉𝑗−𝑥𝑖𝑗))

𝐴𝑉𝑗

𝑁𝐷𝐴𝑖𝑗 =
max(0,(𝑥𝑖𝑗−𝐴𝑉𝑗))

𝐴𝑉𝑗

                          (5) 

 

Step 5: For all alternatives, the weighted sum of 

PDA (SPi) and the weighted sum of NDA (SNi) 

are computed as follows: 

 
𝑆𝑃𝑖 = ∑ 𝑤𝑗

𝑚
𝑗=1 𝑃𝐷𝐴𝑖𝑗

𝑁𝑃𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑁𝐷𝐴𝑖𝑗

                              (6) 

 

Where, wj is the weight of the jth parameter. 

Step 6: Standardize the SP and SN values for all 

alternatives as shown: 

 

𝑁𝑆𝑃𝑖 =
𝑆𝑃𝑖

max𝑖(𝑆𝑃𝑖)

𝑁𝑆𝑁𝑖 = 1 −
𝑆𝑁𝑖

max𝑖(𝑆𝑁𝑖)

                              (7) 

 

Step7: Evaluate the appraisal score (AS) for all 

alternatives, as illustrated below: 

 

𝐴𝑆𝑖 =
1

2
(𝑁𝑆𝑃𝑖 + 𝑁𝑆𝑁𝑖),0 ≤ 𝐴𝑆𝑖 ≤ 1     (8) 

 

Step8:  Alternatives are classified in descending 

order according to the ASi obtained. The 

alternative with the highest AS is the best of the 

alternatives. 

2.2 Information entropy weight method 

Entropy measures the system's disturbance 

degree, and the efficient data supplied can also be 

measured. Entropy can therefore be used for weight 

determination. While there is an enormous 

difference between the measured items on a 

particular index, entropy is smaller, indicating that 

the weight of indicators will increase when the 

indicators are given more useful information; on the 

contrary, the smaller the difference, the bigger the 

entropy, suggesting that the less information that is 

received by indicators, the smaller the difference. 

The entropy coefficient model is therefore an 

objective method of empowerment. The key steps 

for calculating the weights were accompanied by the 

use of entropy coefficient method [13]: 

Step1. Normalization of the original assessment 

matrix 

If there are n assessment indicators and m 

assessment items, then original indicators value 

matrix X is created: 

 

𝑋 = [

𝑥11𝑥12. . . 𝑥1𝑛

𝑥21𝑥22. . . 𝑥2𝑛

⋮      ⋮      ⋱    ⋮
𝑥𝑚1𝑥𝑚2. . . 𝑥𝑚𝑛

]                              (9) 

 

Every index may be attributed to two types of 

feature index: efficiency type, cost type. As regards 

efficiency type, the normalization construction 

function is: 

 

𝑦𝑖𝑗 =
𝑥𝑖𝑗−min(𝑥𝑗)

max(𝑥𝑗)−min(𝑥𝑗)
                            (10) 

 

While the construction function for the cost type is: 

 

𝑦𝑖𝑗 =
max(𝑥𝑗)−𝑥𝑖𝑗

max(𝑥𝑗)−min(𝑥𝑗) 
                            (11) 

 

The standard Y matrix can be obtained after 

transformation and displayed below: 

 

𝑌 = [

𝑦11𝑦12. . . 𝑦1𝑛

𝑦21𝑦22. . . 𝑦2𝑛

⋮       ⋮      ⋱   ⋮
𝑦𝑚1𝑦𝑚2 . . . 𝑦𝑚𝑛

]                               (12) 

 
Step 2. Definition of the entropy 
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The definition of entropy of the jth indicator is as 

follows during the evaluation of n evaluation 

indicators and m assessment objects: 

 

𝑒𝑗 = −
1

ln(𝑚)
∑ 𝑝𝑖𝑗 ln(𝑝𝑖𝑗)

𝑚

𝑖=1

, 𝑗 = 1,2, . . . 𝑚 

 

Where, 𝑝𝑖𝑗 = 𝑦𝑖𝑗/ ∑ 𝑦𝑖𝑗
𝑚
𝑖=1                         (13) 

 

Step3. Definition of the entropy weight 

With the following formula, entropy weight can be 

calculated: 

 

𝑤𝑗 =
(1−𝑒𝑗)

(𝑛−∑ 𝑒𝑗)𝑛
𝑗=1

, 𝑗 = 1,2, ..                        (14) 

 

𝑤𝑗 is defined in the formula as the entropy weight of 

the parameter j. 

3. Proposed methodology 

The proposed methodology consists of three 

basic phases: 

Phase I. Identification of criteria to apply in the 

model  

Phase II. Entropy weight computation of 

information  

Phase III. Ranking of alternatives by means of 

Distance from Average Solution approach. 

 

A) Criterion for selecting optimal operating 

parameters 

In the first stage, alternative diesel engine input 

parameters combination and their evaluation 

criteria are defined.  

 

B) Computation of criteria weights using 

information entropy weight 

The information entropy weight is used to 

evaluate the relative weights of performance 

and emission criteria in the second stage of the 

proposed methodology. 

 

C) Distance from Average Solution approach 

Computations 

The technique of the Distance from Average 

Solution specifies the rating of alternatives in 

which the best decision is taken to be nearest to 

the ideal and farthest from the unideal in the 

third stage. 

The general framework of the suggested 

approach is shown in Fig. 1. 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

 

Determine all alternatives 

Determining the paramters to be used in 

decision making 

Constructing the decision making matrix 

Phase I: 

Problem 

description 

calculating the paramters weights based on 

information entropy 

Phase II:  

Determining 

attributes weights 

Constructing average value matrix 

Calculating the positive and negative distance  

Evaluation of weighted sum of distances  

Normalization of weighted sum of distances. 

Computing appraisal score  

Phase III: 

EDAS 

Figure. 1 The schematic structure of the proposed 

integrated IEW and EDAS approach 

4. Diesel engine parameter selection using 

the integrated IEW and EDAS approach 

In this section, optimal operating point 

combination choosing problem of a diesel engine is 

studied with the proposed approach. By this way, 

the implementation of the integrated approach is 

shown. 44 operating points are evaluated in terms of 

ten criteria in this application. The performance 

parameters selected in the current study are Brake 

power (BP), Specific fuel consumption (SFC), 

Mechanical efficiency (Mech. Eff.) and Brake 

thermal efficiency (BTE) and the chosen parameters 

for emission are the levels of carbon monoxide (CO), 

Hydro carbon (HC), carbon dioxide (CO2) and 

oxides of nitrogen (NOx(emissions were measured 

are considered as criteria of diesel engine parameter 

selection. After establishing the alternatives and 

parameters, integrated method based on information 

entropy weight and EDAS approach is applied for 

assessment the diesel engine operating points. IEW 

is proposed to compute the weights of the 

parameters. Then, the ordering of the alternatives is 

obtained using EDAS technique. Lastly, the optimal 

operating point is chosen that has the maximum AS. 

The weights of the parameters are calculated 

with IEW method, these parameters weights 

obtained with the IEW approach are shown in Table 

1. 
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Table 1. Parameters weight 

Parameter 
BP 

(kw) 

(Max) 

SFC 

(kg/kwh) 

(Min) 

Mech. 

Eff.(%) 

(Max) 

BTE 

(%) 

(Max) 

CO 

(%) 

(Min) 

HC 

(ppm) 

(Min) 

CO2 

(%) 

(Min) 

NOX (ppm) 

(Min) 

Weights 0.2379 0.2733 0.1276 0.1280 0.0135 0.0271 0.0469 0.1409 

 

Once the weights of the parameters are 

calculated with IEW technique, the ordering of the 

optimal operating point combination is evaluated 

with EDAS approach. In EDAS approach, first of all 

(DM) is developed as given in Table 2. In optimal 

operating point selection problem, (BP), (Mech. 

Eff.) and (BTE) criteria have to be maximized, and 

the (SFC), (CO), (HC), (CO2) and (NOx( have to be 

minimized. So (SFC), (CO), (HC), (CO2), and 

(NOx(   are cost criteria whereas (BP), (Mech. Eff.) 

and (BTE) are benefit criteria. 

As (DM) is established, AV based on all 

parameters are calculated. These AV values can be 

seen at the last row of Table 2. The PDA matrix is 

subsequently developed to the benefit and cost 

parameters. Table 3 lists this matrix. 

Then, the NDA matrix is established as provided 

in Table 4 by utilizing the benefit parameters and 

the cost parameters. 

Afterward, for all alternatives, weighted sums 

PDA and NDA are determined. Here, the weights 

are obtained through IWE approach.Then, SPi and 

SNi values are calculated as shown in the first tow 

column of Table 5. SP and SN values are 

standardized for all alternatives in order to 

determine NSPi and NSNi values in columns 3 and 4 

of Table 5.Lastly, in the last two columns of Table 5, 

the ranking and AS for all operational points are 

determined. 

5. A comparative analysis 

The aim of this study is to apply the effective 

and relatively integrated IEW and EDAS approach 

to the optimal operating point selection problem as a 

reasonable and effective MCDM method. In order to 

evaluate whether the proposed approach is feasible 

and efficient, the ranking results of the proposed 

approach is compared with the different MCDM 

methods (such as MOORA, TOPSIS, VIKOR, 

WSPAS, and WASPAS). Comparative evaluations 

with previous works [7-11] are made to demonstrate 

the performance of the integrated EDAS and IEW 

methodology as MCDM technique to for optimal 

operating point determination of diesel engine. In 

this study, the suggested approach is compared with 

TOPSIS [10], WASPAS [9], MOORA [7], WPAS 

[11] and VIKOR [8] approaches. Table 6 shows the 

results for optimal selection of operating points 

using different MCDM methods. 

We use the Spearman's rank-correlation test a 

technique for determining whether there is 

significant rank-correlation between two sets of 

values.  The results of comparison between all 

considered methods are given in Table 7. 

The results show that the IEW and EDAS 

integrated approach could find similar solutions as 

compared to other MCDM methods according to 

Spearman's rank correlational values in Table 7. 

6. Conclusions 

In this paper, an integrated approach was 

suggested to find the optimal combination of 

operating parameters of a diesel engine. This 

approach is based on IEW and EDAS. In IEW 

method, weights of the parameters are determined, 

while EDAS method is applied in ranking of 

operating points. Based on the engine performance 

parameters like (BP), (SFC), (Mech. Eff.), and 

(BTE) and the engine emission parameters like (CO), 

(HC), (CO2).  And (NOx) the optimum engine 

parameters at load of 11 kg, fuel blend B30, and 

15.22 Nm torque, where the values of the BP, SFC, 

Mech. Eff., BTE , CO, HC , CO2, and NOX were 

found to be 2.39kW, 0.23(kg/kwh), 52.51% , 

36.72%, 0.04%, 43 ppm, 2.8% and 304 ppm, 

respectively. The results of the integrated IEW and 

EDAS approach were compared with other MCDM 

techniques like MOORA, TOPSIS, VIKOR, 

WSPAS, and WASPAS. The results show that the 

methodology introduced is compatible with the 

other MCDM methods. The Spearman correlation 

coefficient between the proposed approach and the 

different MCDM methods different methods lie 

between 0.903-1.0 which show that the ranks are in 

perfect agreement and have strong correlations with 

each other. The results indicate that the proposed 

integrated approach is capable of accurately ranking 
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Table 2. Diesel engine decision matrix 

Exp. 

No. 

 

Operating parameter Engine performance 

values 

Emission 

characteristics 

Values 

Load 

(Kg) 

Torque 

(Nm) 

Fuel BP 

(kw) 

 (Max) 

SFC 

(kg/kwh)  

(Min) 

Mech. 

Eff.(%) 

(Max) 

BTE 

(%) 

(Max) 

CO 

(%) 

(Min) 

HC 

(ppm) 

(Min) 

CO2 

(%) 

(Min) 

NOX 

(ppm) 

(Min) 

1 1 1.38 Diesel 0.22 1.44 10.77 5.97 0.05 26 1.7 91 

2 1 1.38 B10 0.22 1.3 9.41 6.58 0.04 39 1.6 92 

3 1 1.38 B20 0.22 1.17 10.36 7.32 0.04 36 1.6 95 

4 1 1.38 B30 0.22 1.31 9.14 6.53 0.04 37 1.5 93 

5 2 2.77 Diesel 0.43 0.75 19.44 11.47 0.05 30 1.7 107 

6 2 2.77 B10 0.43 0.71 17.21 12 0.05 29 1.8 114 

7 2 2.77 B20 0.43 0.71 18.77 12.16 0.05 35 1.7 109 

8 2 2.77 B30 0.43 0.71 16.74 12.12 0.05 42 1.7 108 

9 3 4.15 Diesel 0.65 0.52 26.58 16.57 0.05 23 1.8 111 

10 3 4.15 B10 0.65 0.51 23.76 16.66 0.06 41 1.9 118 

11 3 4.15 B20 0.65 0.51 25.74 16.75 0.05 43 1.8 134 

12 3 4.15 B30 0.65 0.52 23.17 16.35 0.05 42 1.8 124 

13 4 5.53 Diesel 0.87 0.42 32.55 20.57 0.05 32 2.1 140 

14 4 5.53 B10 0.87 0.43 29.36 20.13 0.05 34 2.1 154 

15 4 5.53 B20 0.87 0.41 31.6 20.94 0.05 38 2 144 

16 4 5.53 B30 0.87 0.42 28.68 20.21 0.05 36 2 145 

17 5 6.92 Diesel 1.09 0.36 37.63 24.06 0.06 34 2.2 154 

18 5 6.92 B10 1.09 0.38 34.19 22.72 0.05 42 2.3 193 

19 5 6.92 B20 1.09 0.35 36.61 24.47 0.05 42 2 167 

20 5 6.92 B30 1.09 0.37 33.45 23.24 0.05 48 2 169 

21 6 8.3 Diesel 1.3 0.32 41.99 26.96 0.06 35 2.4 181 

22 6 8.3 B10 1.3 0.34 38.4 24.99 0.05 35 2.6 238 

23 6 8.3 B20 1.3 0.33 40.94 26.29 0.05 35 2.5 220 

24 6 8.3 B30 1.3 0.32 37.63 27.06 0.05 52 2.1 181 

25 7 9.68 Diesel 1.52 0.3 45.79 29 0.06 41 2.7 215 

26 7 9.68 B10 1.52 0.3 42.11 28.37 0.05 32 2.4 250 

27 7 9.68 B20 1.52 0.29 44.71 29.64 0.06 47 2.6 238 

28 7 9.68 B30 1.52 0.29 41.31 29.47 0.04 50 2.3 214 

29 8 11.07 Diesel 1.74 0.28 49.11 30.6 0.04 26 3 309 

30 8 11.07 B10 1.74 0.27 45.39 32.07 0.04 35 2.2 275 

31 8 11.07 B20 1.74 0.27 48.03 31.74 0.06 45 2.8 276 

32 8 11.07 B30 1.74 0.27 44.58 31.57 0.05 54 2.5 245 

33 9 12.45 Diesel 1.95 0.27 52.06 31.96 0.04 35 3.1 348 

34 9 12.45 B10 1.95 0.25 48.32 33.74 0.04 41 2.7 297 

35 9 12.45 B20 1.95 0.26 50.97 33.25 0.05 42 3.2 325 

36 9 12.45 B30 1.95 0.25 47.5 33.93 0.04 39 2.5 249 

37 10 13.83 Diesel 2.17 0.25 54.68 33.9 0.06 42 3.4 351 

38 10 13.83 B10 2.17 0.24 50.96 35.03 0.05 34 2.9 312 

39 10 13.83 B20 2.17 0.24 53.6 36.41 0.05 53 3.1 334 

40 10 13.83 B30 2.17 0.24 50.13 36.08 0.04 40 2.6 281 

41 11 15.22 Diesel 2.39 0.25 57.03 34.91 0.05 43 4.4 373 

42 11 15.22 B10 2.39 0.23 53.34 36.49 0.04 39 3 346 

43 11 15.22 B20 2.39 0.23 55.96 37.69 0.05 56 3.3 410 

44 11 15.22 B30 2.39 0.23 52.51 36.72 0.04 43 2.8 304 

AV    1.3027 0.4505 36.868 24.652 0.0489 39.159 2.373 212.3 

 

the operating points for diesel engine and the results 

well consistent with the other techniques. We can, 

therefore, conclude that the integrated EDAS and 

IEW approach is powerful in the optimization of 

diesel engine parameters. In future studies, stander 

deviation method can be applied for weights of the 

criteria evaluation and r the alternatives ranking can 

be established using various MCDM methods such 



Received:  December 20, 2019                                                                                                                                          107 

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020           DOI: 10.22266/ijies2020.0630.10 

 

as ELECTRE, PROMETHEE and AHP for diesel 

engine parameter optimization. 
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Table 3. Positive distance from average matrix 

Exp. 

No. 

BP 

(kw) 

(Max) 

SFC 

(kg/kwh) 

(Min) 

Mech. 

Eff.(%) 

(Max) 

BTE 

(%) 

(Max) 

CO 

(%) 

(Min) 

HC 

(ppm) 

(Min) 

CO2 

(%) 

(Min) 

NOX (ppm) 

(Min) 

1 0 0 0 0 0 0.336 0.284 0.571 

2 0 0 0 0 0.181 0.004 0.326 0.566 

3 0 0 0 0 0.181 0.081 0.326 0.552 

4 0 0 0 0 0.181 0.055 0.368 0.562 

5 0 0 0 0 0 0.234 0.284 0.496 

6 0 0 0 0 0 0.259 0.241 0.463 

7 0 0 0 0 0 0.106 0.284 0.486 

8 0 0 0 0 0 0 0.284 0.491 

9 0 0 0 0 0 0.413 0.241 0.477 

10 0 0 0 0 0 0 0.199 0.444 

11 0 0 0 0 0 0 0.241 0.368 

12 0 0 0 0 0 0 0.241 0.415 

13 0 0.068 0 0 0 0.183 0.115 0.34 

14 0 0.045 0 0 0 0.132 0.115 0.274 

15 0 0.09 0 0 0 0.03 0.157 0.321 

16 0 0.068 0 0 0 0.081 0.157 0.316 

17 0 0.201 0.021 0 0 0.132 0.073 0.274 

18 0 0.156 0 0 0 0 0.031 0.09 

19 0 0.223 0 0 0 0 0.157 0.213 

20 0 0.179 0 0 0 0 0.157 0.203 

21 0 0.29 0.139 0.094 0 0.106 0 0.147 

22 0 0.245 0.042 0.014 0 0.106 0 0 

23 0 0.267 0.11 0.066 0 0.106 0 0 

24 0 0.29 0.021 0.098 0 0 0.115 0.147 

25 0.167 0.334 0.242 0.176 0 0 0 0 

26 0.167 0.334 0.142 0.151 0 0.183 0 0 

27 0.167 0.356 0.213 0.202 0 0 0 0 

28 0.167 0.356 0.12 0.195 0.181 0 0.031 0 

29 0.336 0.378 0.332 0.241 0.181 0.336 0 0 

30 0.336 0.401 0.231 0.301 0.181 0.106 0.073 0 

31 0.336 0.401 0.303 0.288 0 0 0 0 

32 0.336 0.401 0.209 0.281 0 0 0 0 

33 0.497 0.401 0.412 0.296 0.181 0.106 0 0 

34 0.497 0.445 0.311 0.369 0.181 0 0 0 

35 0.497 0.423 0.382 0.349 0 0 0 0 

36 0.497 0.445 0.288 0.376 0.181 0.004 0 0 

37 0.666 0.445 0.483 0.375 0 0 0 0 

38 0.666 0.467 0.382 0.421 0 0.132 0 0 

39 0.666 0.467 0.454 0.477 0 0 0 0 

40 0.666 0.467 0.36 0.464 0.181 0 0 0 

41 0.835 0.445 0.547 0.416 0 0 0 0 

42 0.835 0.489 0.447 0.48 0.181 0.004 0 0 

43 0.835 0.489 0.518 0.529 0 0 0 0 

44 0.835 0.489 0.424 0.49 0.181 0 0 0 
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Table 4. Negative distance from average matrix 

Exp. 

No. 

 

BP 

(kw) 

(Max) 

SFC 

(kg/kwh)  

(Min) 

Mech. 

Eff.(%) 

(Max) 

BTE 

(%) 

(Max) 

CO 

(%) 

(Min) 

HC 

(ppm) 

(Min) 

CO2 

(%) 

(Min) 

 

NOX (ppm) 

(Min) 

1 0.831 2.197 0.708 0.758 0.023 0 0 0 

2 0.831 1.886 0.745 0.733 0 0 0 0 

3 0.831 1.597 0.719 0.703 0 0 0 0 

4 0.831 1.908 0.752 0.735 0 0 0 0 

5 0.67 0.665 0.473 0.535 0.023 0 0 0 

6 0.67 0.576 0.533 0.513 0.023 0 0 0 

7 0.67 0.576 0.491 0.507 0.023 0 0 0 

8 0.67 0.576 0.546 0.508 0.023 0.073 0 0 

9 0.501 0.154 0.279 0.328 0.023 0 0 0 

10 0.501 0.132 0.356 0.324 0.228 0.047 0 0 

11 0.501 0.132 0.302 0.321 0.023 0.098 0 0 

12 0.501 0.154 0.372 0.337 0.023 0.073 0 0 

13 0.332 0 0.117 0.166 0.023 0 0 0 

14 0.332 0 0.204 0.183 0.023 0 0 0 

15 0.332 0 0.143 0.151 0.023 0 0 0 

16 0.332 0 0.222 0.18 0.023 0 0 0 

17 0.163 0 0 0.024 0.228 0 0 0 

18 0.163 0 0.073 0.078 0.023 0.073 0 0 

19 0.163 0 0.007 0.007 0.023 0.073 0 0 

20 0.163 0 0.093 0.057 0.023 0.226 0 0 

21 0.002 0 0 0 0.228 0 0.011 0 

22 0.002 0 0 0 0.023 0 0.096 0.122 

23 0.002 0 0 0 0.023 0 0.054 0.037 

24 0.002 0 0 0 0.023 0.328 0 0 

25 0 0 0 0 0.228 0.047 0.138 0.013 

26 0 0 0 0 0.023 0 0.011 0.178 

27 0 0 0 0 0.228 0.2 0.096 0.122 

28 0 0 0 0 0 0.277 0 0.009 

29 0 0 0 0 0 0 0.264 0.457 

30 0 0 0 0 0 0 0 0.296 

31 0 0 0 0 0.228 0.149 0.18 0.301 

32 0 0 0 0 0.023 0.379 0.054 0.155 

33 0 0 0 0 0 0 0.307 0.64 

34 0 0 0 0 0 0.047 0.138 0.4 

35 0 0 0 0 0.023 0.073 0.349 0.532 

36 0 0 0 0 0 0 0.054 0.174 

37 0 0 0 0 0.228 0.073 0.433 0.655 

38 0 0 0 0 0.023 0 0.222 0.471 

39 0 0 0 0 0.023 0.353 0.307 0.574 

40 0 0 0 0 0 0.021 0.096 0.325 

41 0 0 0 0 0.023 0.098 0.854 0.758 

42 0 0 0 0 0 0 0.264 0.631 

43 0 0 0 0 0.023 0.43 0.391 0.933 

44 0 0 0 0 0 0.098 0.18 0.433 
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Table 5. Integrated method results 

Exp. 

No. 
SPi SNi NSPi NSNi ASi Rank 

1 0.168 0.671 0.475 0.000 0.238 44 

2 0.158 0.600 0.448 0.105 0.276 43 

3 0.168 0.554 0.477 0.175 0.326 41 

4 0.174 0.607 0.493 0.095 0.294 42 

5 0.143 0.358 0.405 0.466 0.435 38 

6 0.142 0.334 0.401 0.502 0.452 37 

7 0.123 0.333 0.350 0.504 0.427 39 

8 0.121 0.346 0.342 0.484 0.413 40 

9 0.159 0.198 0.452 0.705 0.578 26 

10 0.097 0.230 0.276 0.658 0.467 36 

11 0.086 0.205 0.244 0.694 0.469 35 

12 0.100 0.213 0.284 0.683 0.483 34 

13 0.099 0.101 0.282 0.849 0.565 27 

14 0.083 0.108 0.236 0.840 0.538 32 

15 0.084 0.098 0.239 0.854 0.546 31 

16 0.095 0.112 0.269 0.833 0.551 30 

17 0.099 0.066 0.280 0.902 0.591 24 

18 0.039 0.059 0.112 0.912 0.512 33 

19 0.084 0.043 0.237 0.935 0.586 25 

20 0.081 0.083 0.230 0.876 0.553 29 

21 0.111 0.040 0.314 0.941 0.627 20 

22 0.060 0.038 0.171 0.943 0.557 28 

23 0.079 0.022 0.223 0.967 0.595 23 

24 0.105 0.052 0.297 0.923 0.610 22 

25 0.135 0.068 0.381 0.899 0.640 19 

26 0.139 0.030 0.394 0.955 0.675 18 

27 0.136 0.092 0.384 0.862 0.623 21 

28 0.157 0.041 0.446 0.939 0.692 16 

29 0.261 0.111 0.738 0.834 0.786 11 

30 0.237 0.043 0.673 0.936 0.804 8 

31 0.192 0.123 0.544 0.817 0.681 17 

32 0.184 0.086 0.523 0.872 0.697 15 

33 0.276 0.145 0.783 0.784 0.783 12 

34 0.266 0.082 0.754 0.877 0.816 6 

35 0.241 0.141 0.684 0.790 0.737 14 

36 0.263 0.032 0.747 0.952 0.849 5 

37 0.290 0.206 0.823 0.693 0.758 13 

38 0.301 0.101 0.854 0.850 0.852 4 

39 0.302 0.177 0.855 0.736 0.795 9 

40 0.315 0.062 0.894 0.907 0.901 3 

41 0.339 0.256 0.961 0.618 0.789 10 

42 0.353 0.126 1.000 0.812 0.906 2 

43 0.346 0.250 0.981 0.627 0.804 7 

44 0.352 0.100 0.999 0.851 0.925 1 
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Table 6. Ranking results of the integrated approach and other methods 

Exp. 

No. 

Proposed 

method 
MOORA WSPAS TOPSIS WASPAS VIKOR 

1 44 44 44 44 44 44 

2 43 42 42 42 43 42 

3 41 41 41 41 41 41 

4 42 43 43 43 42 43 

5 38 40 38 40 38 39 

6 37 38 39 39 40 38 

7 39 37 37 37 37 37 

8 40 39 40 38 39 40 

9 26 33 33 34 33 33 

10 36 35 34 33 34 35 

11 35 34 35 35 35 34 

12 34 36 36 36 36 36 

13 27 29 29 30 29 29 

14 32 32 32 32 32 32 

15 31 30 30 29 30 30 

16 30 31 31 31 31 31 

17 24 24 24 26 25 25 

18 33 28 28 28 28 28 

19 25 25 26 25 26 26 

20 29 27 27 27 27 27 

21 20 21 21 21 21 20 

22 28 26 25 24 24 23 

23 23 23 23 23 23 22 

24 22 22 22 22 22 21 

25 19 18 18 17 18 11 

26 18 20 20 20 20 12 

27 21 19 19 19 19 13 

28 16 17 17 18 17 10 

29 11 16 16 15 16 9 

30 8 12 12 11 13 4 

31 17 15 15 12 15 5 

32 15 14 14 8 14 2 

33 12 13 13 14 12 18 

34 6 10 10 6 10 7 

35 14 11 11 10 11 14 

36 5 5 6 3 8 1 

37 13 9 9 9 9 17 

38 4 4 4 4 5 8 

39 9 7 7 7 6 15 

40 3 3 3 1 4 3 

41 10 8 8 13 7 19 

42 2 2 2 5 2 16 

43 7 6 5 16 3 24 

44 1 1 1 2 1 6 

 

Table 7. The values of Spearman's rank for comparison between optimal operating points ranking 

Exp. No. 
Proposed 

method 
MOORA WSPAS TOPSIS WASPAS VIKOR 

Proposed method 1 0.985 0.984 0.97 0.981 0.903 

MOORA - 1 0.999 0.984 0.997 0.899 

WSPAS - - 1 0.982 0.999 0.896 

TOPSIS - - - 1 0.976 0.943 

WASPAS - - - - 1 0.884 

VIKOR - - - - - 1 

 


