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Abstract: K-Nearest Neighbors (K-NN) classification method gains refined version proposed by the researcher. The refinement 

aims to solve noise sensitive when using small K, and irrelevant class as classification result when using large K. The problem in 

the previous version of method was that the weights were calculated individually, so the result was not optimal. We propose 

recent weighting scheme where the weights were no longer gained from the nearest neighbor individually, but by involving all 

pair of the nearest neighbor, called Cosine K-NN (CosKNN). We also introduce a trigonometric map to describe the Cosine 

weight. CosKNN is soft value to represent ownership of each class to the testing data. Empirically, CosKNN is tested and 

compared with other K-NN refinement using milkfish eye, UCI, and KEEL dataset. The result shows that CosKNN hold superior 

performance compared to the other methods although K number is higher of which accuracy is 96.79%. 
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1. Introduction 

Since the K-Nearest Neighbor (KNN) 

classification method was introduced in research[1], 

this method obtains a lot of research attention 

including the recent research. As in [2], conducting 

selection of nearest neighbors on both testing 

sample and training sample, called general nearest 

neighbor (GNN) rule that also uses the overlapping 

neighborhood to determine result in general nearest 

neighbor. The research by [3] determine the label of 

testing set with combination of similarity and 

projection angle between testing set and selected 

nearest neighbor. The scheme is called dependent 

nearest neighbor (dNN). The other research by [4] 

attempt to redefine the Minkowski distance metric 

in order to consider the relevant features only by the 

assumption that all features have the same 

importance level in classification stage. Such a 

scheme is designed to solve problem in high-

dimensionality dataset. Furthermore, recent research 

by[5] conducts enhancement of KNN by calculating 

generalized mean distance-based k-nearest neighbor 

classifier (GMDKNN) using k local mean vector per 

class. The result of the classification is obtained by 

the minimum nested generalized mean distance 

among all the classes. Generally, the main objective 

in many proposed KNN refinement is due to the fact 

that KNN is noise sensitive when using small K in 

nearest neighbors selection [6]. Noise is data which 

contain different behavior from rest of general data. 

The presence of noise in the training set may cause 

the result of the classification to fall on the noise 

data, one nearest neighbor of the test data. Another 

weakness of KNN is when using larger K; it can 

cause the result of the classifications to fall on other 

classes that are actually irrelevant because the 

distance is too far from the testing data [7], as 

presented in Fig. 1 (a). Hence, the selection of K 

constitutes a highly critical problem. Generally, 

empirical testing is conducted to obtain the 

appropriate K and the best performance, as 

conducted by [5, 8, 9]. 

The initial problem of noise-sensitive occurs 

when determining the prediction result in KNN 

using class majority voting from selected K nearest 

neighbor, as presented in Fig. 1 (a). When using 1-

NN, the testing data (black dot) would be classified 

to one nearest neighbor class A (+). When using 5-

NN, the testing data would be classified to the most 
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Figure. 1 Problem result in classic K-NN: (a) 5-NN with 

same majority voting and (b) 5-NN with irrelevant class 

as classification result 

 

dominant class in the nearest neighbor data; for 

example, 2 nearest neighbors are from class A(+) 

and 3 nearest neighbors are from class B(-) because 

class B has more data than class A, so the testing 

data are classified to class B. This scheme would 

inflict a misclassification when the 3 nearest 

neighbors are too far from the testing data. This is 

due to the 3 nearest neighbors are farther than the 2 

neighbors in which the 3 neighbors are actually 

irrelevant. The other problems occur when using an 

even number of nearest neighbor and majority 

voting fall to two same majority classes, as 

presented in Fig. 1 (b); for example, using 4-NN, 2 

nearest neighbors are from class A and B, 

respectively; one of which can be chosen, A or B 

arbitrarily [7]. The other approach to solve the 

problem is to use a weighting scheme [9-11]. The 

weighting approach is conducted by calculating the 

weight for each nearest neighbor based on distance 

between testing data to each nearest neighbor. In 

essence, the closer the nearest neighbor, the greater 

the weight gained. In the research by [12], the 

weight calculation is conducted using the inverse 

square of its distance from testing data, while the 

research by [11] use dual weighted voting k-nearest 

neighbor rule (DWKNN). The DWKNN depends on 

the distance between the testing data and nearest 

neighbors, and also the rank of the nearest neighbors, 

in which the closer neighbor would gain greater 

weight. These two weighting schemes are combined 

in the research by [9] where the weight calculation 

is conducted using the weight average of each class 

in order to enhance the weighted K-NN [11,12]. 

Research by [2] develop K-NN using two-sided 

environmental information of testing data and K 

nearest neighbor training data, called General 

Nearest Neighbor (GNN). The mutual neighbor 

generated between the two data becomes the chosen 

neighbor which will be chosen in the most voted 

class. Unfortunately, this method can trap the 

system in the same number of votes, as in the 

previous second problem. The recent KNN research 

indicates that there is a modification of k-nearest 

neighbor (MKNN) proposed by [8] which applies 

the smallest modified KNN (SMKNN) and the 

largest modified KNN (LMKNN). The strategy aims 

to calculate the centroid of each class then calculate 

the distance and weight of each data in the middle of 

the class. Moreover, the distance and weight of the 

testing data are calculated for each class center and 

all training data. SMKNN will take all neighbors in 

which the distance to neighbors is smaller than the 

distance to the nearest centroid. The final weight is 

obtained by multiplying the weight of the testing 

data to the selected neighbor and the initial weight 

of the selected neighbor. The accumulation of 

selected neighbor weight to the respective class will 

produce the final weight of the class. The class of 

the highest weight is the prediction class. LMKNN 

uses the same strategy but the distance to neighbor 

is greater than the distance to the nearest centroid. 

This method provides the same performance effect 

on all K choices used. However, the problem in 

many KNN refinements using weighting scheme 

merely involves the testing data and the nearest 

neighbor. So, the weight gained is actually similar to 

the inverse of the distance. In this study, we propose 

a weighting scheme of which weight is not gained 

from the nearest neighbor individually, but by 

calculating the weight with the involvement of a pair 

of nearest neighbors. The weight calculation of a 

pair of nearest neighbors would produce two 

weights, each of which corresponds to the neighbor 

in pair. The weight of each data in pair represents 

ownership of each class to the testing data according 

to the class of data. These weights are ultimately 

accumulated to obtain the final weight of each class. 

Furthermore, the prediction results are obtained 

from the largest weight accumulation. 
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We conduct performance comparison between 

CosKNN and other KNN refinements including 

recent K-NN as follows: classic KNN [1], Weight 

K-NN (WKNN) [12], dual weighted voting method 

for KNN rule (DWKNN) [11], combination of local 

mean based and distance weight k-nearest neighbor 

(LDWKNN) [9], General Nearest Neighbor (GNN) 

[2], and also smallest modified KNN (SMKNN) and 

largest modified KNN (LMKNN) [8],  which are 

applied to milkfish eye dataset, UCI Machine 

Learning datasets, and KEEL-dataset Repository. 

Empirical testing is conducted using a variety of K 

number starting from 3 to 35 nearest neighbors. We 

also make comparison with other classification 

methods, namely Support Vector Machine [13] and 

Decision Tree [7]. 

Using weighting scheme involving a pair of 

nearest neighbors between the testing data and two 

neighbors. It is possible that the distance of one 

neighbor to the testing data is closer than the other 

neighbor to the testing data, or vice versa. The 

weighting concept we propose is when calculating 

the weight between a neighbor to the testing data 

does not only generate the information between the 

neighbor with the testing data, but also the 

information of the distance of other neighbors to the 

testing data. The use of the cosine concept in weight 

calculation presents a new perspective that weights 

are calculated using a scheme involving two 

simultaneous parties using distance as the length of 

a right triangle. Thus, the weighting system 

contribute to the performance accuracy being more 

optimal in solving noise sensitive, same majority 

votes class problem and irrelevant class as the 

prediction result. We provide in-depth description in 

the following section. From the performance 

comparison, it shows that CosKNN provides a 

promising performance in classification problem 

which gain the highest accuracy performance. 

2. Literature review 

2.1 K-nearest neighbor 

K-Nearest Neighbor (KNN) is a classification 

method based on nearest neighbor with a simple 

concept, robust on non-linear data, and can be used 

in multi-class cases. The concept is that if an animal 

walks like a duck, sounds like a duck, and behaves 

like a duck then the animal may be a duck [7]. It 

was firstly introduced in the research by [1] using 

the nearest neighbor concept based on distance. The 

nearer the neighbor to the testing data, the neighbor 

will be more similar. From all the training data, the 

K nearest neighbor will be chosen to do majority 

class voting. The most voted class will be used as 

the prediction class. 

Given (xi,ci),i=1,…,N is a pair of training data 

and class in which x is the training datum from a set 

of training data X={xi|xi∈SM}, in which N is the 

total training data, c is one class from a set of class 

C={c1,c2,…,cP,}. S is the dataset of which each data 

has M feature. The distance between testing data 

x'with training data is calculated using Eq. (1) 

 

di=‖xi,x'‖=√∑ xi-x'   (1) 

 

Eq. (1) uses Euclidean as the basis for distance 

assumption. Calculating the prediction of the most 

voted class uses Eq. (2) 

 

𝑐′ = arg max
𝑐∈𝐶

∑ δ(c,ci)
K
i=1   (2) 

 

In which δ(c,ci) is1 if c=ci and is 0 if c≠ci. 

2.2 Weight KNN (WKNN) 

One of the KNN refinements using the 

weighting technique is Weight KNN (WKNN) of 

which weight is calculated using inverse distance 

[12]. Furthermore, the prediction result generated 

comprises the accumulation of the neighbor weight 

according to the neighbor class. The weighting using 

inverse distance is shown in Eq. (3). 

 

𝑤𝑖=1-𝑑𝑖     (3) 

 

Inverse distance will reverse the equation 

meaning that the training data of short distance will 

gain great weight, and data of long distance will 

gain small weight. The accumulation of neighbor 

weights according to the class will be used to 

determine the class prediction, the class of the 

highest weight becomes the class prediction. 

Weighting using this method is insignificant, since it 

only involves the testing data with one of the nearest 

neighbors selected. We propose weighting which 

involves a pair of distance between the testing data 

with the two selected neighbors. Involving more 

than two distances of training data simultaneously 

means that the generated weight is more accurate 

and significant. 

2.3 Dual weighted voting method for KNN rule 

(DWKNN) 

Dual weighted voting method for KNN rule 

(DWKNN) sets weighting rule based on weight 

accumulation and weight function starting from the 
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greatest weighting order[11]. Besides, weight 

calculation also uses the farthest distance between 

the training data to testing data. The farther the 

training data to the testing data, the smaller the 

weight of the training data. Weight calculation for 

each training data uses Eq. (4) 

 

𝑤𝑖= {

𝑑𝐾
𝑛𝑛−𝑑𝑖

𝑛𝑛

𝑑𝐾
𝑛𝑛−𝑑1

𝑛𝑛 𝑥
1

𝑖
, 𝑑𝐾

𝑛𝑛 ≠ 𝑑1
𝑛𝑛

1 , 𝑑𝐾
𝑛𝑛 = 𝑑1

𝑛𝑛
  (4) 

2.4 Combination of local mean based and 

distance weight k-nearest neighbor (LDWKNN) 

Combination of local mean based and distance 

weight k-nearest neighbor (LDWKNN) [9] 

combines the WKNN weighting method and 

DWKNN using the average weight from each class. 

The class of the largest average weight will be 

chosen as a prediction result. This method highly 

depends on the inverse calculation of the distance 

between the testing data and the training data, and is 

claimed to provide better result than the previous 

method. 

Even though it involves distance of other 

neighbors, the weighting method, such as 

LDWKNN or DWKNN has the disadvantage that 

the ranking can potentially degrade distances on 

numerous data of very small differences to very 

large, or two distances with large differences in 

sequential ranks can result in smaller weight 

degradation. We propose a pair of two distances 

from the chosen K nearest neighbor. Given 5 nearest 

neighbors, the generated pair 
𝐾!

(𝐾−2)!2!
 will be 20 

pairs. Hence, we disregard the ranking but at the 

same time involve the distance of two neighbors. 

2.5 General nearest neighbor (GNN) 

Research by [2] develops K-NN using two-hand 

side neighborhood information of testing data and K 

nearest neighbor training data, called General 

Nearest Neighbor (GNN). The mutual neighbor 

generated between the two data becomes the chosen 

neighbor which will be chosen in the most voted 

class. Mutual neighbor will be selected on the data 

which is the K-nearest neighbor, both in the testing 

data and in each data of K-nearest neighbor. This 

algorithm starts by combining testing data into 

training set followed by looking for the K-nearest 

neighbor of each data. For each data in K-nearest 

neighbor of the testing data, it is necessary to check 

whether any of the data is a mutual neighbor; if so, it 

will be classified as general neighbor. From the list 

of selected general neighbor, class majority will be 

voted. The most voted class will be the prediction 

class. 

This method basically provides a good idea by 

choosing mutual neighbor, but there is not any 

weighting on the selected neighbor as mutual 

neighbor. Likewise, determining the prediction also 

uses voting technique, such as the classic KNN. 

Class voting with conventional technique can still 

cause the same majority class voting which should 

be avoided. 

2.6 Modified KNN (MKNN) 

Modified KNN (MKNN) also provides a new 

method of classifying based on nearest neighbors, in 

which this method also involves the centroid role of 

each class [8]. There are two weights calculated; the 

weight calculated from the distance of the training 

data to the centroid of the class and the weight 

calculated from the distance between the selected 

training data and the testing data. The MKNN 

algorithm is as follows. 

1. Calculate centroid from each class of data using 

Eq. (5) 

 

𝐶𝑒𝑛𝑟 =
1

𝑡
∑ 𝑥𝑖  | 𝑐𝑖 = 𝑐𝑟

𝑁
𝑖=1   (5) 

 

In which t is the number of training data in class 

cr; 

2. Calculate distance between training data with 

class centroid using Eq. (6); 

 

𝑑(𝑥𝑖, 𝐶𝑒𝑛𝑟) = √∑ xi-𝐶𝑒𝑛𝑟  (6) 

 

3. Calculate weight of training data using inverse 

distance as in Eq. (7); 

 

𝑤(𝑥𝑖 , 𝑐𝑟) =
1

𝑑(𝑥𝑖,𝑐𝑟)
   (7) 

 

4. Calculate distance between testing data and 

respective centroid;  

5. Select the shortest centroid if using smallest 

modified KNN (SMKNN) as Dx or the farthest 

distance if using largest modified KNN 

(LMKNN) as Dx; 

6. Select K neighbor in radius Dx 

7. Calculate weight of each neighbor generated in 

step 6 using Eq. (8) 

 

𝐼𝑆(𝑥′, 𝑥𝑟) =
1

𝑑(𝑥𝑖,𝑥𝑟𝑥)
× 𝑤(𝑥𝑖 , 𝑐𝑟)  (8) 
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In which 𝑑(𝑥𝑖 , 𝑥𝑟𝑥)  is the distance between 

testing data and neighbors generated in radius 

Dx. 

8. Accumulate weight 𝐼𝑆(𝑥′, 𝑥𝑟)  based on 

respective class then select class with highest 

weight accumulation as prediction class.  

The method proposed in MKNN has a non-

parametric effect in which the use of different K 

does not affect the result of the selected neighbors in 

radius Dx. As a result, if this method does not 

achieve optimal result it means that there is not any 

other choice that can be made. In contrast to the 

parametric method, there are many K options that 

can be observed to determine the best K to use. 

3. Proposed method 

This paper has been partially published in 

conference paper in [14], but we attempt to provide 

more explanation about the fundamental concept 

and comprehensive comparison with a number of 

image features and recent KNN refinement, as 

presented in the sub sections below. 

Our proposed method is a recent weighting 

system involving two simultaneous parties. Both 

parties are testing data and 2 nearest neighbors 

selected. Simultaneous weight calculation is 

conducted using a trigonometric map. Conceptually, 

we will use the distance of two neighbors d1 and d2 

as the adjacent and the opposite side of right triangle. 

For hypotenuse side, it is calculated using d1 and d2 

in perpendicular position. From the concept, cosine 

is calculated between two sides of perpendicular. 

The illustration of weight calculation is 

presented in Fig. 2. Fig. 2 is the fundamental 

concept in our study. We use a trigonometric 

function [15] with a right triangle as the basic map. 

The trigonometric map is a right triangle constructed 

from a pair distance of nearest neighbor as the 

adjacent and the opposite side. In other words, we 

also use a hypotenuse as the third side. It is called 

trigonometric map. It is exemplified in Fig. 2 (a); we 

obtain two nearest neighbors nn1 and nn2 with 

distance of d1 and d2, respectively. The nn1 is from 

class 1 (+) and nn2 is from class 2 (-). For the pair, 

we obtain two maps according to Figs. 2 (b) and (c) 

for nn1 and nn2, respectively. For each map, we 

calculate a soft value which represents ownership of 

each class to the testing data. The soft value is called 

Cosine KNN (CosKNN). The CosKNN represents 

ownership of each class to the testing data which 

range from 0 to 1. 

According to Fig. 2 (b), we can calculate the 

Cosine value of α1 for the nn1 when paired with nn2 

using Eq. (9); 

x'

nn1

nn2
d1 d2

+

-

f1

f2

 
(a)  

x'
nn1

d1

d2

+

-
nn2

r12
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+

-
nn2
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(c)  

Figure. 2 Trinometric map: (a) distance map, (b) 

trigonometric map of nn1, and (c) trigonometric map of 

nn2 

 

𝐶𝑜𝑠(𝛼1) =
𝑑1

𝑟12
    (9) 

 

The 𝐶𝑜𝑠(𝛼1) has a range of value between 0 and 

1. When distance d1 is small then 𝐶𝑜𝑠(𝛼1) is close 

to 0, but represents a significantly high ownership of 

class 1(+) from nn1 when paired with nn2. It is 

required that the nearest neighbor with lower 

distance obtain greater weight, so Eq. (9) is adjusted 

in order to obtain the 𝐶𝑜𝑠(𝑥1, 𝑥2) weight as follows. 

 

𝐶𝑜𝑠(𝑥1, 𝑥2) = 1 − 𝐶𝑜𝑠(𝛼1) = 1 −
𝑑1

𝑟12
            (10) 

 

𝐶𝑜𝑠(𝑥1, 𝑥2) is cosine weight for nn1 (x1) when 

paired with nn2 (x2). We conduct complementary 

operation to the cosine value from the map, so the 

lower distance would obtain greater weight which 

represents higher ownership of the related class, and 

vice versa. 

Given the data set class is C=c1, c2, …, cn, where 

n is the number of classes. While X = x1, x2, xi, …, 

xK is the nearest neighbor selected from the training 

data, K is the number of nearest neighbors. For a 
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pair of xi and xj as the part of selected nearest 

neighbor in CosKNN, the general equation is 

formulated as follows. 

 

𝐶𝑜𝑠(𝑥𝑖 , 𝑥𝑗) = 1 −
𝑑𝑖

𝑟𝑖𝑗
= 1 −

𝑑𝑖

√𝑑𝑖+𝑑𝑗
                (11) 

 

𝐶𝑜𝑠(𝑥𝑗 , 𝑥𝑖) = 1 −
𝑑𝑗

𝑟𝑖𝑗
= 1 −

𝑑𝑗

√𝑑𝑖+𝑑𝑗
              (12) 

 

Where d is the distance of training data to the 

testing data. 𝐶𝑜𝑠(𝑥𝑖, 𝑥𝑗) and 𝐶𝑜𝑠(𝑥𝑗, 𝑥𝑖)  are cosine 

weights obtained from the pair of nearest neighbors 

nn1 and nn2, respectively. 𝐶𝑜𝑠(𝑥𝑖 , 𝑥𝑗) represents the 

ownership degree of related class from xi when 

paired with xj, while 𝐶𝑜𝑠(𝑥𝑗, 𝑥𝑖)  represents the 

ownership degree of related class from xj when 

paired with xi. 

This cosine weight concept of nearest neighbor 

pair is applied to all selected K-nearest neighbors. 

For K-nearest neighbors, 𝐶(𝐾, 2)  nearest neighbor 

pair. 𝐶(𝐾, 2) is the combination of K number with 2 

elements, for example the 3-NN is neighbor data 

with the following data and class; (x1,c1), (x2,c2), and 

(x3,c1), then the pairs obtained are: x1x2, x1x3, x2x3. 

Furthermore, each pair will obtain 2 cosine weights 

according to (11) and (12). Each cosine weight 

would be classified to the related class of the data. 

For example, 3-NN would obtain the cosine weight 

as follows. 

𝐶𝑜𝑠(𝑥1, 𝑥2) of nn1 would be owned by class c1 

𝐶𝑜𝑠(𝑥2, 𝑥1) of nn2 would be owned by class c2 

𝐶𝑜𝑠(𝑥1, 𝑥3) of nn1 would be owned by class c1 

𝐶𝑜𝑠(𝑥3, 𝑥1) of nn3 would be owned by class c1 

𝐶𝑜𝑠(𝑥2, 𝑥3) of nn2 would be owned by class c2 

𝐶𝑜𝑠(𝑥3, 𝑥2) of nn3 would be owned by class c1 

It is known that Cosine weighting technique 

with K-nearest neighbors can generate as many as 
𝐾!

(𝐾−2)!2!
 pairs. Given that there are 5 nearest 

neighbors, it means that the result will be 
5!

(5−2)!2!
 

pairs or 20 pairs. To achieve the classification result, 

it is required to sum up all cosine weight to the 

related class of each data. For example, to sum up 

all cosine weight of the R testing data (R, cR) to the 

class cr , the equation used is Eq. (13) 

 

𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟) = ∑ 𝐶𝑜𝑠 (𝑥𝑖 , 𝑥𝑗)

𝐾

𝑖=1

|𝑐𝑖 = 𝑐𝑟 

(13) 

 

The 𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟) is the sum up weight of 

the R data to the cr class. It is a soft value which 

ranges in [0,∞]. A value of zero (0) means that none 

of the nearest neighbor has a class cr. The weight 

can be higher when the number of nearest neighbors 

increases. If a class does not contain any data in the 

nearest neighbor, it will obtain zero weight. The 

more the nearest neighbors are used, the higher the 

weight achieved by a class. 

To obtain the class decision, the highest cosine 

weight accumulation among all class in the dataset 

is selected using Eq. (14) 

 

𝑐𝑅 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟)), 

 𝑟 = 1, … , 𝑃   (14) 

 

In which this equation will generate the highest 

value of 𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟)  among class P as 

prediction result of 𝑐𝑅 . The class with the highest 

value is given from this equation as a predicted 

result. 

The algorithm of CosKNN is as follows. 

Input: 

 R   : the testing data 

 [(xi,ci), i=1,…,N]  : the training data 

 K   : The number of  

nearest neighbors 

Step 1 : Calculate the distance di between the 

testing data and the training data as D 

 e.g. using Euclidean distance; 

for i=1 to N 

  𝑑𝑖 = ‖𝑅, 𝑥𝑖‖2 

 end 

Step 2 : Sort all distance in D then select K lowest 

distance as DK 

 𝐷𝐾 ⊆ 𝐷 

Step 3 : Calculate the cosine weight for all pair 

selected nearest neighbor in DK using (11) and (12); 

Step 4 : Calculate the summarize weight of each 

class using (13); 

Step 5 : Select the class of the highest weight 

obtained in Step 4 as the class label for the R testing 

data. 

The objectives in using cosine weight in our 

study are explained as follows. 

1. Solving the same majority votes class 

problem 

Same majority votes class possibly occur 

when using even number in determining the 

K nearest neighbor, and when most 

neighboring classes are classified into two 

classes. In the CosKNN, such an issue is 

resolved by weighting cosine scheme for 

each pair of K-nearest neighbor. The weight 

accumulation for each class is obtained, so 

the class with the highest SumofCos as the 

classification result is selected. In this study, 
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we avoid the same majority votes class 

problem through good solution. 

2. Robust to the problem of classification 

result to irrelevant class 

This problem possibly occurs especially 

when using high number as K-nearest 

neighbor, as exemplified in Fig. 1 (a), we 

use 5-NN, the nn1 and nn2 from class A (+) 

are significantly close to the testing data, 

while the nn3, nn4, and nn5 from class B (-) 

are significantly far from the testing data. 

According to the K-NN classic method, we 

take class B as the classification result, since 

class B is the majority class. Such a case is 

solved by a weighting scheme, in which the 

closer the neighbors to the testing data, the 

greater the weight obtained. 

4. Result and Discussions 

4.1 Dataset 

In this study, the main dataset is in the form of 

features generated from 71 segmented milkfish eye 

images used by [14]. The dimension of the dataset is 

71 data by 18 features. The features consist of mean 

and standard deviation generated from 3 color space 

image, namely red, green, blue from RGB color 

space, hue, saturation, intensity from HSV color 

space, and L, a, b from Lab color space. Each color 

space component generates mean and standard 

deviation, hence the 18 features. The dataset is used 

to conduct performance analysis empirically with 

other recent K-NN refinement by other researcher 

followed by comprehensive analysis. 

We also compare CosKNN performance with 

some recent K-NN refinements and other 

classification methods using a number of datasets 

from UCI Machine Learning 

(https://archive.ics.uci.edu) [16] and KEEL-datasets 

Repository (https://sci2s.ugr.es/keel/) [17], [18]. The 

datasets from UCI are as follows; Iris, Vertebral, 

Diabetic, Wine, Blood, Audit data, and Divorce. 

And the datasets from KEEL are as follows; Balance, 

Banana, Phoneme, Yeast, Ring, and Zoo. The 

summary of the dataset is presented in Table 1. 

We conduct comparison between CosKNN with 

other K-NN refinement including recent K-NN, 

namely classic KNN [1], Weight K-NN (WKNN) 

[12], dual weighted voting method for KNN rule 

(DWKNN) [11], combination of local mean based 

and distance weight k-nearest neighbor (LDWKNN) 

[9], General Nearest Neighbor (GNN) [2], and also 

smallest modified KNN (SMKNN) and largest 

 

Table 1. The summary of datasets 

Repo. Name Inst. Features Num. of 

Classes 

Prasetyo 

et al[14] 

Milkfish eye 71 18 4 

UCI Iris 150 4 3 

UCI Vertebral 

Column 

310 6 2 

UCI Diabetic 

Retinopathy 

1151 20 2 

UCI Wine 178 13 2 

UCI Blood 748 4 2 

UCI Audit data 777 17 2 

UCI Divorce 170 54 2 

UCI Seeds 210 7 3 

KEEL Balance  625 4 3 

KEEL Banana 5300 2 2 

KEEL Phoneme 5405 5 2 

KEEL Yeast 1484 8 10 

KEEL Ring 7400 20 2 

KEEL Zoo 101 16 7 

 
Table 2. Confusion matrix 

  Predicted class 

  Positive (+) Negative (-) 

Actual 

class 

Positive (+) TP FN 

Negative (-) FP TN 

 

modified KNN (LMKNN) [8]. Performance analysis 

is conducted empirically with some selected K, 

namely 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 

29, 31, 33, and 35. We use K starting from low K 

until high K to solve the misclassification into other 

class that is actually irrelevant because the distance 

is significantly far from the testing data. 

The testing method used is K-fold cross 

validation, where in this test we use K = 2, it means 

50% instances as training set and 50% instances as 

testing set. For performance comparison, we use 

accuracy, where accuracy is the proportion of test 

data that is correctly predicted divided by all test 

data. The accuracy calculation is obtained from the 

confusion matrix as presented in Table 2. 

Where TP is the proportion of positive data that 

is predicted to be positive, FP is the proportion of 

negative data that is wrongly predicted positive, FT 

is the proportion of positive data that is wrongly 

predicted negative, and TN is negative data that is 

predicted to be negative. This case is for two classes 

classification, so accuracy is obtained as in Eq. (15). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
              (15) 

 

We can also represent accuracy in percentage by 

multiplying by 100%. 
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4.2 Performance analysis of CosKNN in milkfish 

eye dataset 

Especially for milkfish eye dataset, we conduct 

empirical test with a number of color image 

components, such as red, green, blue from RGB 

color space, hue, saturation, intensity from HSV 

color space, and L, a*, b* from Lab color space. The 

researchers also use 2-fold cross validation of which 

proportional is 50:50 for training set and testing set, 

respectively. 

The comparison result is presented in Fig. 3. It 

can be seen in Fig. 3 that CosKNN consistently has 

high accuracy compared to other methods. Though 

in certain K, CosKNN indicates accuracy lower than 

GNN, as in Figs. 3 (a), (b), (c), (e), (f), (g), and (i); 

overall, the performance of CosKNN always 

indicates high accuracy result; expect for Fig. 3 (d) 

in which the performance of CosKNN remains 

decreasing as K increases starting from 11. 

In a case where all features are used, CosKNN 

tends to show low performance alongside high 

number of K. It is considered to be reasonable 

because eye milkfish dataset has low number; by 

using 2-fold cross validation, we gain 35 instances 

as the training set followed by selecting all the 

training set as the nearest neighbor when using 35-

NN. We can avoid such a problem by using larger 

number of data, thus we use several datasets from 

UCI Machine Learning as comparison cases. 

Description of the comparison is presented in the 

next section. 
 

 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure. 3 Performance comparison between CosKNN and other K-NN based methods on eye milkfish dataset with 

variety of color space: (a) red (RGB), (b) green (RGB), (c) blue (RGB), (d) hue (HSV), (e) saturation (HSV), (f) intensity 

(HSV), (g) l (Lab), (h) a* (Lab), (i) b* (Lab), and (j) all features 
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Result presented in the eye milkfish dataset uses 

all features (Fig. 3 (j)); it can be seen that the 

accuracy of CosKNN is the highest when K is low 

(given K=5, the accuracy is 0.74), but when K 

increases, the accuracy of CosKNN decreases and is 

the same as the LMKNN and KNN method. The 

same pattern also occurs on KNN but the accuracy 

is lower compared to CosKNN. In the case of eye 

milkfish dataset, the method capable to maintain the 

accuracy alongside increased K is DWKNN, in 

which when K increases, for example K=21 until 31 

the accuracy generated is the highest among other 

methods. Thus, the DWKNN method relatively has 

better performance. 

When using all K value, however, CosKNN 

gains a superior performance indicating higher 

performance than other comparable methods. Of all 

performance achieved by CosKNN, it is also 

apparent that CosKNN has good prospect for 

performance development, since it can generally 

gain high accuracy. The result can be the solution of 

irrelevant class problem when using high number of 

K. 

 

 

  
(a)  (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

Figure. 4 Performance comparison with UCI Machine Learning datasets: (a) iris dataset, (b) vertebral column dataset, (c) 

diabetic retinopathy dataset, (d) wine dataset, (e) blood dataset, (f) audit data dataset, (g) divorce dataset, and (h) seeds 

dataset 

 

4.3 Performance analysis with UCI machine 

learning datasets 

UCI Machine Learning Repository is a public 

dataset managed by University of California, Irvine, 

School of Information and Computer Sciences. UCI 

is a collection of data widely used for various 

purposes from machine learning, theory testing, data 

generation to empirical studies of science 

development. Initiated by David Aha in 1987 until 

recently, there have been 488 datasets and widely 

used by educators, students, and other researchers 

around the world, both as primary and secondary 

data. There are four categories of datasets provided: 

classification, regression, clustering, others. We use 

8 classification datasets from UCI to support our 

proposed method testing. 

In this performance comparison, we use all 

features of each dataset in the classification. We also 

conduct performance analysis using a variety 

number of K starting from 3 to 35. All tests are 

conducted using 2-fold cross validation. We 

compare the CosKNN to other K-NN-based 

methods using some datasets as presented in Table 1, 

namely, iris, vertebral column, diabetic retinopathy, 

wine, blood, audit data, divorce, and seeds. In Fig. 4, 

it can be seen that the dataset in terms of iris, 

vertebral column, diabetic retinopathy, wine, and 

seeds, CosKNN has a superior performance 

compared to the other methods. 

The result presented in the iris, vertebral column, 

diabetic retinopathy, and wine datasets indicate a 

similar pattern, there are some methods that can 

maintain performance when K increases from low to 
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high including CosKNN, as well as KNN and GNN. 

Meanwhile, other method, such as LMKNN more 

often than not belongs to the method of low 

accuracy, it achieves low accuracy in the vertebral 

column, diabetic retinopathy, and wine datasets. 

Moreover, in the iris and wine dataset, all methods 

achieve significantly high performance of which 

accuracy is above 0.9. 

In contrast to the result of the blood dataset, the 

performance accuracy of CosKNN along with 

DWKNN, LDWKNN is below other methods 

although reaching an average of 0.7024, 0.7186, and 

0.6858, respectively; whereas, other methods tend to 

achieve better accuracy. The result achieved by all 

methods basically remains acceptable. 

Different result can also be seen in the data audit 

dataset in which only two methods are able to 

present significant result, namely KNN and GNN. 

Meanwhile, other methods achieve low accuracy 

below 0.63. It includes CosKNN which achieve 

performance accuracy below 0.63 along with the 

majority of other methods. The divorce and seeds 

datasets also indicate different result from the 

previous result in which all the methods compared 

provide good performance. All achieved accuracy 

performance are above 0.8, except WKNN in 

divorce dataset of which accuracy is below 0.4 and 

continue to decrease with increased K until accuracy 

is close to zero. 

All in all, CosKNN shows good performance on 

7 out of 8 datasets tested. It means that CosKNN is 

feasible to use as a method to solve classification 

issue. Also, CosKNN can generate high 

performance when using higher number of K, so 

CosKNN can solve irrelevant class problems as a 

result of the prediction, but the accuracy of 

CosKNN is relatively similar to the other current 

methods. 

4.4 Performance analysis with KEEL-dataset 

repository 

KEEL-dataset repository is a portal which 

provides software and a collection of datasets to 

conduct data collection in various fields. KEEL is an 

open source (GPLv3) Java software for GUI-based 

data mining with a combination of computational 

intelligence. A number of data mining which can be 

done include classification, clustering, regression, 

and association. At present, 908 datasets have been 

collected that can be used for research by both 

educators, students, and other researchers. 

We used six classification datasets for 

performance comparison between our proposed 

method CosKNN and other KNN-based methods. 

The datasets are as follows; balance, banana, 

phoneme, yeast, ring and zoo. The result of 

performance comparison on all datasets is presented 

in Fig. 5. From Fig. 5, it can be seen that generally 

there are methods which achieve high accuracy, but 

there are also methods which achieve low accuracy. 

Given the balance, banana, yeast, and zoo datasets, 

of the 4 datasets CosKNN is classified as high 

accuracy alongside GNN and KNN; on zoo dataset, 

however, CosKNN indicates lower accuracy than 

other methods. Other methods indicate high 

accuracy on one dataset, but low accuracy on the 

others. For example, SMKNN and LMKNN indicate 

high accuracy on balance and zoo datasets, but 

lower accuracy on banana and yeast dataset. 

Phoneme and ring datasets are different cases, which 

are divided into three: high, medium, and low 

accuracy, yet CosKNN fails to achieve high 

accuracy on both datasets. 

Overall, CosKNN shows good performance on 

the KEEL dataset, of the six datasets, there are four 

datasets of which accuracy of CosKNN is classified 

as high compared to others. It indicates that 

CosKNN can potentially solve irrelevant class 

problems because CosKNN can maintain curation 

performance even though the K value increases. 

CosKNN can be further developed using large 

amounts of data and classes. 

4.5 Performance analysis with other classification 

methods 

We also conduct performance analysis between 

CosKNN with other classification results, namely 

Support Vector Machine (SVM) [13] and Decision 

Tree (DT) [7]. SVM is a classification method that 

attempts to maximize the hyperplane boundary. The 

method is based on statistical learning theory of 

which results are significantly better than other 

methods. SVM also performs well on datasets with 

high dimensions. In this study, we use RBF as the 

kernel function. The SVM also uses multiclass SVM 

to solve multiclass problem for eye milkfish and iris 

datasets. DT is a tree used as a reasoning procedure 

in order to obtain answers to classification problem. 

Flexibility constitutes the key point of this method, 

especially as it provides the advantage of suggestion 

visualization (in the form of a decision tree) that 

makes the prediction procedure observable. In this 

study, we use C4.5 as the DT algorithm. 

The result of the comparison is presented in 

Table 3. From the table, CosKNN indicates better 

result compared to other methods on 5 datasets in 

which CosKNN achieves highest accuracy on the 

iris, vertebral column, diabetic retinopathy, seeds,  
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(a)  (b)  

  
(c) (d)  

  
(e)  (f)  

Figure. 5 Performance comparison with KEEL-dataset repository: (a) balance dataset, (b) banana dataset, (c) phoneme 

dataset, (d) yeast dataset, (e) ring dataset, and (f) zoo dataset 
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Table 3. Performance comparison of CosKNN with other methods 

Dataset 

Accuracy (%) 

CosKNN 
K-

NN 
WKNN DWKNN LDWKNN 

GNN SMKNN LMKNN 
SVM DT 

Milkfish eye 60.89 59.32 63.60 69.94 67.14 63.96 67.38 56.07 66.03 63.41 

Iris 96.03 94.74 95.13 95.21 94.54 94.54 94.0 90.0 65.33 92.0 

Vertebral 

Column 80.95 80.34 80.02 76.31 71.67 

79.11 73.87 71.61 

78.71 80.90 

Diabetic 

Retinopathy 65.85 65.41 35.35 63.46 61.57 

65.04 64.03 63.16 

53.26 60.47 

Wine 96.79 96.49 96.92 95.54 92.29 95.20 92.13 97.19 97.19 91.57 

Blood 70.24 78.04 78.18 71.86 68.58 78.01 76.74 76.07 76.47 75.13 

Audit data 62.63 92.67 37.37 62.63 62.63 97.52 37.37 37.37 99.36 1 

Divorce 94.12 97.65 13.18 97.30 97.82 95.78 95.88 97.65 89.41 96.47 

Seeds 91.81 91.31 91.42 90.44 87.95 91.28 89.05 90.48 92.38 90.48 

Balance 88.06 87.65 87.91 74.12 75.00 85.95 87.52 89.28 87.52 78.4 

Banana 90.24 90.24 90.24 87.44 84.24 90.10 80.87 79.09 64.21 87.77 

Phoneme 29.35 84.29 29.35 29.35 29.35 84.43 59.86 60.18 87.52 78.4 

Yeast 57.75 56.39 57.13 52.71 43.14 54.83 58.09 31.94 19.95 51.48 

Ring 69.64 69.48 69.49 77.15 79.35 92.82 50.66 50.47 95.43 86.66 

Zoo 26.26 43.25 17.44 38.75 40.57 40.45 42.57 43.55 48.51 40.57 

 

and banana datasets. As a matter of fact, the highest 

accuracy is achieved by LDWKNN of 97.82% on 

the divorce dataset, but the accuracy of other 

methods on that particular dataset is also above 90 

including LMKNN, DWKNN, DT, SMKNN, GNN, 

and CosKNN, of which accuracy of those methods 

are highly significant. The compared classification 

methods of SVM and DT indicate better 

performance on the wine, phoneme, ring, and zoo 

datasets for SVM, and data audit dataset for DT. A 

specific case in the comparison is found in the yeast 

and zoo datasets in which accuracy for all methods 

indicates below 60% that it is reasonable if CosKNN 

does not show good performance; the highest 

accuracy is found in SMKNN of 58.09%.When 

sorted from the highest accuracy of all datasets, the 

superior method is CosKNN, SVM, WKNN, KNN, 

DWKNN, LDWKNN, SMKNN, DT in which each 

method is superior on 5 datasets, 4 datasets, 2 

datasets, 1 dataset, 1 dataset, 1 dataset, 1 dataset, 1 

dataset, respectively. The performance of GNN is 

relatively the same as the other methods, but it does 

not achieve high accuracy. 

Based on the analysis conducted, it can be 

concluded that CosKNN generally presents superior 

performance compared to other methods, despite the 

differences in the compared methods. The highest 

accuracy on the CosKNN method is 96.79% on the 

wine dataset. The compared methods of which 

performance are relatively similar to CosKNN are 

DWKNN and LDWKNN, even KNN. Besides 

solving the irrelevant class problem, CosKNN can 

also solve the same majority votes class problem as 

such a problem does not occure during testing. 

5. Conclusions 

Based on the results and discussion, it can be 

concluded that CosKNN generates high accuracy 

performance in a number of datasets of which 

accuracy achieves up to 96.79%. CosKNN is also 

robust to irrelevant class problem alongside 

increased number of K by recent weighting system 

which involves two parties simultaneously. Even 

though high accuracy performance of CosKNN is 

similar to the recent refinements of KNN, CosKNN 

performs better in terms of empirical testing of 

features generated in certain color spaces. The 

limitation of CosKNN to be further explored in 

future studies is that CosKNN highly depends on 

training set for prediction session, thus innovation is 

imperative for the KNN-based method in order to 

store training data as memory for prediction. 
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