
Received: October 30, 2019 11

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

Cosine K-Nearest Neighbor in Milkfish Eye Classification

Eko Prasetyo1* Rani Purbaningtyas1 Raden Dimas Adityo1

1Department of Informatics, Engineering Faculty,

University of Bhayangkara Surabaya, Surabaya, Indonesia

* Corresponding author’s Email: eko@ubhara.ac.id

Abstract: K-Nearest Neighbors (K-NN) classification method gains refined version proposed by the researcher. The refinement

aims to solve noise sensitive when using small K, and irrelevant class as classification result when using large K. The problem in

the previous version of method was that the weights were calculated individually, so the result was not optimal. We propose

recent weighting scheme where the weights were no longer gained from the nearest neighbor individually, but by involving all

pair of the nearest neighbor, called Cosine K-NN (CosKNN). We also introduce a trigonometric map to describe the Cosine

weight. CosKNN is soft value to represent ownership of each class to the testing data. Empirically, CosKNN is tested and

compared with other K-NN refinement using milkfish eye, UCI, and KEEL dataset. The result shows that CosKNN hold superior

performance compared to the other methods although K number is higher of which accuracy is 96.79%.

Keywords: K-nearest neighbor, Weight, Cosine, Refinement, Milkfish eye.

1. Introduction

Since the K-Nearest Neighbor (KNN)

classification method was introduced in research[1],

this method obtains a lot of research attention

including the recent research. As in [2], conducting

selection of nearest neighbors on both testing

sample and training sample, called general nearest

neighbor (GNN) rule that also uses the overlapping

neighborhood to determine result in general nearest

neighbor. The research by [3] determine the label of

testing set with combination of similarity and

projection angle between testing set and selected

nearest neighbor. The scheme is called dependent

nearest neighbor (dNN). The other research by [4]

attempt to redefine the Minkowski distance metric

in order to consider the relevant features only by the

assumption that all features have the same

importance level in classification stage. Such a

scheme is designed to solve problem in high-

dimensionality dataset. Furthermore, recent research

by[5] conducts enhancement of KNN by calculating

generalized mean distance-based k-nearest neighbor

classifier (GMDKNN) using k local mean vector per

class. The result of the classification is obtained by

the minimum nested generalized mean distance

among all the classes. Generally, the main objective

in many proposed KNN refinement is due to the fact

that KNN is noise sensitive when using small K in

nearest neighbors selection [6]. Noise is data which

contain different behavior from rest of general data.

The presence of noise in the training set may cause

the result of the classification to fall on the noise

data, one nearest neighbor of the test data. Another

weakness of KNN is when using larger K; it can

cause the result of the classifications to fall on other

classes that are actually irrelevant because the

distance is too far from the testing data [7], as

presented in Fig. 1 (a). Hence, the selection of K

constitutes a highly critical problem. Generally,

empirical testing is conducted to obtain the

appropriate K and the best performance, as

conducted by [5, 8, 9].

The initial problem of noise-sensitive occurs

when determining the prediction result in KNN

using class majority voting from selected K nearest

neighbor, as presented in Fig. 1 (a). When using 1-

NN, the testing data (black dot) would be classified

to one nearest neighbor class A (+). When using 5-

NN, the testing data would be classified to the most

Received: October 30, 2019 12

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

xi

nn1

nn2

+

f1

f2

nn5

nn3

nn4

-

-

+

-

(a)

xi

nn1

nn2

+

-

f1

f2

nn4

nn3

+

-

(b)

Figure. 1 Problem result in classic K-NN: (a) 5-NN with

same majority voting and (b) 5-NN with irrelevant class

as classification result

dominant class in the nearest neighbor data; for

example, 2 nearest neighbors are from class A(+)

and 3 nearest neighbors are from class B(-) because

class B has more data than class A, so the testing

data are classified to class B. This scheme would

inflict a misclassification when the 3 nearest

neighbors are too far from the testing data. This is

due to the 3 nearest neighbors are farther than the 2

neighbors in which the 3 neighbors are actually

irrelevant. The other problems occur when using an

even number of nearest neighbor and majority

voting fall to two same majority classes, as

presented in Fig. 1 (b); for example, using 4-NN, 2

nearest neighbors are from class A and B,

respectively; one of which can be chosen, A or B

arbitrarily [7]. The other approach to solve the

problem is to use a weighting scheme [9-11]. The

weighting approach is conducted by calculating the

weight for each nearest neighbor based on distance

between testing data to each nearest neighbor. In

essence, the closer the nearest neighbor, the greater

the weight gained. In the research by [12], the

weight calculation is conducted using the inverse

square of its distance from testing data, while the

research by [11] use dual weighted voting k-nearest

neighbor rule (DWKNN). The DWKNN depends on

the distance between the testing data and nearest

neighbors, and also the rank of the nearest neighbors,

in which the closer neighbor would gain greater

weight. These two weighting schemes are combined

in the research by [9] where the weight calculation

is conducted using the weight average of each class

in order to enhance the weighted K-NN [11,12].

Research by [2] develop K-NN using two-sided

environmental information of testing data and K

nearest neighbor training data, called General

Nearest Neighbor (GNN). The mutual neighbor

generated between the two data becomes the chosen

neighbor which will be chosen in the most voted

class. Unfortunately, this method can trap the

system in the same number of votes, as in the

previous second problem. The recent KNN research

indicates that there is a modification of k-nearest

neighbor (MKNN) proposed by [8] which applies

the smallest modified KNN (SMKNN) and the

largest modified KNN (LMKNN). The strategy aims

to calculate the centroid of each class then calculate

the distance and weight of each data in the middle of

the class. Moreover, the distance and weight of the

testing data are calculated for each class center and

all training data. SMKNN will take all neighbors in

which the distance to neighbors is smaller than the

distance to the nearest centroid. The final weight is

obtained by multiplying the weight of the testing

data to the selected neighbor and the initial weight

of the selected neighbor. The accumulation of

selected neighbor weight to the respective class will

produce the final weight of the class. The class of

the highest weight is the prediction class. LMKNN

uses the same strategy but the distance to neighbor

is greater than the distance to the nearest centroid.

This method provides the same performance effect

on all K choices used. However, the problem in

many KNN refinements using weighting scheme

merely involves the testing data and the nearest

neighbor. So, the weight gained is actually similar to

the inverse of the distance. In this study, we propose

a weighting scheme of which weight is not gained

from the nearest neighbor individually, but by

calculating the weight with the involvement of a pair

of nearest neighbors. The weight calculation of a

pair of nearest neighbors would produce two

weights, each of which corresponds to the neighbor

in pair. The weight of each data in pair represents

ownership of each class to the testing data according

to the class of data. These weights are ultimately

accumulated to obtain the final weight of each class.

Furthermore, the prediction results are obtained

from the largest weight accumulation.

Received: October 30, 2019 13

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

We conduct performance comparison between

CosKNN and other KNN refinements including

recent K-NN as follows: classic KNN [1], Weight

K-NN (WKNN) [12], dual weighted voting method

for KNN rule (DWKNN) [11], combination of local

mean based and distance weight k-nearest neighbor

(LDWKNN) [9], General Nearest Neighbor (GNN)

[2], and also smallest modified KNN (SMKNN) and

largest modified KNN (LMKNN) [8], which are

applied to milkfish eye dataset, UCI Machine

Learning datasets, and KEEL-dataset Repository.

Empirical testing is conducted using a variety of K

number starting from 3 to 35 nearest neighbors. We

also make comparison with other classification

methods, namely Support Vector Machine [13] and

Decision Tree [7].

Using weighting scheme involving a pair of

nearest neighbors between the testing data and two

neighbors. It is possible that the distance of one

neighbor to the testing data is closer than the other

neighbor to the testing data, or vice versa. The

weighting concept we propose is when calculating

the weight between a neighbor to the testing data

does not only generate the information between the

neighbor with the testing data, but also the

information of the distance of other neighbors to the

testing data. The use of the cosine concept in weight

calculation presents a new perspective that weights

are calculated using a scheme involving two

simultaneous parties using distance as the length of

a right triangle. Thus, the weighting system

contribute to the performance accuracy being more

optimal in solving noise sensitive, same majority

votes class problem and irrelevant class as the

prediction result. We provide in-depth description in

the following section. From the performance

comparison, it shows that CosKNN provides a

promising performance in classification problem

which gain the highest accuracy performance.

2. Literature review

2.1 K-nearest neighbor

K-Nearest Neighbor (KNN) is a classification

method based on nearest neighbor with a simple

concept, robust on non-linear data, and can be used

in multi-class cases. The concept is that if an animal

walks like a duck, sounds like a duck, and behaves

like a duck then the animal may be a duck [7]. It

was firstly introduced in the research by [1] using

the nearest neighbor concept based on distance. The

nearer the neighbor to the testing data, the neighbor

will be more similar. From all the training data, the

K nearest neighbor will be chosen to do majority

class voting. The most voted class will be used as

the prediction class.

Given (xi,ci),i=1,…,N is a pair of training data

and class in which x is the training datum from a set

of training data X={xi|xi∈SM}, in which N is the

total training data, c is one class from a set of class

C={c1,c2,…,cP,}. S is the dataset of which each data

has M feature. The distance between testing data

x'with training data is calculated using Eq. (1)

di=‖xi,x'‖=√∑ xi-x' (1)

Eq. (1) uses Euclidean as the basis for distance

assumption. Calculating the prediction of the most

voted class uses Eq. (2)

𝑐′ = arg max
𝑐∈𝐶

∑ δ(c,ci)
K
i=1 (2)

In which δ(c,ci) is1 if c=ci and is 0 if c≠ci.

2.2 Weight KNN (WKNN)

One of the KNN refinements using the

weighting technique is Weight KNN (WKNN) of

which weight is calculated using inverse distance

[12]. Furthermore, the prediction result generated

comprises the accumulation of the neighbor weight

according to the neighbor class. The weighting using

inverse distance is shown in Eq. (3).

𝑤𝑖=1-𝑑𝑖 (3)

Inverse distance will reverse the equation

meaning that the training data of short distance will

gain great weight, and data of long distance will

gain small weight. The accumulation of neighbor

weights according to the class will be used to

determine the class prediction, the class of the

highest weight becomes the class prediction.

Weighting using this method is insignificant, since it

only involves the testing data with one of the nearest

neighbors selected. We propose weighting which

involves a pair of distance between the testing data

with the two selected neighbors. Involving more

than two distances of training data simultaneously

means that the generated weight is more accurate

and significant.

2.3 Dual weighted voting method for KNN rule

(DWKNN)

Dual weighted voting method for KNN rule

(DWKNN) sets weighting rule based on weight

accumulation and weight function starting from the

Received: October 30, 2019 14

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

greatest weighting order[11]. Besides, weight

calculation also uses the farthest distance between

the training data to testing data. The farther the

training data to the testing data, the smaller the

weight of the training data. Weight calculation for

each training data uses Eq. (4)

𝑤𝑖= {

𝑑𝐾
𝑛𝑛−𝑑𝑖

𝑛𝑛

𝑑𝐾
𝑛𝑛−𝑑1

𝑛𝑛 𝑥
1

𝑖
, 𝑑𝐾

𝑛𝑛 ≠ 𝑑1
𝑛𝑛

1 , 𝑑𝐾
𝑛𝑛 = 𝑑1

𝑛𝑛
 (4)

2.4 Combination of local mean based and

distance weight k-nearest neighbor (LDWKNN)

Combination of local mean based and distance

weight k-nearest neighbor (LDWKNN) [9]

combines the WKNN weighting method and

DWKNN using the average weight from each class.

The class of the largest average weight will be

chosen as a prediction result. This method highly

depends on the inverse calculation of the distance

between the testing data and the training data, and is

claimed to provide better result than the previous

method.

Even though it involves distance of other

neighbors, the weighting method, such as

LDWKNN or DWKNN has the disadvantage that

the ranking can potentially degrade distances on

numerous data of very small differences to very

large, or two distances with large differences in

sequential ranks can result in smaller weight

degradation. We propose a pair of two distances

from the chosen K nearest neighbor. Given 5 nearest

neighbors, the generated pair
𝐾!

(𝐾−2)!2!
 will be 20

pairs. Hence, we disregard the ranking but at the

same time involve the distance of two neighbors.

2.5 General nearest neighbor (GNN)

Research by [2] develops K-NN using two-hand

side neighborhood information of testing data and K

nearest neighbor training data, called General

Nearest Neighbor (GNN). The mutual neighbor

generated between the two data becomes the chosen

neighbor which will be chosen in the most voted

class. Mutual neighbor will be selected on the data

which is the K-nearest neighbor, both in the testing

data and in each data of K-nearest neighbor. This

algorithm starts by combining testing data into

training set followed by looking for the K-nearest

neighbor of each data. For each data in K-nearest

neighbor of the testing data, it is necessary to check

whether any of the data is a mutual neighbor; if so, it

will be classified as general neighbor. From the list

of selected general neighbor, class majority will be

voted. The most voted class will be the prediction

class.

This method basically provides a good idea by

choosing mutual neighbor, but there is not any

weighting on the selected neighbor as mutual

neighbor. Likewise, determining the prediction also

uses voting technique, such as the classic KNN.

Class voting with conventional technique can still

cause the same majority class voting which should

be avoided.

2.6 Modified KNN (MKNN)

Modified KNN (MKNN) also provides a new

method of classifying based on nearest neighbors, in

which this method also involves the centroid role of

each class [8]. There are two weights calculated; the

weight calculated from the distance of the training

data to the centroid of the class and the weight

calculated from the distance between the selected

training data and the testing data. The MKNN

algorithm is as follows.

1. Calculate centroid from each class of data using

Eq. (5)

𝐶𝑒𝑛𝑟 =
1

𝑡
∑ 𝑥𝑖 | 𝑐𝑖 = 𝑐𝑟

𝑁
𝑖=1 (5)

In which t is the number of training data in class

cr;

2. Calculate distance between training data with

class centroid using Eq. (6);

𝑑(𝑥𝑖, 𝐶𝑒𝑛𝑟) = √∑ xi-𝐶𝑒𝑛𝑟 (6)

3. Calculate weight of training data using inverse

distance as in Eq. (7);

𝑤(𝑥𝑖 , 𝑐𝑟) =
1

𝑑(𝑥𝑖,𝑐𝑟)
 (7)

4. Calculate distance between testing data and

respective centroid;

5. Select the shortest centroid if using smallest

modified KNN (SMKNN) as Dx or the farthest

distance if using largest modified KNN

(LMKNN) as Dx;

6. Select K neighbor in radius Dx

7. Calculate weight of each neighbor generated in

step 6 using Eq. (8)

𝐼𝑆(𝑥′, 𝑥𝑟) =
1

𝑑(𝑥𝑖,𝑥𝑟𝑥)
× 𝑤(𝑥𝑖 , 𝑐𝑟) (8)

Received: October 30, 2019 15

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

In which 𝑑(𝑥𝑖 , 𝑥𝑟𝑥) is the distance between

testing data and neighbors generated in radius

Dx.

8. Accumulate weight 𝐼𝑆(𝑥′, 𝑥𝑟) based on

respective class then select class with highest

weight accumulation as prediction class.

The method proposed in MKNN has a non-

parametric effect in which the use of different K

does not affect the result of the selected neighbors in

radius Dx. As a result, if this method does not

achieve optimal result it means that there is not any

other choice that can be made. In contrast to the

parametric method, there are many K options that

can be observed to determine the best K to use.

3. Proposed method

This paper has been partially published in

conference paper in [14], but we attempt to provide

more explanation about the fundamental concept

and comprehensive comparison with a number of

image features and recent KNN refinement, as

presented in the sub sections below.

Our proposed method is a recent weighting

system involving two simultaneous parties. Both

parties are testing data and 2 nearest neighbors

selected. Simultaneous weight calculation is

conducted using a trigonometric map. Conceptually,

we will use the distance of two neighbors d1 and d2

as the adjacent and the opposite side of right triangle.

For hypotenuse side, it is calculated using d1 and d2

in perpendicular position. From the concept, cosine

is calculated between two sides of perpendicular.

The illustration of weight calculation is

presented in Fig. 2. Fig. 2 is the fundamental

concept in our study. We use a trigonometric

function [15] with a right triangle as the basic map.

The trigonometric map is a right triangle constructed

from a pair distance of nearest neighbor as the

adjacent and the opposite side. In other words, we

also use a hypotenuse as the third side. It is called

trigonometric map. It is exemplified in Fig. 2 (a); we

obtain two nearest neighbors nn1 and nn2 with

distance of d1 and d2, respectively. The nn1 is from

class 1 (+) and nn2 is from class 2 (-). For the pair,

we obtain two maps according to Figs. 2 (b) and (c)

for nn1 and nn2, respectively. For each map, we

calculate a soft value which represents ownership of

each class to the testing data. The soft value is called

Cosine KNN (CosKNN). The CosKNN represents

ownership of each class to the testing data which

range from 0 to 1.

According to Fig. 2 (b), we can calculate the

Cosine value of α1 for the nn1 when paired with nn2

using Eq. (9);

x'

nn1

nn2
d1 d2

+

-

f1

f2

(a)

x'
nn1

d1

d2

+

-
nn2

r12

α1

(b)

x'

nn1

d1

d2

+

-
nn2

r12

α2

(c)

Figure. 2 Trinometric map: (a) distance map, (b)

trigonometric map of nn1, and (c) trigonometric map of

nn2

𝐶𝑜𝑠(𝛼1) =
𝑑1

𝑟12
 (9)

The 𝐶𝑜𝑠(𝛼1) has a range of value between 0 and

1. When distance d1 is small then 𝐶𝑜𝑠(𝛼1) is close

to 0, but represents a significantly high ownership of

class 1(+) from nn1 when paired with nn2. It is

required that the nearest neighbor with lower

distance obtain greater weight, so Eq. (9) is adjusted

in order to obtain the 𝐶𝑜𝑠(𝑥1, 𝑥2) weight as follows.

𝐶𝑜𝑠(𝑥1, 𝑥2) = 1 − 𝐶𝑜𝑠(𝛼1) = 1 −
𝑑1

𝑟12
 (10)

𝐶𝑜𝑠(𝑥1, 𝑥2) is cosine weight for nn1 (x1) when

paired with nn2 (x2). We conduct complementary

operation to the cosine value from the map, so the

lower distance would obtain greater weight which

represents higher ownership of the related class, and

vice versa.

Given the data set class is C=c1, c2, …, cn, where

n is the number of classes. While X = x1, x2, xi, …,

xK is the nearest neighbor selected from the training

data, K is the number of nearest neighbors. For a

Received: October 30, 2019 16

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

pair of xi and xj as the part of selected nearest

neighbor in CosKNN, the general equation is

formulated as follows.

𝐶𝑜𝑠(𝑥𝑖 , 𝑥𝑗) = 1 −
𝑑𝑖

𝑟𝑖𝑗
= 1 −

𝑑𝑖

√𝑑𝑖+𝑑𝑗
 (11)

𝐶𝑜𝑠(𝑥𝑗 , 𝑥𝑖) = 1 −
𝑑𝑗

𝑟𝑖𝑗
= 1 −

𝑑𝑗

√𝑑𝑖+𝑑𝑗
 (12)

Where d is the distance of training data to the

testing data. 𝐶𝑜𝑠(𝑥𝑖, 𝑥𝑗) and 𝐶𝑜𝑠(𝑥𝑗, 𝑥𝑖) are cosine

weights obtained from the pair of nearest neighbors

nn1 and nn2, respectively. 𝐶𝑜𝑠(𝑥𝑖 , 𝑥𝑗) represents the

ownership degree of related class from xi when

paired with xj, while 𝐶𝑜𝑠(𝑥𝑗, 𝑥𝑖) represents the

ownership degree of related class from xj when

paired with xi.

This cosine weight concept of nearest neighbor

pair is applied to all selected K-nearest neighbors.

For K-nearest neighbors, 𝐶(𝐾, 2) nearest neighbor

pair. 𝐶(𝐾, 2) is the combination of K number with 2

elements, for example the 3-NN is neighbor data

with the following data and class; (x1,c1), (x2,c2), and

(x3,c1), then the pairs obtained are: x1x2, x1x3, x2x3.

Furthermore, each pair will obtain 2 cosine weights

according to (11) and (12). Each cosine weight

would be classified to the related class of the data.

For example, 3-NN would obtain the cosine weight

as follows.

𝐶𝑜𝑠(𝑥1, 𝑥2) of nn1 would be owned by class c1

𝐶𝑜𝑠(𝑥2, 𝑥1) of nn2 would be owned by class c2

𝐶𝑜𝑠(𝑥1, 𝑥3) of nn1 would be owned by class c1

𝐶𝑜𝑠(𝑥3, 𝑥1) of nn3 would be owned by class c1

𝐶𝑜𝑠(𝑥2, 𝑥3) of nn2 would be owned by class c2

𝐶𝑜𝑠(𝑥3, 𝑥2) of nn3 would be owned by class c1

It is known that Cosine weighting technique

with K-nearest neighbors can generate as many as
𝐾!

(𝐾−2)!2!
 pairs. Given that there are 5 nearest

neighbors, it means that the result will be
5!

(5−2)!2!

pairs or 20 pairs. To achieve the classification result,

it is required to sum up all cosine weight to the

related class of each data. For example, to sum up

all cosine weight of the R testing data (R, cR) to the

class cr , the equation used is Eq. (13)

𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟) = ∑ 𝐶𝑜𝑠 (𝑥𝑖 , 𝑥𝑗)

𝐾

𝑖=1

|𝑐𝑖 = 𝑐𝑟

(13)

The 𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟) is the sum up weight of

the R data to the cr class. It is a soft value which

ranges in [0,∞]. A value of zero (0) means that none

of the nearest neighbor has a class cr. The weight

can be higher when the number of nearest neighbors

increases. If a class does not contain any data in the

nearest neighbor, it will obtain zero weight. The

more the nearest neighbors are used, the higher the

weight achieved by a class.

To obtain the class decision, the highest cosine

weight accumulation among all class in the dataset

is selected using Eq. (14)

𝑐𝑅 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟)),

 𝑟 = 1, … , 𝑃 (14)

In which this equation will generate the highest

value of 𝑆𝑢𝑚𝑜𝑓𝐶𝑜𝑠(𝑅, 𝑐𝑟) among class P as

prediction result of 𝑐𝑅 . The class with the highest

value is given from this equation as a predicted

result.

The algorithm of CosKNN is as follows.

Input:

 R : the testing data

 [(xi,ci), i=1,…,N] : the training data

 K : The number of

nearest neighbors

Step 1 : Calculate the distance di between the

testing data and the training data as D

 e.g. using Euclidean distance;

for i=1 to N

 𝑑𝑖 = ‖𝑅, 𝑥𝑖‖2

 end

Step 2 : Sort all distance in D then select K lowest

distance as DK

 𝐷𝐾 ⊆ 𝐷

Step 3 : Calculate the cosine weight for all pair

selected nearest neighbor in DK using (11) and (12);

Step 4 : Calculate the summarize weight of each

class using (13);

Step 5 : Select the class of the highest weight

obtained in Step 4 as the class label for the R testing

data.

The objectives in using cosine weight in our

study are explained as follows.

1. Solving the same majority votes class

problem

Same majority votes class possibly occur

when using even number in determining the

K nearest neighbor, and when most

neighboring classes are classified into two

classes. In the CosKNN, such an issue is

resolved by weighting cosine scheme for

each pair of K-nearest neighbor. The weight

accumulation for each class is obtained, so

the class with the highest SumofCos as the

classification result is selected. In this study,

Received: October 30, 2019 17

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

we avoid the same majority votes class

problem through good solution.

2. Robust to the problem of classification

result to irrelevant class

This problem possibly occurs especially

when using high number as K-nearest

neighbor, as exemplified in Fig. 1 (a), we

use 5-NN, the nn1 and nn2 from class A (+)

are significantly close to the testing data,

while the nn3, nn4, and nn5 from class B (-)

are significantly far from the testing data.

According to the K-NN classic method, we

take class B as the classification result, since

class B is the majority class. Such a case is

solved by a weighting scheme, in which the

closer the neighbors to the testing data, the

greater the weight obtained.

4. Result and Discussions

4.1 Dataset

In this study, the main dataset is in the form of

features generated from 71 segmented milkfish eye

images used by [14]. The dimension of the dataset is

71 data by 18 features. The features consist of mean

and standard deviation generated from 3 color space

image, namely red, green, blue from RGB color

space, hue, saturation, intensity from HSV color

space, and L, a, b from Lab color space. Each color

space component generates mean and standard

deviation, hence the 18 features. The dataset is used

to conduct performance analysis empirically with

other recent K-NN refinement by other researcher

followed by comprehensive analysis.

We also compare CosKNN performance with

some recent K-NN refinements and other

classification methods using a number of datasets

from UCI Machine Learning

(https://archive.ics.uci.edu) [16] and KEEL-datasets

Repository (https://sci2s.ugr.es/keel/) [17], [18]. The

datasets from UCI are as follows; Iris, Vertebral,

Diabetic, Wine, Blood, Audit data, and Divorce.

And the datasets from KEEL are as follows; Balance,

Banana, Phoneme, Yeast, Ring, and Zoo. The

summary of the dataset is presented in Table 1.

We conduct comparison between CosKNN with

other K-NN refinement including recent K-NN,

namely classic KNN [1], Weight K-NN (WKNN)

[12], dual weighted voting method for KNN rule

(DWKNN) [11], combination of local mean based

and distance weight k-nearest neighbor (LDWKNN)

[9], General Nearest Neighbor (GNN) [2], and also

smallest modified KNN (SMKNN) and largest

Table 1. The summary of datasets

Repo. Name Inst. Features Num. of

Classes

Prasetyo

et al[14]

Milkfish eye 71 18 4

UCI Iris 150 4 3

UCI Vertebral

Column

310 6 2

UCI Diabetic

Retinopathy

1151 20 2

UCI Wine 178 13 2

UCI Blood 748 4 2

UCI Audit data 777 17 2

UCI Divorce 170 54 2

UCI Seeds 210 7 3

KEEL Balance 625 4 3

KEEL Banana 5300 2 2

KEEL Phoneme 5405 5 2

KEEL Yeast 1484 8 10

KEEL Ring 7400 20 2

KEEL Zoo 101 16 7

Table 2. Confusion matrix

 Predicted class

 Positive (+) Negative (-)

Actual

class

Positive (+) TP FN

Negative (-) FP TN

modified KNN (LMKNN) [8]. Performance analysis

is conducted empirically with some selected K,

namely 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,

29, 31, 33, and 35. We use K starting from low K

until high K to solve the misclassification into other

class that is actually irrelevant because the distance

is significantly far from the testing data.

The testing method used is K-fold cross

validation, where in this test we use K = 2, it means

50% instances as training set and 50% instances as

testing set. For performance comparison, we use

accuracy, where accuracy is the proportion of test

data that is correctly predicted divided by all test

data. The accuracy calculation is obtained from the

confusion matrix as presented in Table 2.

Where TP is the proportion of positive data that

is predicted to be positive, FP is the proportion of

negative data that is wrongly predicted positive, FT

is the proportion of positive data that is wrongly

predicted negative, and TN is negative data that is

predicted to be negative. This case is for two classes

classification, so accuracy is obtained as in Eq. (15).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (15)

We can also represent accuracy in percentage by

multiplying by 100%.

Received: October 30, 2019 18

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

4.2 Performance analysis of CosKNN in milkfish

eye dataset

Especially for milkfish eye dataset, we conduct

empirical test with a number of color image

components, such as red, green, blue from RGB

color space, hue, saturation, intensity from HSV

color space, and L, a*, b* from Lab color space. The

researchers also use 2-fold cross validation of which

proportional is 50:50 for training set and testing set,

respectively.

The comparison result is presented in Fig. 3. It

can be seen in Fig. 3 that CosKNN consistently has

high accuracy compared to other methods. Though

in certain K, CosKNN indicates accuracy lower than

GNN, as in Figs. 3 (a), (b), (c), (e), (f), (g), and (i);

overall, the performance of CosKNN always

indicates high accuracy result; expect for Fig. 3 (d)

in which the performance of CosKNN remains

decreasing as K increases starting from 11.

In a case where all features are used, CosKNN

tends to show low performance alongside high

number of K. It is considered to be reasonable

because eye milkfish dataset has low number; by

using 2-fold cross validation, we gain 35 instances

as the training set followed by selecting all the

training set as the nearest neighbor when using 35-

NN. We can avoid such a problem by using larger

number of data, thus we use several datasets from

UCI Machine Learning as comparison cases.

Description of the comparison is presented in the

next section.

(a) (b)

(c) (d)

Received: October 30, 2019 19

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

(e) (f)

(g) (h)

(i) (j)

Figure. 3 Performance comparison between CosKNN and other K-NN based methods on eye milkfish dataset with

variety of color space: (a) red (RGB), (b) green (RGB), (c) blue (RGB), (d) hue (HSV), (e) saturation (HSV), (f) intensity

(HSV), (g) l (Lab), (h) a* (Lab), (i) b* (Lab), and (j) all features

Received: October 30, 2019 20

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

Result presented in the eye milkfish dataset uses

all features (Fig. 3 (j)); it can be seen that the

accuracy of CosKNN is the highest when K is low

(given K=5, the accuracy is 0.74), but when K

increases, the accuracy of CosKNN decreases and is

the same as the LMKNN and KNN method. The

same pattern also occurs on KNN but the accuracy

is lower compared to CosKNN. In the case of eye

milkfish dataset, the method capable to maintain the

accuracy alongside increased K is DWKNN, in

which when K increases, for example K=21 until 31

the accuracy generated is the highest among other

methods. Thus, the DWKNN method relatively has

better performance.

When using all K value, however, CosKNN

gains a superior performance indicating higher

performance than other comparable methods. Of all

performance achieved by CosKNN, it is also

apparent that CosKNN has good prospect for

performance development, since it can generally

gain high accuracy. The result can be the solution of

irrelevant class problem when using high number of

K.

(a) (b)

(c) (d)

Received: October 30, 2019 21

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

(e) (f)

(g) (h)

Figure. 4 Performance comparison with UCI Machine Learning datasets: (a) iris dataset, (b) vertebral column dataset, (c)

diabetic retinopathy dataset, (d) wine dataset, (e) blood dataset, (f) audit data dataset, (g) divorce dataset, and (h) seeds

dataset

4.3 Performance analysis with UCI machine

learning datasets

UCI Machine Learning Repository is a public

dataset managed by University of California, Irvine,

School of Information and Computer Sciences. UCI

is a collection of data widely used for various

purposes from machine learning, theory testing, data

generation to empirical studies of science

development. Initiated by David Aha in 1987 until

recently, there have been 488 datasets and widely

used by educators, students, and other researchers

around the world, both as primary and secondary

data. There are four categories of datasets provided:

classification, regression, clustering, others. We use

8 classification datasets from UCI to support our

proposed method testing.

In this performance comparison, we use all

features of each dataset in the classification. We also

conduct performance analysis using a variety

number of K starting from 3 to 35. All tests are

conducted using 2-fold cross validation. We

compare the CosKNN to other K-NN-based

methods using some datasets as presented in Table 1,

namely, iris, vertebral column, diabetic retinopathy,

wine, blood, audit data, divorce, and seeds. In Fig. 4,

it can be seen that the dataset in terms of iris,

vertebral column, diabetic retinopathy, wine, and

seeds, CosKNN has a superior performance

compared to the other methods.

The result presented in the iris, vertebral column,

diabetic retinopathy, and wine datasets indicate a

similar pattern, there are some methods that can

maintain performance when K increases from low to

Received: October 30, 2019 22

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

high including CosKNN, as well as KNN and GNN.

Meanwhile, other method, such as LMKNN more

often than not belongs to the method of low

accuracy, it achieves low accuracy in the vertebral

column, diabetic retinopathy, and wine datasets.

Moreover, in the iris and wine dataset, all methods

achieve significantly high performance of which

accuracy is above 0.9.

In contrast to the result of the blood dataset, the

performance accuracy of CosKNN along with

DWKNN, LDWKNN is below other methods

although reaching an average of 0.7024, 0.7186, and

0.6858, respectively; whereas, other methods tend to

achieve better accuracy. The result achieved by all

methods basically remains acceptable.

Different result can also be seen in the data audit

dataset in which only two methods are able to

present significant result, namely KNN and GNN.

Meanwhile, other methods achieve low accuracy

below 0.63. It includes CosKNN which achieve

performance accuracy below 0.63 along with the

majority of other methods. The divorce and seeds

datasets also indicate different result from the

previous result in which all the methods compared

provide good performance. All achieved accuracy

performance are above 0.8, except WKNN in

divorce dataset of which accuracy is below 0.4 and

continue to decrease with increased K until accuracy

is close to zero.

All in all, CosKNN shows good performance on

7 out of 8 datasets tested. It means that CosKNN is

feasible to use as a method to solve classification

issue. Also, CosKNN can generate high

performance when using higher number of K, so

CosKNN can solve irrelevant class problems as a

result of the prediction, but the accuracy of

CosKNN is relatively similar to the other current

methods.

4.4 Performance analysis with KEEL-dataset

repository

KEEL-dataset repository is a portal which

provides software and a collection of datasets to

conduct data collection in various fields. KEEL is an

open source (GPLv3) Java software for GUI-based

data mining with a combination of computational

intelligence. A number of data mining which can be

done include classification, clustering, regression,

and association. At present, 908 datasets have been

collected that can be used for research by both

educators, students, and other researchers.

We used six classification datasets for

performance comparison between our proposed

method CosKNN and other KNN-based methods.

The datasets are as follows; balance, banana,

phoneme, yeast, ring and zoo. The result of

performance comparison on all datasets is presented

in Fig. 5. From Fig. 5, it can be seen that generally

there are methods which achieve high accuracy, but

there are also methods which achieve low accuracy.

Given the balance, banana, yeast, and zoo datasets,

of the 4 datasets CosKNN is classified as high

accuracy alongside GNN and KNN; on zoo dataset,

however, CosKNN indicates lower accuracy than

other methods. Other methods indicate high

accuracy on one dataset, but low accuracy on the

others. For example, SMKNN and LMKNN indicate

high accuracy on balance and zoo datasets, but

lower accuracy on banana and yeast dataset.

Phoneme and ring datasets are different cases, which

are divided into three: high, medium, and low

accuracy, yet CosKNN fails to achieve high

accuracy on both datasets.

Overall, CosKNN shows good performance on

the KEEL dataset, of the six datasets, there are four

datasets of which accuracy of CosKNN is classified

as high compared to others. It indicates that

CosKNN can potentially solve irrelevant class

problems because CosKNN can maintain curation

performance even though the K value increases.

CosKNN can be further developed using large

amounts of data and classes.

4.5 Performance analysis with other classification

methods

We also conduct performance analysis between

CosKNN with other classification results, namely

Support Vector Machine (SVM) [13] and Decision

Tree (DT) [7]. SVM is a classification method that

attempts to maximize the hyperplane boundary. The

method is based on statistical learning theory of

which results are significantly better than other

methods. SVM also performs well on datasets with

high dimensions. In this study, we use RBF as the

kernel function. The SVM also uses multiclass SVM

to solve multiclass problem for eye milkfish and iris

datasets. DT is a tree used as a reasoning procedure

in order to obtain answers to classification problem.

Flexibility constitutes the key point of this method,

especially as it provides the advantage of suggestion

visualization (in the form of a decision tree) that

makes the prediction procedure observable. In this

study, we use C4.5 as the DT algorithm.

The result of the comparison is presented in

Table 3. From the table, CosKNN indicates better

result compared to other methods on 5 datasets in

which CosKNN achieves highest accuracy on the

iris, vertebral column, diabetic retinopathy, seeds,

Received: October 30, 2019 23

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

(a) (b)

(c) (d)

(e) (f)

Figure. 5 Performance comparison with KEEL-dataset repository: (a) balance dataset, (b) banana dataset, (c) phoneme

dataset, (d) yeast dataset, (e) ring dataset, and (f) zoo dataset

Received: October 30, 2019 24

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

Table 3. Performance comparison of CosKNN with other methods

Dataset

Accuracy (%)

CosKNN
K-

NN
WKNN DWKNN LDWKNN

GNN SMKNN LMKNN
SVM DT

Milkfish eye 60.89 59.32 63.60 69.94 67.14 63.96 67.38 56.07 66.03 63.41

Iris 96.03 94.74 95.13 95.21 94.54 94.54 94.0 90.0 65.33 92.0

Vertebral

Column 80.95 80.34 80.02 76.31 71.67

79.11 73.87 71.61

78.71 80.90

Diabetic

Retinopathy 65.85 65.41 35.35 63.46 61.57

65.04 64.03 63.16

53.26 60.47

Wine 96.79 96.49 96.92 95.54 92.29 95.20 92.13 97.19 97.19 91.57

Blood 70.24 78.04 78.18 71.86 68.58 78.01 76.74 76.07 76.47 75.13

Audit data 62.63 92.67 37.37 62.63 62.63 97.52 37.37 37.37 99.36 1

Divorce 94.12 97.65 13.18 97.30 97.82 95.78 95.88 97.65 89.41 96.47

Seeds 91.81 91.31 91.42 90.44 87.95 91.28 89.05 90.48 92.38 90.48

Balance 88.06 87.65 87.91 74.12 75.00 85.95 87.52 89.28 87.52 78.4

Banana 90.24 90.24 90.24 87.44 84.24 90.10 80.87 79.09 64.21 87.77

Phoneme 29.35 84.29 29.35 29.35 29.35 84.43 59.86 60.18 87.52 78.4

Yeast 57.75 56.39 57.13 52.71 43.14 54.83 58.09 31.94 19.95 51.48

Ring 69.64 69.48 69.49 77.15 79.35 92.82 50.66 50.47 95.43 86.66

Zoo 26.26 43.25 17.44 38.75 40.57 40.45 42.57 43.55 48.51 40.57

and banana datasets. As a matter of fact, the highest

accuracy is achieved by LDWKNN of 97.82% on

the divorce dataset, but the accuracy of other

methods on that particular dataset is also above 90

including LMKNN, DWKNN, DT, SMKNN, GNN,

and CosKNN, of which accuracy of those methods

are highly significant. The compared classification

methods of SVM and DT indicate better

performance on the wine, phoneme, ring, and zoo

datasets for SVM, and data audit dataset for DT. A

specific case in the comparison is found in the yeast

and zoo datasets in which accuracy for all methods

indicates below 60% that it is reasonable if CosKNN

does not show good performance; the highest

accuracy is found in SMKNN of 58.09%.When

sorted from the highest accuracy of all datasets, the

superior method is CosKNN, SVM, WKNN, KNN,

DWKNN, LDWKNN, SMKNN, DT in which each

method is superior on 5 datasets, 4 datasets, 2

datasets, 1 dataset, 1 dataset, 1 dataset, 1 dataset, 1

dataset, respectively. The performance of GNN is

relatively the same as the other methods, but it does

not achieve high accuracy.

Based on the analysis conducted, it can be

concluded that CosKNN generally presents superior

performance compared to other methods, despite the

differences in the compared methods. The highest

accuracy on the CosKNN method is 96.79% on the

wine dataset. The compared methods of which

performance are relatively similar to CosKNN are

DWKNN and LDWKNN, even KNN. Besides

solving the irrelevant class problem, CosKNN can

also solve the same majority votes class problem as

such a problem does not occure during testing.

5. Conclusions

Based on the results and discussion, it can be

concluded that CosKNN generates high accuracy

performance in a number of datasets of which

accuracy achieves up to 96.79%. CosKNN is also

robust to irrelevant class problem alongside

increased number of K by recent weighting system

which involves two parties simultaneously. Even

though high accuracy performance of CosKNN is

similar to the recent refinements of KNN, CosKNN

performs better in terms of empirical testing of

features generated in certain color spaces. The

limitation of CosKNN to be further explored in

future studies is that CosKNN highly depends on

training set for prediction session, thus innovation is

imperative for the KNN-based method in order to

store training data as memory for prediction.

Acknowledgments

We would like to express gratitude to the

Directorate of Research and Community Service

(DRPM) DIKTI that fund this study in the scheme

of Basic Research of 2019 at University of

Bhayangkara Surabaya, with contract number

008/SP2H/LT/MULTI/L7/2019 on 26 March 2019,

and 170/LPPM/IV/2019/UB on 4 April 2019.

References

[1] T. Cover and P. Hart, “Nearest neighbor pattern

classification”, IEEE Transactions on

Received: October 30, 2019 25

International Journal of Intelligent Engineering and Systems, Vol.13, No.3, 2020 DOI: 10.22266/ijies2020.0630.02

Information Theory, Vol. 13, No. 1, pp. 21–27,

1967.

[2] Z. Pan, Y. Wang, and W. Ku, “A new general

nearest neighbor classification based on the

mutual neighborhood information”,

Knowledge-Based Syst., Vol. 121, pp. 142–152,

2017.

[3] Ö. F. Ertuğrul and M. E. Tağluk, “A novel

version of k nearest neighbor: Dependent

nearest neighbor”, Appl. Soft Comput., Vol. 55,

pp. 480–490, 2017.

[4] J. López and S. Maldonado, “Redefining

nearest neighbor classification in high-

dimensional settings”, Pattern Recognit. Lett.,

Vol. 110, pp. 36–43, 2018.

[5] J. Gou, H. Ma, W. Ou, S. Zeng, Y. Rao, and H.

Yang, “A generalized mean distance-based k-

nearest neighbor classifier”, Expert Syst. Appl.,

Vol. 115, pp. 356–372, 2019.

[6] X. Wu and V. Kumar, The top ten algorithms in

data mining. CRC Press, 2009.

[7] P.-N. Tan, M. Steinbach, and V. Kumar,

Introduction to data mining. Pearson Addison

Wesley, 2005.

[8] S. M. Ayyad, A. I. Saleh, and L. M. Labib,

“Gene expression cancer classification using

modified K-Nearest Neighbors technique”,

Biosystems, Vol. 176, pp. 41–51, 2019.

[9] K. U. Syaliman, E. B. Nababan, and O. S.

Sitompul, “Improving the accuracy of k-nearest

neighbor using local mean based and distance

weight”, Journal of Physics: Conference Series,

Vol. 978, No. 1, p. 012047, 2018.

[10] A. B. Hassanat, M. A. Abbadi, G. A.

Altarawneh, and A. A. Alhasanat, “Solving the

Problem of the K Parameter in the KNN

Classifier Using an Ensemble Learning

Approach”, International Journal of Computer

Science and Information Security, Vol. 12, No.

8, pp. 33-39, 2014.

[11] J. Gou, T. Xiong, and Y. Kuang, “A Novel

Weighted Voting for K-Nearest Neighbor

Rule”, J. Comput., Vol. 6, No. 5, 2011.

[12] G. E. A. P. A. Batista, and D. F. Silva, “How k-

nearest neighbor parameters affect its

performance”, JAIIO - Simposio Argentino de

Inteligencia Artificial, 2009.

[13] S. Theodoridis and K. Koutroumbas, Pattern

Recognition. Academic Press, 2009.

[14] E. Prasetyo, R. D. Adityo, and R.

Purbaningtyas, “Classification of Segmented

Milkfish Eyes using Cosine K-Nearest

Neighbor”, In: Proc. of International

Conference on Applied Information Technology

and Innovation, pp. 120–125, 2019.

[15] F. Klein, Elementary mathematics from an

advanced standpoint. Geometry. Dover

Publications, 2004.

[16] D. Dua and C. Graff, “UCI Machine Learning

Repository”, 2019. [Online]. Available:

http://archive.ics.uci.edu/ml.

[17] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del

Jesus, S. Ventura, and J. M. Garrell, “KEEL: a

software tool to assess evolutionary algorithms

for data mining problems”, Soft Comput., Vol.

13, No. 3, pp. 307–318, 2009.

[18] J. Alcalá-Fdez, A. Fernández, J. Luengo, J.

Derrac, S. García, and L. Sánchez, “KEEL

data-mining software tool: Data set repository,

integration of algorithms and experimental

analysis framework”, J. Mult. Log. Soft

Comput., 2011.

