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Abstract: A recent development of a linear dimension reduction (DR) algorithm that is often used in face 

recognition and other applications has been used to preserve the Locality preserving projection algorithm (LPP). 

However, in LPP the projection matrix is not orthogonal, so rendering and other apps are not easily reconstructed. 

Hybridization of Enhanced Orthogonal and Uncorrelated Locality Preserving Projection (HEOULPP) attempts to 

discover the subspace that best distinguishes distinct face classes by maximizing the gap and reducing the 

uncertainty within class. In the design of a similarity matrix, HEOULPP algorithm assumes both local data and label 

data, and needs statistically improved and orthogonal output-base vectors, in order to enhance the OLPP life grade 

extraction performance. We propose HEOULPP to minimize the locality in an orthogonal projection matrix and to 

maximize the globality. This investigation is conducted using three datasets, such as YALE face dataset, ORL face 

dataset, and AR face dataset. Our proposed HEOULPP techniques achieves higher facial recognition rate under three 

conditions such as occlusion by 70.6%, noise by 69.1% and original by 76.2% than the existing techniques. In 

addition, dimensionality also reduced in proposed HEOULPP method comparing with traditional methods, including 

PCA, LPP, OLPP, ULPP and FOLPP. Experimental findings indicated a stronger depiction of data and much greater 

accuracy in the suggested HEOULPP method. 

Keywords: Locality preserving projection (LPP), Dimension reduction, Hybridization of enhanced orthogonal and 

uncorrelated locality preserving projection (HEOULPP), Orthogonal locality preserving projection (OLPP). 

 

 

1. Introduction 

The dimension reduction is carried out in high-

dimensional datasets before using a nearest K-

algorithm (k-NN) to prevent curse of dimensionality 

[1] effects. Feature selection is a method for 

selecting a subset of initial characteristics to 

optimally reduce the function space by a certain 

assessment criterion [2]. It is essential for the 

removal of irrelevant and redundant characteristics, 

to improve the learning effectiveness and to improve 

the precision and the understanding of studied 

results [3]. High-dimensional data (i.e. hundreds or 

thousands of data sets) can comprise elevated levels 

of information that is non-relevant and redundant 

and could significantly degrade the efficiency of 

learning algorithm [4]. Thus the choice of functions 

is very important in the face of high-dimensional 

information for computer training activities [5]. This 

tendency to enormity on both magnitude and 

dimensionality also presents serious problems with 

algorithms of selection [6]. In the course of latest 

studies in feature selection [7] these problems have 

been concentrated [8]. This research focuses on high 

dimensional information feature selection. Two 

widely-used techniques for dimensional reduction 

include principle component analytical (PCA) and 

linear discriminant analysis (LDA) [9]. The 

worldwide Euclidean data structure is considered by 

both PCA and LDA but they have little to gain from 

the varied data structure. In view of that, it has been 

proposed to examine the sub-manifold structure of 

the data using new methods of extraction of 

functions, for example, Locally Linear Incorporation 

(LLI) [10], Isomap [11], Local Projection 
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Preservation [12], Chart Embedding [13] and their 

extensions [14, 15]. All these techniques are tried to 

embody the initial information in a sub-manifold. 

The determination of explicit mapping is very 

difficult while using some dimension reduction 

techniques, such as PCA [16], LDA [17], locally 

linear embedding (LLE) [18], etc. To solve the 

explicit mapping difficulty, some researches 

introduce LPP [19] method to preserve the local 

structure of data, which is mainly for dimension 

reduction and feature extraction. Moreover, LPP 

matrix is not orthogonal, and it creates some 

problem while reconstructing the data. For that, 

orthogonal LPP (OLPP) [20] was employed to 

eliminate the non-orthogonal problem, and it 

affected due to high computational complexity and 

cost. Various researchers give attention to alleviate 

the complexity evolved in OLPP, the new approach 

Fast and orthogonal LPP (FOLPP) is carried out to 

reduce the complexity and expensive problem, this 

FOLPP [21] minimizes the locality and maximizes 

the globality simultaneously under orthogonality. 

Recognition rate of FOLPP less when comparing to 

our proposed HEOULPP method. The above 

mentioned problems are eliminated by adopting our 

proposed HEOULPP technique. The main 

contributions of our proposed work are as follows, 

• We propose a hybridization of enhanced 

orthogonal and uncorrelated locality preserving 

projection (HEOULPP) for dimensionality 

reduction. 

• Orthogonal constraints are necessary to 

preserve the metrical structure of the data, 

while uncorrelated restrictions have the 

minimum redundancy for the extracted features. 

• The HEOULPP method suggested minimizes 

locality and concurrently maximizes worldwide 

under the orthogonal threshold. 

Rest of the paper is organized as follows, 

Section 2 illustrates the existing works related to 

Locality preserving projections. Section 3 describes 

various works pertaining to the use of Locality 

preserving projections. Section 4 describes the 

proposed methodology on Orthogonal Locality 

preserving projections (OLPP). Section 5 describes 

the proposed methodology on Uncorrelated Locality 

preserving projections (ULPP). Section 6 describes 

the proposed methodology on Hybridization of 

Enhanced Orthogonal and Uncorrelated Locality 

Preserving Projection for Dimensionality Reduction 

(HEOULPP). Section 7 presents the experimental 

results. Section 8 defines the conclusion. 

 

2. Preliminaries 

2.1 Locality preserving projections 

LPP is a well-known Laplacian Eigen map linear 

subspace teaching algorithm. In order to find the 

corresponding sk=Rm in the small dimensional 

manifold for tk, the Laplacian Eigen map is used to 

solve the following optimization problem with each 

training data point,  

 

𝑉 =  𝑡1, 𝑡2, … 𝑡𝑛 ∈ 𝑅𝑑×𝑛                                         (1) 

 

where t1, t2,…, tn represents training data point. 

To resolve each training data point tk= Rm, Laplacian 

Eigen map is used: 

 

          min
𝑇𝐷𝑀𝐹=𝐾

∑ 𝐵𝑘𝑙‖𝑠𝑘 − 𝑠𝑙‖2 =𝑛
𝑘,𝑙=1

           min
𝑇𝐷𝑀𝐹=𝐾

𝑓𝑝(𝑇𝐿𝑀𝑇𝐹)    (2) 

 

where      𝑇 = [𝑠1, 𝑠2, … ∈ 𝑅𝑚×𝑛]    (3) 

 

The term fp(TLMP F)denotes the trace operator 

and K is an identity matrix. And Bkl measures the 

similarity of tk and tl.. DM is a diagonal matrix with 

elements is represented in Eq. (4). LM = DM - B is a 

Laplacian matrix defined on a graph constructed by 

the training data points.  The similarity matrix B is 

defined frequently as in Eq. (5) 

 

𝐷𝑀𝑘𝑘 =  ∑ 𝐵𝑘𝑙
𝑛
𝑙=1    (4) 

 

𝐵𝑘𝑙 = {𝑒−‖𝑡𝑘−𝑡𝑙‖
2

𝑦⁄
𝑡𝑘𝑎𝑛𝑑𝑡𝑙𝑎𝑟𝑒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (5) 

 

where y is the heat kernel parameter and ||.|| 

denotes the l2-norm. In Eq. (5), the similarity Bkl 

increases gradually with reduction of distance 

between tk and tl. Thus, If neighboring points tk and tl 

are mapped far apart then Bk incurs huge reprimand. 

The net impact of reducing the target function is to 

preserve the locality, i.e. if tk and tl are near, sk and sl 

are also near. Smaller similarities between tk and tl 

should also contribute to wider gaps between sk and 

sl in order to minimize them. The map from t =Rm to 

s = Rm of the Laplacian Eigen map is not linear.  The 

Eigenmap can only recognized information points 

while LPP can map the information points with a 

linear projection matrix easily. The map t = Rm to S 

= Rm be linear, according to LPP, let 

 

𝑆 = 𝐺𝐹𝑉                                                          (6) 

 

𝐺 = 𝑔1, 𝑔2, … 𝑔𝑚 ∈ 𝑅𝑑×𝑚          (7) 
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where G is a projection matrix. In order to 

overcome another optimizing problem LPP can be 

used, by enforcing a linear connection of Eq. (6) on 

optimizing problem of Eq. (2). 

 

min
𝐺𝐹𝑉𝐷𝑀𝑉𝐹𝐺=𝐾

𝑝(𝐺𝐹𝑉𝐿𝑀𝑉𝐹𝐺)           (8) 

 

From the Eq. (8) the LPP algorithm takes the 

overall data and does not minimize projection 

locations. The projection matrix G, is not orthogonal 

and causes rebuilding of other apps difficult. Finally, 

to fix the previous issue of self-decomposition, the 

solution of this optimization problem will be 

reduced: 

 

𝑉𝐿𝑀𝑉𝐹𝐺 = 𝑉𝐷𝑀𝑉𝐹𝐺           (9) 

 

where  is the eigenvalue matrix and G is the 

corresponding eigenvector matrix of (VDMVF)-

1VLMVF. The total computational complexity of 

LPP is 2a3 + 2a2n + a2m + an2. 

3. Literature review 

Various research works have already existed in 

the literature, which depend on dimensionality 

reduction with different perspectives. A portion of 

the works is reviewed on here. 

An improved version of social spider 

optimization algorithm called SSORS algorithm 

[22] has been used to make the feature selection 

feasible. It could remove the insignificant 

characteristics without reducing rating performance. 

The drawback was that very high-dimensional 

datasets could be identified difficult.  In 2018, Zhu 

et al. [23] developed a class weights random forest 

(CWsRF) to process the class imbalanced medical 

data, by assigning separate weights for every class 

rather than single weights. Threshold votes were 

used to classify the improved votes. The main 

drawback is the slow convergence. In 2018, Liu et al 

[24] presented a Quasi-curvature Local Linear 

Projection (QLLP) to reduce the dimensionality 

efficacy. Extreme learning machine was used for 

mapping function from original data to low 

dimensional coordinates for nonlinear dimension 

reduction but the complexity is high. In 2018, Divya 

Jain and Vijendra Singh [25] proposed a hybrid 

feature selection approaches based on the fusion of 

ReliefF and PCA method to reduce the 

dimensionality of features. The space limitation is 

the main disadvantage. In 2018, Deng et al. [26] 

have introduced a modified tensor locality 

preserving projection (MTLPP) algorithm to lessen 

the dimensionality and noise of hyperspectral image 

(HIS). Log-Euclidean metric were deployed as a 

similarity measure to determine the nearest neighbor. 

The support vector machine (SVM) technique for 

selecting functionality provided for the tiny amount 

of features chosen and guarantees a strong 

identification rate by Qiong Liu, QiongGu et.al [27]. 

But the computational complexity is high in this 

model. In 2018, Yu et al. [28] have introduced 

improved locality preserving projection with 1 -

norm minimization (ILPP-L1) to enhance the 

robustness and effectively preserve the similarity of 

pair of vertices. The computational time is high for 

the minimization process. Joint sparse representation 

and locality preserving projection (JSRLPP) [29] 

was developed to extract the feature in the combined 

manner, and it learns the similarity and projection 

matrix concurrently. But the interpretability is not 

good.  

4. Orthogonal locality preserving projection 

(OLPP) 

The orthogonal technique was highlighted, 

because orthogonality with excellent empirical 

efficiency is desirable. It is suggested to search for 

an adaptive mapping matrix W which links the high 

dimensional information point tRd to the low 

dimension information point sRm orthogonal LPP 

(OLPP) method is used [20] to minimize weighted 

data variance of local data pair ranges. It is 

necessary to minimize locality and maximize 

globality simultaneously to obtain more 

discriminatory authority which is formulated as: 

 

𝑓𝑝(𝐺F𝐻𝐾𝑎𝐻𝐹𝐺) = 𝑎 ∑ 𝑠𝑘||𝑍𝑘 − �̅�n
𝐾=1 ||2    (10) 

 

where fp(GFHKaH
FG) is the weighted data 

variance that can be viewed as worldwide 

information in data. It is inevitably consequent to 

minimize fp(GF HKHF G) and maximize fp(GFHKa 

HF G) at the same time. In this regard, the following 

two criteria can reasonably be selected as: 

 

𝑄1(G) = 𝑓𝑝(𝐺𝐹𝐻(𝑘 − 𝐾𝑎)𝐻𝐹𝐺
        (11) 

 

𝑄2(𝐺) =  
𝑓𝑝(𝐺𝐹𝐻𝐾𝐻𝐹𝐺)

𝑓𝑝(𝐺𝐹𝐻𝐾𝑎𝐻𝐹𝐺)
          

(12) 

 

where a standard that is user-defined. The two 

requirements above both meet the shift-invariance 

property are convenient to see. We attach a 

limitation as GFHG = 1 to achieve an orthogonal 

projection matrix G then address the following two 

optimization issues: 
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𝐺 = arg min
𝐺𝑇𝐺=1

𝑓𝑝(𝐺𝐹𝐻(𝐾 − 𝐾𝑎)𝐻𝐹𝐺)     (13) 

 

𝐺 = arg min
𝐺𝑇𝐺=1

𝑓𝑝(𝐺𝐹𝐻𝐾𝐻𝐹𝐺)

𝑓𝑝(𝐺𝐹𝐻𝐾𝑎𝐻𝐹𝐺)
                        (14) 

 

The decomposition of the individual H(K-

Ka)H
F as follows can readily be achieved based on 

solution to Eq. (14). 

 

H(𝑘 − 𝐾𝑎)𝐻F𝐺 = 𝐺                     (15) 

 

where  is the eigenvalue matrix of H(K-Ka)H 
Fand G is the corresponding eigenvector matrix. 

Using Eq. (15) is a bit uncompromising. The overall 

graphic-based feature extraction structure can 

provide a solution to optimization problems of Eqs. 

(14) and (15). The various Laplacian matrices K and 

Ka are designed in separate uncontrolled, semi-

controlled or supervised circuits for feature removal. 

Objective function could minimize on the basis of 

obtained k-th basis vector. 

 

𝑄2(𝐺𝑘) =  
𝑓𝑝𝑘(𝐺𝑘

𝐹𝐻𝐾𝐻𝐹𝐺𝑘)

𝑓𝑝𝑘(𝐺𝑘
𝐹𝐻𝐾𝑎𝐻𝐹𝐺𝑘)         (16) 

 

With the constraintsGk
FG1 = GkG2 =…Gk

FGk-1=0, 

Gk
FHKHFGk. Lagrange multipliers are used to 

change the above objective function to incorporate 

all the constraints. 

 

   𝑠(𝑘) = 𝐺𝑘
𝐹 𝐻𝐾𝐻𝐹𝐺𝑘 − 𝛿(𝐺𝑘

𝐹 𝐻𝐾𝑎𝐻𝐹𝐺𝑘 − 1) −

   휀𝐺𝑘
𝐹 𝐺1 − ⋯ − 𝜖𝑘−1𝐺𝑘

𝐹 𝐺𝑘−1.

𝐹
                       (17) 

 

where G is the Eigen vector of the matrix. 

5. Uncorrelated locality preserving 

projection (ULPP) 

In the case of uncorrelated LPP (ULPP), our aim 

is to maintain the local structure of the data set and 

at the same time retain the information between 

locations in the data set. ULPP [30] seeks to 

discover, in general, an optimum conversion that 

retains the information set's inherent geometry. Let 

t1,t2,…tn be the low-dimensional space that is 

projected. This proposes the objective function of 

ULPP: 

 

      P(𝑋) =  ∑ (w𝑘 − 𝑤l)
2𝑚

𝑘,𝑙=1 − ∑ (𝑠𝑘 −𝑛
𝑘,𝑙=1

      𝑠𝑙)2𝐺𝑘𝑙 =  𝑃𝑑(X) − 𝑃𝐸(X)                              (16) 

 

If X is a transformation vector then the 

conversion is s = XFt. The minute of objective 

function can be decreased with simple algebraic 

analysis: 

 

𝑃𝑑(𝑋) =  ∑ (𝑤𝑘

𝑚

𝑘,𝑙=1

− 𝑤𝑙)2 

            = ∑ ( ∑
1

𝑛𝑘
t∈uk

𝑚

𝑘,𝑙=1

𝑋𝐹𝑡 − ∑
1

𝑛1
𝑡∈𝑢1

𝑋𝐹𝑡)2 

           = ∑ 𝑋𝐹(t̅𝑢𝑘 − 𝑡�̅�𝑙

𝑚

k,l=1

)𝐹X 

 = 2XF𝐻dX = 2XFVDVF𝑋              (17) 

 

where 

𝑤𝑘 = (1
𝑛𝑘⁄ ) ∑ 𝑠, t̅𝑢𝑘 = (1

𝑢𝑘⁄𝑠∈𝑢𝑘
) ∑ 𝑡𝑡∈𝑢𝑘

  (18) 

 

The subtrahend of objective function can be 

reduced to 

 

𝑃𝐸(𝑋) =  ∑ (𝑠𝑘 − 𝑠𝑙)2

𝑛

𝑘,𝑙=1

𝐺𝑘𝑙 

           = X𝐹 ( ∑ (𝑡𝑢𝑘 − 𝑡𝑢𝑙)

𝑛

𝑘,𝑙=1

(𝑡𝑢𝑘 − 𝑡𝑢)𝐹) G𝑘𝑙)𝑋 

          = 2𝑋𝐹𝑉𝐸𝑉𝐹𝑋               (19) 

 

Substituting PL (X) and Pd(X) into the objective 

function (19), wehave 

 

𝑃(𝑋) = 2𝑋𝐹𝑉(𝐷 − 𝐸)𝑉𝐹𝑋
        (20) 

 

Next, the constraint is considered and we also 

impose a constraint XFVQVFX=1.The corresponding 

restricted maximization issue is developed as ULPP: 

 

max P(X) =  max
𝑥𝐹𝑉𝑄𝑉𝐹𝑋=1

2𝑋𝐹 𝑉(𝐷 − 𝐸)𝑉𝐹𝑋  (21)

 
 

Maximum value alternatives for the general self-

values issue are provided for the vectors {xk} which 

achieve the objective feature: 

 

V(𝐷 − 𝐸)𝑉𝐹𝑥 =  VQ𝑉𝐹𝑥
         (22)

 

 

The statistics V (D – E) V FandVQV Fcan easily 

isshown. The vectors xk(K=0,1,2,….e-1) that 

maximize the target feature are provided to a 

generalized value issue using highest eigenvalue 

solutions. The linear characteristics will be obtained 

bys = X Ft  when X is acquired. 
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6. Hybridization of enhanced orthogonal 

and uncorrelated locality preserving 

projection for dimensionality reduction 

(HEOULPP) 

Orthogonal and Uncorrelated locality 

preservation of a projection algorithm oscillates the 

ULPP routinely. The following is described as: 

1) Evaluation of PCA performed. We are 

projecting the data into a PCA subspace to 

make the VQVFmatrix un-individual. Let the 

transformation matrix of PCA be oscillating 

with PCA. 

2) Develop the likeness between two points of 

information. Set the ratiogkl=glk=tk
Ftl, otherwise 

the rangegkl=glk=0 for each sample tk is 

between the m-nearest neighbors to tk the 

similitude reflects the local data space 

composition. 

3) Obtain the diagonal matrix DM and the 

Laplacian matrix LM. 

4) Compute the Orthogonal and Uncorrelated 

locality preserving projections. Let 

ALM=VLMVF, ADM=VDMVF and 

K=diag(1,1,…1) for concision. 

Let {
1

, 
2

, … … 
𝑚

}  be the Orthogonal and 

Uncorrelated locality preserving projections, 

hence we define,(m-1)= {1,2,….,n-1 } 

The Orthogonal and Uncorrelated locality 

preserving projections{1,2,...,.m}can be iteratively 

computed as follows: 

a) Compute 1 as the eigenvector of A-1
DMALM 

associated with the smallest eigenvalue. 

b) Compute m as the eigenvector associated 

with the smallest eigenvalue of the 

Eigenfunction. 

 

𝐵(𝑚)𝐴𝐿𝑀 = 𝐴𝐷𝑀          (23)
 

 

where 𝐵(𝑚) = 𝑘 −

((𝑚−1))𝐹((𝑚−1)𝐴𝐷𝑀 
−1 ((𝑚−1))𝐹)−1 ×

(𝑚−1)𝐴𝐷𝑀
−1                 (24) 

 

5) Perform the HEOULPP transformation. Let 

*={1,2,......e}. The embedding is as 

follows: 

 

q =  HEOULPPr
𝐹

         (25) 

 

where q is a d-dimensional representation and 

HEOULPP=PCA*. 

 

7. Experimental results 

7.1 Face recognition using YALE face data set 

In this aspect the achievement with distinct 

facial expressions or configuration of HEOULPP is 

evaluated. As shown in Fig.1, Yale face database 

pictures contain 165 GIF-scale pictures for 15 

people. There are 10 pictures per topic, one per 

facial exposition or setup: center-light, glass, happy, 

left-light, glass-free, ordinary, right-light, sad, 

sleepy, amazed, and wink. We selected 4 pictures of 

each individual (center light, left light, normal and 

happy), and the rest of the database was the test 

collection. Therefore, the sample size for training is 

60 and the sample size for tests is 105. Each picture 

is trimmed and re-dimensioned deliberately to 32 

pixels per 32 pixels. 

Fig. 1 shows the sample pictures of a participant 

from the Yale face dataset. The picture samples are 

divided simultaneously so that l (l= 2, 3, 4, 5, 6) 

pictures are collected and marked for each 

individual person to create a training set, while 

others are used as a test set. 

In this test, the database is randomly divided into 

60% training and 40% test specimens to check the 

efficiency of the suggested algorithm. The 

identification frequency outcomes for YALE face 

dataset are shown in the Fig. 2. The HEOULPP 

identification in YALE is greater than in PCA, LPP, 

ULPP, OLPP and FOLPP because it utilizes the 

class data of samples and improves the identification 

frequency quickly, overcoming other algorithms 

with the rise of the amount of characteristics. The 

 

 
Figure.1 Samples from YALE face database 

 

 
 

Figure.2 Face recognition rates (%) vs. training samples 

in the YALE face dataset. 
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Table 1. Face recognition error rates (%) of methods for 

YALE face database 

 

Algorithm 

Number of Training Samples 

2 3 4 5 6 

PCA 55.78 50.67 47.08 43.33 41.04 

LPP 42.42 31.09 25.58 20.64 8.52 

OLPP 41.74 27.33 21.46 15.72 14.23 

ULPP 41.23 27.12 22.78 15.01 14.02 

FOLPP 40.98 26.03 22.43 14.64 13.08 

HEOULPP 39.63 25.12 21.82 13.21 12.09 

 

best outcomes and ideal dimensionality of error rate 

of the PCA [9], LPP [19], ULPP [20], OLPP [30], 

FOLPP [21] and HEOLPP algorithms can be 

summarized in Table 1.  Our HEOULPP algorithm 

delivers the maximum output, which can be seen in 

the results. For 2 training samples, the recognition 

error rate of the proposed method is 39.63%, for 3 

training samples the error rate is 25.12%, for 4 

samples the recognition error rate is 21.82%, for 5 

training samples the error rate is 13.21% and for 6 

training samples the recognition error rate of 

HEOULPP is 12.09% for YALE face database.  

Fig. 3 shows the recognition error rate plots 

versus the decrease in dimensionality for different 

sets of training samples. Our HEOULPP algorithm 

was relatively better with LPP and OLPP, while the 

PCA algorithm did not succeed excellently. Table 2 

describes the training samples of the recognition rate 

of PCA, LPP, ULPP, OLPP, FOLPP and HEOLPP 

algorithms. 

The observed CPU time of training in PCA, LPP, 

ULPP, OLPP, FOLPP and HEOULPP algorithms is 

shown in Table 3 in YALE face data sharing. Fig. 4 

describes the training time versus the dimensions of 

PCA, LPP, ULPP, OLPP, FOLPP and HEOULPP 

algorithms. The HEOULPP performs best 

comparatively in utilizing the CPU time. 

7.2 Face recognition using ORL face data set 

A total of 400 images, of which 40 persons, 10 

samples per person are shown in the Fig 5, are part 

of the ORL face database.  Face image is cropped 

and resized to 64x64, the size of which shifts, with 

or without lenses, including tiny modifications in 

facial expressions and movements, within 20%.   

In each test performed, Table 4 summarizes the 

finest outcomes and the optimum dimension for 

each algorithm. The HEOULPP algorithm seemed 

to be most successful. For 2 training samples, the 

recognition error rate of the proposed method is 

25.05%, for 3 training samples the error rate is 

24.93%, for 4 samples the recognition error rate is 

23.09%, for 5 training samples the error rate is  

 

 
(a)  

 

 
(b) 

 

 
(c)  

 
(d) 

Figure.3 Face recognition error rates (%) vs. dimension in 

the YALE face dataset: (a) training Set- 2, (b) training 

set- 3, (c) training set- 4, and (d)training set- 6 
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Table 2. Face recognition rates (%) of methods for YALE 

face database 

 

Algorithm 

Number of Training Samples 

2 3 4 5 6 

PCA 64.3 66.5 68.4 69.2 71.5 

LPP 74.2 76.5 78.2 79.3 80.2 

ULPP 75.4 77.1 79.7 81.2 82.7 

OLPP 74.6 76.7 78.8 79.9 81.0 

FOLPP 72.8 76.5 81.9 83.6 85.9 

HEOULPP 84.6 87.9 89.2 92.7 94.8 

 
Table 3. Training time in seconds for the methods on 

YALE face database 

 

Algorithm 

Number of Dimensions 

100 200 300 400 500 

PCA 8.4s 34.8s 63.4s 143.4s 520.1s 

LPP 9.1s 47.1s 85.7s 231.8s 982.1s 

ULPP 12.4s 53.5s 98.5s 481.6s 1110.4s 

OLPP 30.6s 97.4s 671.3s 982.4s 2413.5s 

FOLPP 62.4s 181.4s 852.6s 2810.7s 4181.2s 

HEOULPP 44.5s 59.6s 124.1s 320.3s 524.8s 

 

 

 
Figure.4Training time in seconds vs. dimensions 

 

 
Figure.5Samples from ORL face database 

 

 

Table 4. Face recognition error rates (%) of methods for 

ORL face database 

 

Algorithm 

Number of Training Samples 

2 3 4 5 6 

PCA 33.14 30.92 28.73 26.58 24.13 

LPP 31.52 29.12 27.48 25.62 23.46 

ULPP 30.61 28.34 26.62 24.43 22.38 

OLPP 29.33 28.42 26.74 24.46 23.12 

FOLPP 27.55 26.68 25.79 23.65 22.03 

HEOULPP 25.05 24.93 23.09 22.68 21.43 

 

 
Figure.6 Face recognition error rates (%) vs. training 

samples in the ORL face dataset 

 

Table 5. Face recognition rates (%) of methods for ORL 

face database 

 

Algorithm 

Number of Training Samples 

2 3 4 5 6 

PCA 63.7 64.2 65.7 66.9 67.8 

LPP 73.4 75.2 76.5 78.7 79.6 

OLPP 73.8 75.9 78.1 79.6 81.8 

ULPP 73.6 75.3 77.9 79.3 80.6 

FOLPP 71.5 74.6 80.7 82.6 84.2 

HEOULPP 83.5 85.6 87.3 89.5 91.7 

 

22.68% and for 6 training samples the recognition 

error rate of HEOULPP is 21.43%. Fig. 6 shows the 

recognition error rate plots versus the decrease in 

dimensionality. In HEOULPP algorithm the error 

rate performs efficiently comparing to other 

algorithms. 

For ORL, the training sets included 5 random 

sub-sets of (l= 2, 3, 4, 5, 6) pictures per person. First 

of all, compare the finest PCA, LPP, ULPP, OLPP, 

FOLPP identification accuracies and our suggested 

HEOULPP on ORL Face database. The finest 

recognition of the six techniques with sub-sets (l= 2, 

3, 4, 5, 6) are summarized in Table 5. 

The averaged outcomes for every given l over 20 

random divided divisions. For 2 training samples, 

the recognition error rate of the proposed method is 

83.5%, for 3 training samples the error rate is 85.6%, 

for 4 samples the recognition error rate is 87.3%, for 

5 training samples the error rate is 89.5% and for 6 

training samples the recognition error rate of 

HEOULPP is 91.7% for ORL database.This can 

be seen, in most training activities the HEOULPP 

serves excellent. The identification frequency 

outcomes for ORL Face dataset are shown in the Fig. 

7. By comparing HEOULPP with PCA, LPP, ULPP, 

OLPP, FOLPP, the HEOULPP performs 

significantly. The observed CPU time of training in 

PCA, LPP, ULPP, OLPP, FOLPP and HEOULPP 

algorithms is shown in Table 6 in ORL data sharing. 

Fig. 8 describes the training time versus the 
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Figure.7 Face recognition rates (%) vs. dimension in the 

ORL face dataset 

 
Table 6. Training time in seconds for the methods on 

ORL face database 

 

Algorithm 

Number of Dimensions 

100 200 300 400 500 

PCA 21.7s 42.2s 84.1s 96.3s 110.2s 

LPP 31.8s 68.4s 89.3s 109.4s 560.3s 

ULPP 43.9s 150.7s 620.6s 973.2s 2467.1s 

OLPP 58.3s 2281.

8s 

962.4s 2371.1s 5843.2s 

FOLPP 79.5s 2564.

5s 

4014.9s 4213.8s 6014.7s 

HEOULPP 63.4s 896.3s 1853.5s 4160.4s 5095.5s 

 

 
Figure.8 Training time vs. dimensions 

 

 

 

Figure.9 Samples from AR face database 

 

dimensions of PCA, LPP, ULPP, OLPP, FOLPP and 

HEOULPP algorithms. The HEOULPP performs 

best comparatively in utilizing the CPU time. 

7.3 Face recognition using AR face data set 

AR face Database comprises of more than 4000 

pictures of 126 color face pictures (70 males and 56 

females). In two sessions (separated by two weeks), 

 

Table 7. Face Recognition rates (%) of methods for AR 

face database 

 

Algorithm 

Number of Training Samples 

2 3 4 5 6 

PCA 62.5 64.8 66.8 67.4 69.5 

LPP 71.7 74.2 77.2 78.2 81.4 

ULPP 72.6 75.2 78.3 80.2 82.7 

OLPP 72.2 74.8 77.7 79.0 81.9 

FOLPP 74.5 76.1 80.8 83.9 87.3 

HEOULPP 80.1 87.4 90.4 93.8 96.9 

 

 

Figure.10 Face recognition rates (%) vs. training samples 

in the AR face dataset 

 

Table 8. Training Time in Seconds for the methods on 

AR face database 

 

Algorithm 

Number of Dimensions 

100 200 300 400 500 

PCA 10.4s 37.3s 48.7s 73.4s 98.1s 

LPP 12.8s 35.8s 59.4s 111.7s 179.8s 

ULPP 35.2s 143.4s 527.6s 981.6s 3210.7s 

OLPP 34.6s 267.1s 838.4s 2757.5s 7764.4s 

FOLPP 64.3s 502.4s 1582.3s 4690.5s 9949.3s 

HEOULPP 46.7s 99.4s 181.5s 346.4s 601.4s 

 

the image of the most individuals (65 men and 55 

women) is taken. The pictures from each event 

consist of three illuminated pictures, three wearing 

scarf pictures, three sun glass pictures and four 

expressive variants. Table 7 records highest median 

recognition rates with distinct samples of training, 

and associated standard deviations of the various 

techniques. In contrast to PCA, LPP, ULPP, OLPP 

and FOLPP, the suggested technique (HEOULPP) 

has achieved the highest acceptance frequency. Fig. 

10 shows the detection frequency vs. dimensionality, 

where we selected five samples of practice per 

individual.  

The observed CPU time of training in PCA, LPP, 

ULPP, OLPP, FOLPP and HEOULPP algorithms is 

shown in Table 8 in AR data sharing. Fig. 11 

describes the training time in seconds versus the 

dimensions of PCA, LPP, ULPP, OLPP, FOLPP and 

HEOULPP algorithms. The HEOULPP performs 

best comparatively in utilizing the CPU time. Table 
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Figure.11Training time vs. dimensions 

 

Table 9. Face recognition rates (%) of methods under 

different conditions 

Algorithm Recognition Rate (%) 

 Occlusion Noise Original 

PCA 51.6 50.2 64.6 

LPP 58.9 56.1 71.3 

OLPP 67.8 63.2 73.6 

ULPP 69.1 66.6 74.0 

FOLPP 69.9 67.8 74.8 

HEOULPP 70.6 69.1 76.2 

 

 
Figure.12 Recognition rates (%) vs. different images 

 

9 shows the recognition rates of the techniques 

under different conditions, which says, occlusion 

has less influence on the recognition rate of 

HEOULPP. Fig. 12 represents the recognition error 

under different conditions. 

8. Conclusion 

In this paper, the Hybridization of enhanced 

orthogonal and uncorrelated locality 

preserving projections (HEOULPP) is suggested. In 

HEOULPP technique, we first use the PCA to 

decrease the spaces. In designing the similarity 

weight matrix, HEOULPP takes account both of 

local information’s and class labels and requires that 

the output base vectors be orthogonal and 

statistically uncorrelated which performs a crucial 

role in the automation of high-dimensional moment-

frequency domain functionality sets. This 

investigation is conducted using three datasets, such 

as YALE face dataset, ORL face dataset, and AR 

face dataset. Our proposed HEOULPP techniques 

achieves higher facial recognition rate under three 

conditions such as occlusion by 70.6%, noise by 

69.1% and original by 76.2% than the existing 

techniques. In addition, dimensionality also reduced 

in proposed HEOULPP method comparing with 

traditional methods, including PCA, LPP, OLPP, 

ULPP and FOLPP.  These findings showed that the 

location was minimized and the globality effectively 

maximized under orthogonal projection matrices at 

the same time. Our future work is to extend 

HEOULPP for facial image recognition deployed to 

nonlinear form by kernel trick.  
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