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Abstract: Warehousing can be expensive because order picking requires considerable vehicular movement and labor 

hours. Although many previous studies have focused on order picker routing, there exists a lack of research on the 

simultaneous increase of order picking speed and energy reduction in rectangular warehouses with varying levels of 

traffic in each aisle. This study accordingly developed and evaluated a mathematical model for determining optimal 

picker routes considering the total travel time and energy consumed. The results were validated using the brute-force 

search method and benchmarked with the time-staged (TS) model. The energy savings were determined by comparing 

a time-optimized use-case (T) with one optimized for both time and energy (TE). Both use-cases provided routes up 

to 44% faster than the TS and avoided more than 50% of congested paths, and TE which represents the full 

functionality of our model provided a possible energy savings of up to 17% over T.  
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1. Introduction 

Warehouses play a critical role in the supply 

chain, enabling the efficient movement of goods. 

Warehouse operations include receiving, transferring 

and stocking, order picking, accumulation and 

sortation, and cross-docking and shipping. Order 

picking has long been identified as the most labor-

intensive, time-consuming and costly activity in 

practically every warehouse, consuming up to 60% of 

all labor hours [1], and as much as 55% of the total 

warehouse operating costs [2]. Moreover, pickers 

spend 60% of the order-picking time on traveling [1]. 

Therefore, the order picking process is given the 

highest priority by warehousing professionals to 

improve productivity. Besides productivity 

improvements, nowadays, either due to government 

regulation or market demand, most organizations are 

beginning to go green. Energy-saving efforts are also 

identified as an important task for green supply chain 

implementation [3-4]. For these reasons, businesses 

must improve order picking speed and reduce energy 

use simultaneously. 

During the order-picking process, pickers often 

travel with their powered vehicles (fuel-type or 

electric) to gather specified amounts of the 

appropriate stock-keeping units (SKUs) according to 

an order. Although this may seem like an easy task, 

in large warehouses, pickers may be unaware of 

strategies to complete their trips efficiently. 

Especially when having to consider several factors 

like travel time, energy consumption, and traffic 

conditions. Thus, appropriate routing could not only 

increase the efficiency of order picking but also 

reduces the energy consumption of vehicles. 

Additionally, a small energy saving in a single 

vehicle would imply a large energy saving for the 

entire fleet [5].  

Although many previous studies have focused on 

order picker routing, there exists a lack of research on 

the simultaneous increase of order picking speed and 

energy reduction in rectangular warehouses with 

varying levels of traffic in each aisle. This finding 

motivated our study. 

This study attempts to determine an optimal order 

picker route by considering both travel time and 

vehicular energy consumption. In this scheme, the 
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pickers travel with their vehicles in a rectangular 

warehouse in which the travel speed in each aisle of 

the warehouse may vary due to aisle congestion, and 

only a single picker is considered for each round of 

computation. A multi-objective mathematical model 

to determine an optimal route with consideration of 

travel time and energy consumption was developed 

that has the ability to simultaneously increase the 

order picking speed (thus providing travel time 

savings) and reduce energy consumption in 

rectangular warehouses with varying levels of traffic 

in each aisle. Further, a warehouse traffic map that 

provides historical travel speeds in each aisle to 

interoperate with the model was utilized. A computer 

simulation software was then applied to solve sample 

problems. The optimality of the results determined 

using the new model was then validated by the brute-

force search method, which selects the optimal 

solution by evaluating all possible solutions, as well 

as comparison with the results provided by another 

routing model used as a baseline. Additionally, a 

numerical example is provided to verify the 

performance of the model and illustrate its utility.  

The remainder of this paper is organized as 

follows: Section 2 reviews some related research and 

presents our research motivations, Section 3 

describes the characteristics of the example 

warehouse and problem scope, Section 4 presents the 

proposed novel mathematical model and the 

experimental design used to validate its optimality 

and performance, Section 5 provides the results and a 

discussion, and the conclusions and future directions 

of this work are presented in Section 6. 

2. Literature review 

Previous research into order picker routing has 

focused on either heuristic or optimal strategies for 

manual or automated warehouses. Heuristic 

strategies such as the S-shape, largest gap, return, and 

composite heuristics are widely used in practice as 

they are easy to implement [1], Many recent studies 

apply these strategies with the modern complicated 

problem such as the routing with access restriction 

problem [6], the routing in a non-standard warehouse 

[7] or the considering of both storage assignments 

and routing [8]. Although the efficient solution could 

be obtained, they are not guaranteed to return an 

optimal solution [1, 9]. Moreover, the performance of 

a heuristic routing strategy depends on the number of 

picks per aisle, it is impossible to establish a policy 

that achieves superior performance in all scenarios 

[10]. 

 

Figure.1 The solutions of the SCF and MCF 

formulations (left) compared with the solution of the TS 

formulation (right) 

 

In contrast to the heuristic routing strategies, 

optimal routing guarantees an optimal solution for 

each tour [1, 9]. These types of problems are typically 

formalized as the Steiner traveling salesman problem 

(STSP), a variant of the traveling salesman problem 

(TSP). Numerous studies have focused on optimal 

routing methods, several of which emphasize the use 

of either distance or travel time as the criterion for 

defining optimal routing [11-17]. Roodbergen and De 

Koster [11] proposed a dynamic programming 

method to determine the shortest order picking routes 

in three cross-aisles (two blocks) warehouse. This 

approach is restricted to implementation in more 

complicated order picking problems [11, 12].  

However, it is possible to determine the optimal 

routes for both basic and more complicated order 

picking problems by solving the instance of the 

integer programming model [12, 13]. Letchford, 

Nasiri, and Theis [13] proposed three compact integer 

programming formulations for the STSP problem: 

the single commodity flow (SCF), multi commodity 

flow (MCF), and time-staged (TS). Among the three 

compact formulations, the calculation performances 

of SCF and MCF are better but, as shown in Fig. 1, 

the TS is the only formulation that provides the exact 

sequence of traveling paths; other formulations only 

show which paths should be selected. 

Recently, many studies have focused on realistic 

picking contexts by simultaneously considering 

many criteria [14-17]. To address such multi-criteria 

problems, most researchers have focused on using 

multi-objective modeling to formulate the objective 

function and constraints, then solving by exact or 

approximation algorithms. 

No previous studies have simultaneously 

considered the travel time and energy consumption of 

the picker vehicle in a warehouse, in which the picker 

must travel through aisles with varying levels of 

traffic. The advantages of the integer programming 

approach and multi-objective modeling motivated us 
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to construct a mathematical model formulated as a 

multi-objective integer programming model that 

interoperates with a newly introduced warehouse 

traffic map to determine optimal routing.  

The proposed model was applied to two use-case 

scenarios: one considering only time (T) and the other 

considering both time and energy (TE), the 

comparison between which was used to verify the 

energy savings performance of the fully functional 

TE use-case. We also compared the results of the 

proposed model with the TS formulation proposed by 

Letchford, Nasiri, and Theis [13], which uses only the 

travel distance as its optimization criterion. This 

formulation could be used as the baseline for 

comparison as it is a single STSP formulation that 

gives the exact sequence of the optimal path, which 

is essential for determining the necessary travel steps.  

Moreover, to confirm that the solution obtained 

by solving the models proposed in this study is truly 

optimal and unaffected by any mistake in the solver 

package or programming code, several optimization 

studies employing the brute-force search method [18-

21] were used as a baseline. The brute-force search 

method enumerates all possible candidate solutions 

and then checks whether each candidate satisfies the 

problem statement. This type of method is ideal for 

confirming optimality because it always obtains a 

solution (if there is one) and is simple to implement 

without a sophisticated formulation.  

3. Problem description 

This paper considers a low-level picker-to-parts 

order-picking in a rectangular warehouse with 

parallel and cross aisles, as illustrated in Fig. 2. The 

area between two adjacent cross aisles is called a 

block, and each block has 4 double-sided shelves, 

each shelf has 12 storage locations (six on each side). 

Pickers can pass each other in opposite directions in 

an aisle. The point from which the picker starts a trip 

and returns to deposit picked items, called the depot,  

is located at the bottom-left corner of the warehouse. 

Gray areas show where the required items are placed. 
Fig. 3 shows a graph representation of the 

problem. The nodes are represented by numbers and 

possible routes by arrows. Gray nodes denote the 

location of required items, and node 0 denotes the 

depot. Although there may be multiple pickers in the 

warehouse at any given time, this paper considers 

only one picker at a time. The picker uses an electric 

order picking vehicle to travel, as illustrated by Fig. 

4, which has a navigation system that provides the 

picker with important information, including the 

routing plan and the picklist. 

 

 

Figure.2 The sample warehouse 

 

The picklist is a list of required items, which may 

have different weights. After the required items are 

picked, the picker and vehicle return to the depot to 

deposit all picked items and stand by for a new trip. 

Some aisles in the warehouse may be crowded, 

requiring the picker to travel through at a limited 

speed. The traffic map shown in Fig. 5 is used to 

provide information relating to traffic conditions in 

the warehouse: clear traffic routes are indicated by 

solid lines (S1), and congested routes are indicated by 

dashed lines (S2). This traffic map is assumed for our 

simulation, but in real-life applications, a traffic map 

can be formulated using the average speed of pickers 

that previously traverse the aisle. These data could be 

collected from an indoor positioning system attached 

to vehicles. The total energy consumption considers 

only energy-related to routing decisions, rather than 

real total energy. We assume that vehicles 

immediately have a certain velocity from start 

moving, the acceleration at starting and stopping is 

not considered due to it depends on the driving of 

pickers. 
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Figure.3 Graph representation of the sample warehouse 

 

 

Figure.4 Order picking vehicle 

 

 
Figure.5 Traffic map of the example warehouse 

 

Table 1. Notations 

Variable Meaning 

𝑑𝑎 Travel distance of arc 𝑎 (m) 

𝑣𝑎 Average speed of previous vehicles that 

passed arc 𝑎 (m/s) 

𝑟𝑎
𝑘 binary variable   

= 1 when arc a is selected to travel in step k 

= 0 otherwise 

𝑓𝑎
𝑘 Transporting weights passing by arc a in 

step k (N) 

𝑊𝑐 Weight of picker and vehicle (N) 

𝑊𝑇 Weight of all items on the pick list (N) 

𝑤𝑖  Weight of item to be picked at vertex 𝑖 (N) 

𝑤 Objective weight 

𝛿+(𝑖) Outgoing arcs of vertex 𝑖 
𝛿−(𝑖) Incoming arcs of vertex 𝑖 

𝑘 Step index 

𝐴 Set of arcs 

𝑉 Set of all vertices, including the depot, 

intersections, corners, and required item 

locations 

𝑉𝑅 Set of required vertices (depot and required 

item locations) 

𝜇𝑟 Rolling resistance coefficient 

𝐹 Force to drive vehicle (N) 

𝑚𝑇  Total mass of vehicles, including mass of 

vehicle, picker and carrying SKUs (kg) 

𝑎𝑐𝑐 Acceleration of vehicle (m/s2) 

𝑔 Acceleration due to gravity (m/s2) 

4. Mathematical model 

All notations are listed in Table 1. Based on the 

graph representation, as seen in Fig. 3, the newly 

formulated model, combines two functions: total 

travel time and total energy consumption function. 

The total travel time function, expressed in Eq. (1), it 

is the sum of the products of the selected arc 𝑟𝑎
𝑘 and 

its distance 𝑑𝑎  divided by the historical average 

speed 𝑣𝑎  of arc 𝑎. Step k increases by 1 when the 

picker moves from the current vertex to another 

vertex and is limited to 2(|V|-1) because there exists 

an optimal STSP solution for which the total number 

of steps does not exceed 2(|V|-1), this theorem was 

proved by Letchford, Nasiri, and Theis [13]. 

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 =  ∑ ∑ 𝑟𝑎
𝑘

𝑎∈𝐴

2(|𝑉|−1)

𝑘=1

𝑑𝑎

𝑣𝑎

 (1) 

The total energy consumption function expressed 

in Eq. (2) considers only energy-related routing 

decisions, rather than total energy use.  

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ ∑ 𝜇𝑟(𝑟𝑎
𝑘𝑊𝑐

𝑎∈𝐴

2(|𝑉|−1)

𝑘=1

+  𝑓𝑎
𝑘)𝑑𝑎  (2) 
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Figure.6 The motion resistance of the vehicle 

 

Further, for this function, which is based on 

Newton's laws, the vehicle energy consumption 

equivalent to the minimum work done by the vehicle 

to carry the load along the path, is shown in Eq. (3). 

𝐸𝑛𝑒𝑟𝑔𝑦 =  𝑊𝑜𝑟𝑘 = 𝐹. 𝑑𝑎  (3) 

Since the vehicle uses wheels for motion, the 

minimum force necessary to drive the vehicle is 

related by the inertial force and rolling resistance, as 

seen in Fig. 6 and can be express by Eq. (4). 

𝐹 = 𝑚𝑇 . 𝑎𝑐𝑐 + 𝜇𝑟. 𝑚𝑇 . 𝑔 (4) 

According to the study’s assumption, the inertial 

forces (𝑚𝑇. 𝑎𝑐𝑐) term are not considered, Eq. (4) thus 

becomes Eq. (5)  

𝐹 = 𝜇𝑟. 𝑚𝑇 . 𝑔 (5) 

Substitutes Eq. (5) into Eq. (3) yields: 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝜇𝑟. 𝑚𝑇. 𝑔. 𝑑𝑎 (6) 

For Integer programming formulation, the 

weight (𝑚𝑇. 𝑔) in Eq. (10) is replaced by 𝑟𝑎
𝑘𝑊𝑐 +

𝑓𝑎
𝑘  , where 𝑟𝑎

𝑘𝑊𝑐  is the weight of vehicle passing 

through arc 𝑎 in step 𝑘, if arc 𝑎 was selected, while 

𝑓𝑎
𝑘 is a linking variable (carried weight) of 𝑟𝑎

𝑘, thus 

Eq. (6) becomes Eq. (7). 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝜇𝑟(𝑟𝑎
𝑘𝑊𝑐 + 𝑓

𝑎
𝑘

)𝑑𝑎 (7) 

Therefore, the total energy consumption 

function can be formulated as seen in Eq. (2). Eq. 

(1) and (2) are combined and normalized to form a 

new objective function, shown in Eq. (8). The 

model’s constraints are expressed in Eq. (9) – (16). 

Constraints (9) and (10) ensure that the picker first 

departs from the depot and that no other arcs are 

selected in the first step. Constraint (11) ensures that 

all required vertices are visited at least once. 

Constraint (12) states that the picker arrives at and 

then departs from all vertices (except the depot) in 

sequential steps. Constraint (13) is a load 

conservation constraint. Constraint (14) ensures that 

vehicle load will be increased when the picker 

retrieves an item. Constraint (15) ensures that if 

𝑍 =   𝑚𝑖𝑛    𝑤 
∑ ∑ 𝑟𝑎

𝑘
𝑎∈𝐴

2(|𝑉|−1)
𝑘=1

𝑑𝑎

𝑣𝑎
 

∑
𝑑𝑎

𝑣𝑎
𝑎∈𝐴

+  (1 − 𝑤)
∑ ∑ 𝑑𝑎𝜇𝑟(𝑟𝑎

𝑘𝑊𝑐𝑎∈𝐴
2(|𝑉|−1)
𝑘=1 +  𝑓𝑎

𝑘) 

∑ 𝑑𝑎𝑎∈𝐴 𝜇𝑟(𝑊𝑐 + 𝑊𝑇)
         (8) 

𝑠. 𝑡.  ∑ 𝑟𝑎
1

𝑎∈𝛿+(0)

= 1  (9) 

    ∑ 𝑟𝑎
1 = 0                      

𝑎∈𝐴

 ( 𝑎 ∈ 𝐴 \𝛿+(0) ) (10) 

 ∑ ∑ 𝑟𝑎
𝑘 = 1

𝑎∈𝛿+(𝑖)

2(|𝑉|−1)

𝑘=1

 ( ∀ 𝑖 𝜖 𝑉𝑅  ) (11) 

 ∑ 𝑟𝑎
𝑘

𝑎∈𝛿−(𝑖)

=  ∑ 𝑟𝑎
𝑘+1

𝑎𝜖𝛿+(𝑖)

 ( ∀ 𝑖 𝜖 𝑉 \ {0}; 1 ≤  𝑘 ≤ 2(|𝑉| − 1) − 1) (12) 

 ∑ 𝑓𝑎
𝑘+1

𝑎∈𝛿+(𝑖)

 – ∑ 𝑓𝑎
𝑘

𝑎𝜖𝛿−(𝑖)

= 0 ( ∀ 𝑖 𝜖 𝑉 \ 𝑉𝑅;  1 ≤  𝑘 ≤ 2(|𝑉| − 1) − 1) (13) 

 ∑ 𝑓𝑎
𝑘+1

𝑎∈𝛿+(𝑖)

 − ∑ 𝑓𝑎
𝑘

𝑎𝜖𝛿−(𝑖)

  = 𝑤𝑖 ∑ 𝑟𝑎
𝑘

𝑎∈𝛿+(𝑖)

 ( ∀ 𝑖 𝜖 𝑉𝑅 \ {0};  1 ≤  𝑘 ≤ 2(|𝑉| − 1) − 1) (14) 

  0 ≤     𝑓𝑎
𝑘   ≤  𝑊𝑇𝑟𝑎

𝑘  ( ∀ 𝑎 𝜖 𝐴 \ 𝛿+(0);  1 ≤  𝑘 ≤ 2(|𝑉| − 1)) (15) 

  𝑟𝑎
𝑘 ∈ {0,1} ( ∀ 𝑎 ∈ 𝐴 ;   1 ≤  𝑘 ≤ 2(|𝑉| − 1) ) (16) 
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transporting weights pass by arc a, then that arc is 

selected. Constraint (16) ensures that all decision 

variables are binary. Subtours cannot occur, since 

only one arc from the depot can be selected 

(constraints (9) and (10)), and arcs are continuously 

connected to another selected arc in subsequent 

steps (constraint (12)) until every required vertex 

𝑉𝑅  has been visited (constraint (11)).  
When considering only time, we set the 

objective weight w to 1, which causes the energy 

consumption term to be zero. When considering 

both time and energy, total travel time minimization 

should be set as a priority while simultaneously 

using the least amount of energy. Hence, the 

objective weight w is set to 0.9 for this use-case. 

The TS formulation proposed by Letchford, 

Nasiri, and Theis [13] was used as the baseline for 

evaluation of the model proposed in this study. The 

objective function and constraints were defined as 

shown in Eqs. (17) – (22), in which Eq. (17) is the 

objective function and Eqs. (18) – (22) are its 

constraints: Eqs. (18) – (19) ensure that the picker 

starts at the depot and no arc is selected in the first 

step, Eq. (20) ensures that all required vertices 

(including the depot) are visited, Eq. (21) ensures 

that the picker enters and leaves from any vertex in 

the next step and Eq. (22) ensures that all decision 

variables are binary. 

5. Simulations 

After formulating the model, we developed 

software to simulate and display the results. The 

software was built with C# on the .NET 4.0 

framework in combination with Python 2.7 and the 

Pymprog 1.0 simplex solver library, using the Visual 

Studio 2015 Community Edition as an integrated 

development environment. The computer used for 

this experiment consisted of an Intel Core i7 CPU 

with 16GB memory. The software process diagram is 

shown in Fig.7.  

From the outset, the user has a choice to generate 

a new order picking problem or load a previously 

saved problem. The generated problem includes the 

list of required items, picking locations, the weight of 

each item, and the generated warehouse traffic 

condition (average speed for each path). The user also 

has a choice to select the mathematical models 

between our proposed model and the Time-staged 

(TS) model. After finishing the step above, the 

software performs load calculation parameters that 

have been previously configured and then generates 

the traveling cost matrix formulated from the 

configuration of the warehouse that includes the 

number of shelves, the number of storage locations, 

aisle length, aisle spacing, and the traffic condition. 

The objective and its constraints are automatically 

loaded into the solver, and the solver is run to find the 

optimal route. On completion, the optimal route with 

calculated total travel time and the total energy 

consumption is displayed. The user is then presented 

with a choice to cross-check the simulation’s result 

by running a Brute-force search method. 

𝒁 = 𝒎𝑖𝑛 ∑ ∑ 𝑟𝑎
𝑘

𝑎∈𝐴

2(|𝑉|−1)

𝑘=1

𝑑𝑎  
 (17) 

𝒔. 𝒕.  ∑ 𝑟𝑎
1

𝑎∈𝛿+(0)

= 1  (18) 

             ∑ 𝑟𝑎
1 = 0   

𝑎∈𝐴

  ( 𝑎 ∈ 𝐴 \𝛿+(0) ) (19) 

         ∑ ∑ 𝑟𝑎
𝑘 = 1

𝑎∈𝛿+(𝑖)

2(|𝑉|−1)

𝑘=1

                ( ∀ 𝑖 𝜖 𝑉𝑅  ) (20) 

          ∑ 𝑟𝑎
𝑘

𝑎∈𝛿−(𝑖)

= ∑ 𝑟𝑎
𝑘+1

𝑎𝜖𝛿+(𝑖)

   (∀ 𝑖 𝜖 𝑉 \ {0}; 1 ≤  𝑘 ≤ 2(|𝑉| − 1) − 1) (21) 

          𝑟𝑎
𝑘 ∈ {0,1}  ( ∀ 𝑎 ∈ 𝐴 ;   1 ≤  𝑘 ≤ 2(|𝑉| − 1) ) (22) 
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Figure.7 The software process diagram 

 

Normally, this check returns the same result as 

that of the simulation, if the result is truly optimal, 

but may return a better solution if one exists. After 

the result is returned, the user has the option to 

continue with the next problem or end the operation. 

Concerning the brute-force search method, 

ordinarily, this technique consumes a lot of time and 

resources. However, in this cross-checking scenario, 

the number of candidate solutions and iteration steps 

can be reduced since the total travel time, and the 

total energy consumption is already known from the 

previous simulation and can be used to limit the 

search space, resulting in faster checking. A 

schematic of this algorithm is shown in Fig. 8.  

Based on the algorithm presented in Fig. 8, the 

traveling step (K) is initially set to 1. A set of tours is 

populated, for example, at K = 1, all populated tours 

in the list have one travel step, e.g. {0->1},{0->5}, 

destination vertices (1,5) are both neighbors of the 

start vertex (0), at K = 2. All tours from the previous 

step are continuously connected, and if new branches 

are found, they also added to the list.  

 

 
 

Figure.8 Schematic representation of brute-force search 

method 
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Figure.9 Characteristic of populated tours 

 

Populated tours can be classified into three types 

as shown in Fig.9: “Incomplete tour.” is the tour that 

finally returns to the depot (vertex 0) without visiting 

all the required vertices; “Not yet complete tour” is 

the tour that is still being completed and the 

“complete tour” is the tour that has already visited all 

the required vertices (including returning to the 

depot). 

After each population process, all incomplete 

tours are removed from the list, and the total travel 

time and total energy consumption for each tour are 

calculated. Further, if there is no “Complete tour,” the 

tour population process is continued. Otherwise, if 

any “Complete tour” has travel time and energy 

consumption equal or better than the simulation, the 

process continues checking whether any “Not yet 

complete tour” that has total travel time and total 

energy consumption equal or better than the previous 

optimal solution. 

For the numerical experiments, all calculation 

parameters are shown in Table 2, and we set up 40 

example problems with a different batch size; each 

item locations, congested paths, and weights are 

randomly assigned. These details are presented in 

Table 3.  
 

 

 

Table 2. Simulation parameters 

Parameter Value 

The objective weight 𝑤 0.9(TE),1(T) 

Acceleration due to gravity 𝑔 9.8 m/s2 

Rolling resistance coefficient 𝜇𝑟 0.1 

Weight of vehicle and picker 𝑊𝑐 300 kg 

Parallel aisle spacing 8 m 

Parallel aisle depth 68 m 

Vehicle's payload capacity 1,000 kg 

Average speed of a clear (S1) route 1 m/s 

Average speed of a congested (S2) route 0.1 m/s 

 

We applied the proposed model to the T and TE 

use-cases in order to determine its energy saving 

performance. Then, the optimality of the calculation 

results was validated by comparison with the results 

obtained by the brute-force search method. After 

calculating the results of the T and TE use-cases 

using the proposed model, we then solved the same 

problems using the TS model to provide a baseline 

for comparison. Finally, the travel time savings 
percentage, energy savings percentage, and the 

congestion avoidance percentage were calculated 

using Eqs. (23) – (25). 

 

 

 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 % =   
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑇𝑆 − 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑇 𝑜𝑟 𝑇𝐸

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑇𝑆

× 100 (23) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑎𝑣𝑖𝑛𝑔𝑠 % =   
𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑇 𝑜𝑟 𝑇𝑆 − 𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛𝑇𝐸

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑇 𝑜𝑟 𝑇𝑆

× 100 (24) 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 % =   
𝑁𝑃𝑇𝑆 − 𝑁𝑃𝑇 𝑜𝑟 𝑇𝐸

𝑁𝑃𝑇𝑆

× 100 (25) 

Notation:  𝑁𝑃  is the total number of times passed through any congested path. 
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Table 3. The example problems 

No. Pick list (Assigned vertex no.) Congested paths 
Weight (kg) 

(Respectively) 

1 D12 (15) 0-5, 5-0, 14-9 52 

2 E4 (15) 5-0, 1-6, 2-7, 10-15 16 

3 G3(15) 11-6 58 

4 F11(15) 1-6,7-2,4-9,10-5,13-8,14-9 30 

5 B1(15) 0-5,9-4,1-15,15-1 18 

6 F8(15) 6-1,12-15,9-14 7 

7 D8(15) 1-6, 8-3, 9-15, 15-9, 14-9, 9-14 91 

8 B12(15) 6-1, 3-8 65 

9 C1(15) 1-6, 7-12, 14-9 98 

10 E2(15) 4-9, 9-14 92 

11 C10(15), F1(16) 0-5,1-6,7-12, 14-9 50, 78 

12 D3(15), G4(16) 0-5,3-15,10-5,11-6, 16-12, 8-13 62, 49 

13 F4(15), G3(16) 5-0, 5-10, 8-3, 9-4 98, 15 

14 F2(15), C6(16) 16-2, 10-5, 8-13 99, 69 

15 D2(15), A4(16) 1-6, 2-7, 7-2, 9-14 85, 33 

16 E1(15), G2(16) 1-6, 10-15, 9-14 62, 59 

17 A5(15), G4(16) 12-16,16-12 58, 34 

18 E1(15), G5(16)  1-6, 6-1, 8-3, 9-4 1, 39 

19 F10(15), A4(16) 10-9 46, 99 

20 C4(15), D10(16) 16-9, 9-16, 7-12 48, 1 

21 D9(15), C9(16), C8(17), A7(18), B5(19) 7-2, 4-15 ,15-4 64, 54, 17, 90, 79  

22 G3(15), C2(16), A3(17), E7(18), C12(19) 6-16, 13-8, 8-13 91, 10, 84, 16, 26 

23 H11(15), F11(16), A3(17), G9(18), E3(19) 6-11, 7-12, 15-14, 14-15, 9-4 20, 53, 61,18, 71  

24 B8(15), C8(16), D11(17), H10(18), A5(19) 0-19, 10-5, 6-1, 15-2, 17-4, 9-18 51, 42, 45, 24, 82 

25 C4(15), G9(16), A1(17), H10(18), C2(19) 17-5, 1-6, 19-2, 9-4, 11-6, 8-16, 16-13 18, 64, 67, 20, 75 

26 H7(15), B3(16), B6(17), E9(18), A3(19) 5-10, 5-19, 6-17, 7-12, 4-9 85, 53, 66, 93, 85 

27 C9(15), C11(16), F3(17), B12(18), D8(19) 0-5, 5-10, 1-6, 6-17, 18-2, 19-14 56, 61, 37, 37, 96 

28 H1(15), H11(16), A2(17), G4(18), B2(19) 19-6, 11-6, 2-7, 15-13 69, 24, 37, 97, 61 

29 D5(15), E4(16), A10(17), C7(18), C12(19) 18-2, 18-19, 16-5, 7-12, 8-13, 13-8 92, 82, 4, 72, 7 

30 A7(15), H4(16), G1(17), D6(18), B11(19) 15-1, 15-6, 19-2, 17-12, 16-13 2, 73, 68, 45, 82 

31 B5(19), C12(16), D8(21), D9(18), D10(24), 

E2(15), F2(22), G1(23), H1(20), H7(17) 

0-5, 2-16, 9-4, 15-10, 23-12, 17-14 21, 93, 84, 43, 65, 56, 50, 

52, 11, 55 

32 C5(20), C9(19), C11(22), C12(24), D9(18), 

D12(15), F5(21), G4(16), H1(17), H11(23) 

1-6, 6-21, 21-6, 16-7, 17-8, 8-3 39, 6, 2, 45, 22, 63, 86, 

73, 23, 6 

33 A2(16), B4(24), C2(17), C3(15), C4(20),  

D6(21), D9(18), D12(23), F1(19), H9(22) 

24-1, 20-7, 17-2, 21-3, 21-8, 13-8, 9-22 6, 38, 42, 31, 30, 40, 89, 

50, 84, 33 

34 A2(18), A3(24), B1(19), B2(16), B3(23),  

D5(17), D10(21), F4(20), G3(15), H1(22) 

18-24, 24-5, 6-20, 11-20, 22-13, 17-8 5, 87, 39, 79, 6, 90, 20, 

46, 61, 59 

35 A6(15), B3(22), B6(23), C1(24), C4(18),  

D1(20), D5(16), E2(17), F3(21), H1(19) 

5-0, 2-24, 16-3, 21-11, 12-7, 8-19, 14-9 49, 82, 17, 20, 57, 13, 61, 

94, 56, 81 

36 A4(18), B5(23), C2(17), C4(16), D2(22), 

D12(19), E1(20), F2(15), G4(21), H1(24) 

1-23,16-17,8-22,9-19,20-5 34, 31, 37, 59, 6, 19, 62, 

86, 68, 72 

37 B1(17), B5(15), B6(21), C1(24), D5(20), 

D6(16), E2(23), F4(18), G3(19), H7(22) 

0-5,15-21,6-18 7, 86, 35, 5, 84, 51, 49, 

42, 45, 23 

38 A1(24), A4(19), A5(22), B6(20), C4(15), 

E5(18), F5(17), G4(23), H5(16), H11(21) 

20-1,15-7,9-4,18-5,7-23,9-21,21-14 58, 13, 83, 2, 48, 17, 9, 

61, 13, 28 

39 A3(17), A5(23), B2(22), B3(24), C2(19), 

D2(16), F4(18), F9(21), H5(15), H10(20) 

24-6,12-21,21-12,13-15,9-20 83, 47, 20, 81, 94, 48, 67, 

40, 87, 32 

40 A2(17), B3(15), D2(22), D7(21), D9(18), 

E1(19), F4(16, F7(23), H5(20), H11(24) 

15-6,2-7,22-8,8-22,18-9,6-16,24-14 3, 37, 78, 17, 78, 56, 56, 

37, 72, 32, 62 
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6. Results and discussion 

The validation of the results obtained from the 

proposed use-case models (T and TE) and TS with 

the results of the brute-force search (BF) are shown 

in Figs. 10–12. These comparisons illustrate that the 

solutions obtained by the models are truly optimal 

and unaffected by any errors in the solver package or 

programming code, as the results are all consistent 

with the optimal results of the BF method.  
The travel time and the energy consumption of 

the T, TE, and TS models are shown in Figs. 13–14, 

and the travel time and energy savings percentages 

are provided in Tables 4–6. The comparison of the 

congestion avoidance percentages of the T and TE 

use-case models with the baseline TS model is shown 

in Table 7. 

 
Figure.10 Validation of the optimal T 

 
Figure.11 Validation of the optimal TE 

 
Figure.12 Validation of the optimal TS 

 

Figure.13 The travel time for T, TE, and TS 

 

 
Figure.14 The energy consumption of T, TE, and TS 

 

 

Table 4. Total travel time savings of T and TE over TS 

Batch size 
T - travel time 

savings (%) 

TE - travel time 

savings (%) 

1 44.91 44.91 

2 40.92 40.18 

5 37.51 37.51 

10 18.73 18.73 

All 30.27 30.04 

 

 

Table 5. Total energy savings of T and TE over TS 

Batch size  T - energy 

savings (%) 

TE - energy 

savings (%) 

1 -0.98 -0.98 

2 -8.26 0.05 

5 -9.12 -0.02 

10 -5.13 -2.24 

All -6.30 -1.20 

 

 

Table 6. Energy savings of TE over T 

Batch size energy-savings (%) 

1 0 

2 8.06 

5 17.59 

10 2.75 

All 4.86 
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Table.7 Congestion avoidance of T and TE compared to 

the optimal route of TS 

 Total congestion 

passing of TS  

Total Avoidance Avoidance 

(%) 

T 66 43 65 

TE 66 38 58 

 

Comparing the travel time of the T, TE, and TS 

models, it can be observed that the TS model requires 

a great deal of time, while our proposed model 

requires less: the maximum travel time savings for 

the T and TE use-cases are around 44% and 30%, 

respectively, for all batch sizes. When comparing the 

energy consumption of the T, TE, and TS models, it 

can be noted that although the energy consumption of 

the TS model is lowest, this savings represents a 

trade-off with the considerable amount of travel time 

required, in contrast with the TE use-case model, 

which provides the same level of savings with a 

shorter travel time.  

Comparing the T and TE use-cases, the T use-

case provides a slightly lower travel time as the TE 

use-case trades off a little travel time to save more 

energy, as shown in Table 6. For a batch size of one 

item, there are no choices for picking order 

sequencing, and so the energy savings percentage is 

zero. The energy savings begin with batch sizes of 

two or more items. The average energy savings 

percentage is 17% for a batch size of five items and 

4.86% for all picking cases. It can be seen in Table 7 

that, compared with the optimal route determined by 

the TS model (which does not consider the traffic 

condition), the T use-case avoids 65% of the 

congested paths and the TE use-case avoids 58%. 

The results of the numerical experiment 

demonstrate that the TE use-case, which represents 

the full functionality of our proposed model, provides 

30% faster picking speed than the TS model and 

reduces the energy consumption by up to 17% 

compared with the T use-case. Finally, up to 58% of 

the congested paths are avoided using the proposed 

TE use-case model.  

7. Conclusion 

A significant process in warehouse operation is 

order picking; it has been identified as the most labor-

intensive, time-consuming, and costly activity, and 

warehousing professionals give order picking the 

highest priority to improve warehouse productivity. 

Nowadays, due to either government regulation or 

market demand, most organizations are beginning to 

go green. Energy-saving efforts are also identified as 

one of the most important tasks for green supply 

chain implementation. Many studies have focused on 

order picker routing but there exists a lack of research 

that focusses on simultaneously increasing order 

picking speed and reducing the energy used in 

rectangular warehouses with varying levels of traffic 

in each aisle.  

This paper accordingly introduced a new 

mathematical model for order picker routing that 

minimizes the total travel time and picking vehicle 

energy consumption in a rectangular warehouse with 

varying levels of traffic in each aisle. After 

formulating the proposed mathematical model, we 

developed software to simulate the sample problems. 

The results of these simulations were then validated 

using the brute-force search method, indicating that 

the proposed model provides truly optimal routes. 

We then verified the energy savings by comparing 

two use-cases: one considering only time (T) and the 

other considering both travel time and energy 

consumption (TE). Moreover, the time-staged model 

(TS) proposed by Letchford, Nasiri, and Theis [13] 

was utilized as a baseline to verify the travel time 

savings and congested path avoidance. We found that 

both use-cases provided routes up to 44% faster than 

the TS and avoided more than 50% of congested 

paths. Comparing the two use-cases, the TE use-case 

consumed less energy due to its preference for 

picking heavy items at the end of the trip, making it 

possible to save up to 17% of the energy consumed 

in the T use-case. The TE use-case, which represents 

the full functionality of our proposed model, satisfies 

the objective of simultaneously increasing the order 

picking speed and reducing energy consumption. 

From the perspective of efficiency verification, 

although only a small amount of energy can be saved 

during a single trip, the implications of these 

relatively minor savings can be quite large, especially 

in modern warehouses where thousands of orders are 

picked every day.  
However, only small-scale warehouse has been 

examined, the large problems are still hard to solve. 

For future research, we plan to investigate further the 

capability of the model to perform in a large-scale 

warehouse and find a suitable calculation technique 

that conforms with the larger problems. 

Acknowledgments 

This research was supported by the Faculty of 

Engineering at Thammasat University. We would 

like to thank the anonymous reviewers, who have 

given valuable suggestions and comments that 

improved the quality of this paper, and our colleagues, 

who provided insight and expertise that greatly 

assisted our research. 



Received:  December 19, 2019                                                                                                                                           328 

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020           DOI: 10.22266/ijies2020.0430.31 

 

References 

[1] R. De Koster, T. Le-Duc, and K. J. Roodbergen, 

“Design and control of warehouse order picking: 

A literature review”, European Journal of 

Operational Research, Vol.82, No.2, pp.481-

501, 2007. 

[2] J. A. Tompkins, J. A. White, Y. A. Bozer, E. H. 

Frazelle, and J. M. A. Tanchoco, Facilities 

Planning, 4th Edition, John Wiley & Sons, 

Hoboken, N.J., 2010. 

[3] R. Howes, J. Skea, and B. Whelan, Clean and 

Competitive: Motivating Environmental 

Performance in Industry, 1st Edition, Routledge, 
London, 2013. 

[4] A. Hafezalkotob, “Competition, cooperation, 

and coopetition of green supply chains under 

regulations on energy saving levels”, 

Transportation Research Part E: Logistics and 

Transportation Review, Vol.97, pp.228-250, 

2017. 

[5] T. Minav, L. Laurila, and J. Pyrhönen, “Energy 

recovery efficiency comparison in an electro-

hydraulic forklift and in a diesel hybrid heavy 

forwarder”, In: Proc. of International 

Symposium on Power Electronics, Electrical 

Drives, Automation and Motion, pp.574-579, 

2010. 

[6] F. Chen, G. Xu, and Y. Wei, “Heuristic routing 

methods in multiple-block warehouses with 

ultra-narrow aisles and access restriction”, 

International Journal of Production Research, 

Vol.57, No.1, pp.228-249, 2019. 

[7] U. Pferschy and J. Schauer, “Order batching and 

routing in a non-standard warehouse”, 

Electronic Notes in Discrete Mathematics, 

Vol.69, pp.125-132, 2018. 

[8] S. Quader and K. K. Castillo-Villar, “Design of 

an enhanced multi-aisle order-picking system 

considering storage assignments and routing 

heuristics”, Robotics and Computer-Integrated 

Manufacturing, Vol.50, pp.13-29, 2018. 

[9] R. De Koster and E. Van Der Poort, “Routing 

order pickers in a warehouse: a comparison 

between optimal and heuristic solutions”, IIE 

Transactions, Vol.30, No.5, pp.469–480, 1998. 

[10] J. A. Cano, A. A. Correa-Espinal, and R. A.  

Gómez-Montoya, “An evaluation of picking 

routing policies to improve warehouse 

efficiency”, International Journal of Industrial 

Engineering and Management, Vol.8, No.4, 

pp.229-238, 2017. 

[11] K. J. Roodbergen and R. De Koster, “Routing 

order pickers in a warehouse with a middle 

aisle”, European Journal of Operational 

Research, Vol.133, No.1, pp.32–43, 2001. 

[12] L. Pansart, N. Catusse, and H. Cambazard, 

“Exact algorithms for the order picking 

problem”, Computers & Operations Research, 

Vol.100, pp.117-127, 2018. 

[13] A. N. Letchford, S. D. Nasiri, and D. O. Theis, 

“Compact formulations of the Steiner traveling 

salesman problem and related problems”, 

European Journal of Operational Research, 

Vol.228, No.1, pp.83–92, 2013. 

[14] J. Y. Shiau and T. C. Liao, “Developing an order 

picking policy for economical packing”, In: 

Proc. of IEEE International Conference on 

Service Operations, Logistics, and Informatics, 

pp.387–392, 2013. 

[15] D. G. Ramirez-Rios, L. P. M. Romero, and J. R. 

Montoya-Torres, “Multicriteria optimization in 

a typical multi-aisle warehouse with multiple 

racks”, In: Proc. of EURO Mini-Conference on 

Optimization in the Natural Sciences, pp.35–48, 

2014. 

[16] M. Çelik and H. Süral, “Order picking in a 

parallel-aisle warehouse with turn penalties”, 

International Journal of Production Research, 

Vol.54, No.14, pp.4340–4355, 2016. 

[17] T. Chabot, R. Lahyani, L. C. Coelho, and J. 

Renaud, “Order picking problems underweight, 

fragility and category constraints”, International 

Journal of Production Research, Vol.55, No.21, 

pp.6361-6379, 2017. 

[18] M. M. Abid and I. Muhammad. “Heuristic 

approaches to solve traveling salesman 

problem”, Indonesian Journal of Electrical 

Engineering and Computer Science, Vol.15, 

No.2, pp.390-396, 2015. 

[19] R. Jadczak, “Traveling salesman problem: 

approach to optimality”, Przedsiebiorczosc i 

Zarzadzanie, Vol.15, No.2, pp.157-169, 2014. 

[20] F. H. Prabowo, K. M. Lhaksmana, and Z. A. 

Baizal, “A Multi-Level Genetic Algorithm 

Approach for Generating Efficient Travel Plans”, 

In: Proc. of the 6th International Conference on 

Information and Communication Technology, 

pp.86-91, 2018. 

[21] E. Baidoo and S. O. Oppong, “Solving the tsp 

using traditional computing approach”, 

International Journal of Computer Applications, 

Vol.152, No.8, pp.13-19, 2016. 


