
Received: December 21, 2019 286

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Automatic Web Service Composition for SaaS Business Intelligence

Budi Harjo1,2* Riyanarto Sarno1 Siti Rochimah1

1Department of Informatics, Faculty of Information Technology and Communication,

Institut Teknologi Sepuluh Nopember, Indonesia

 2Department of Informatics Engineering, Faculty of Computer Science,

Universitas Dian Nuswantoro, Indonesia
* Corresponding author’s Email: budi.harjo13@mhs.if.its.ac.id

Abstract: An atomic web service is not enough to meet complex user needs. This need can only be fulfilled by

composing web services that perform operations automatically. The result of web service composition is a workflow.

To the best knowledge of the authors, in the currently available methods existing a workflow output is not used to

replace a workflow input. Also, web service backup is not provided. This can cause the transaction to stop because

the web service that is being accessed cannot be invoked. Therefore, the authors propose a method that can utilize a

workflow output to replace an input of another workflow and provide a web service backup. The supporting

techniques used are tf-idf weighting and cosine similarity. The proposed method was applied to compose web

services in a SaaS Business Intelligence application. The modules in Business intelligence are run using workflows

that are composed based on the similarity between input parameters and output parameters required by the user with

the web service metadata provided. The experimental results show that the proposed method can successfully

produce workflows whose input can be replaced by other workflows and provide appropriate web service backup.

Keywords: Automatic, Semantic, Web, Service, Composition, SaaS, Business, Intelligence.

1. Introduction

A web service is a service application based on

Software as a Service (SaaS) by utilizing Service-

Oriented Architecture (SOA) [1]. It uses the Web

Service Description Language (WSDL) as a tool to

compose cross-platform and reusable web services,

making it very valuable for users [2]. In order to

meet user needs, web service composition (WSC) is

needed. Several atomic web services can be

combined to form a composite web service or a

workflow. Several workflows can be combined to

more complex workflows. Web service composition

can be done using existing tools such as Business

Process Execution Language (BPEL) Designer

Project [3], Business Process Model and Notation

(BPMN) [4], and several other methods that have

been proposed by previous authors [5-17].

These tools can only be used manually [3, 4], i.e.

the user must connect web service outputs to web

service inputs one by one. With this simple method,

the user cannot compare the semantic similarity

between the different inputs or outputs to be

selected, so that the user may not get a correct

workflow. Several methods have been proposed to

compose web services semantically, namely,

Semantic Markup for Web Services (OWL-S) [5],

Web Service Modeling Ontology(WSMO) [6], and

Semantic Annotations for WSDL and XML Schema

(SAWSDL) [7]. In the last few decades these

semantic methods have encouraged researchers to

develop automatic web services composition [8, 9].

These methods are intended to compose web

services automatically with initial values of input

parameters as precondition to get the requested

output. However, these methods cannot find outputs

that are searched by keyword from the web service

that has been found (‘branched search’). For

example, the user requests the TotalSales and

ProductName outputs, but at the stage of searching

Received: December 21, 2019 287

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Figure. 1 Replacing a workflow input with a workflow

output

only TotalSales can be found in the Sales web

service, which has the ProductId keyword.

Ultimately, these methods cannot find the

ProductName output, because they cannot utilize the

ProductId keyword to search for the ProductName

output.

D. Elsayed, E. Nasr, A. El Din Ghazali, and M.

Gheith also proposed a Web service composition

method they called PGAQK [10]. This method uses

a Parallel Genetic Algorithm (PGA) based on Q-

learning, which they integrate with K-means

clustering. However, this method cannot find

outputs that are searched by keyword from the web

service that has been found (‘branched search’).

To resolve the branched-search problem several

authors have proposed methods. N. Arch-int, S.

Arch-int, S. Sonsilphong, and P. Wanchai [11]

proposed a graph-based method that can overcome

the problem well. However, it cannot overcome

more complex branched-search problems, i.e.

replacing a workflow input with a workflow output,

as shown in Fig. 1.

This problem often arises in sequential

mathematical operations, especially in SaaS

Business Intelligence (BI) applications. In the first

case presented in this paper, as shown in Fig. 1,

there are 3 workflows, each of which only has 1 web

service, namely, GrossProfitCalculation,

OperatingProfitCalculation, and

NetProfitCalculation, respectively. The

GrossProfitCalculation workflow has 2 inputs,

namely, NetSales and CostOfGoodSold. The

OperatingProfitCalculation workflow has 2 inputs,

namely, GrossProfit and OperatingExpenses. The

NetProfitCalculation workflow has 3 inputs, namely,

OperatingProfit, Taxes and Interest. The

GrossProfitCalculation workflow has 1 output,

namely, GrossProfit. The

OperatingProfitCalculation workflow has 1 output,

namely, OperatingProfit. The NetProfitCalculation

workflow has 1 output, namely, NetProfit. In fact,

the OperatingProfit input of the

NetProfitCalculation workflow can be replaced by

the output of the OperatingProfitCalculation web

service, but this cannot be worked out using the

method proposed by [11]. A similar method was

also proposed by F. Zhang, Q. Zeng, H. Duan, and

C. Liu [12], but the weakness of this concept is also

the same as those proposed by [11].

Some concepts about business processes have

also been proposed by previous authors, namely, R.

Sarno, W. W. Ayu, A. N. Fajrin, D. Manfaat, M. S.

Arif, and I. Baihaqi [13], C. S. Wahyuni, K. R.

Sungkono, and R. Sarno [14], and K. R. Sungkono,

U. E. N. Rochmah, and R. Sarno [15]. The weakness

of these concepts is the same as the weakness of the

method proposed by [11, 12].

In order to get a good workflow, P. Wang, Z.

Ding, C. Jiang, M. Zhou, and Y. Zheng proposed the

Uncertainty Execution Effects method for

composing web services. It matches the input and

output parameters with existing web service

metadata and also detects uncertain effects caused

by values entered into the web service by using the

Graphplan method [16]. This method can

successfully shift the workflow to the appropriate

web service based on the effects that occur. This is

one of the methods that inspired the authors to

develop the method proposed in the present paper.

The authors apply a similar method to a BI module

Sales Analysis to Make a Sales Projection and

Calculate Bonus (Q18), however, without using the

Graphplan method, because this method has the

same weaknesses as [11-15].

‘Web Service Similarity with Standardized

Descriptions’ is the title of our previous paper [17].

To make automatic web services composition

possible, WSDL files, the program source files from

the web services, and the input and output

parameters are uploaded first. Upon entering the

input and output parameters, they are automatically

matched with the inputs and outputs of each of the

available web services. Matching failed if no web

service matched the input and output parameters. In

fact, there are web services that can be found based

on keywords found in web services that were found

before. In addition, this method also does not

provide web service backup.

At present, the SaaS Business Intelligence

applications provided by different providers use

services owned by each provider [18], so they

NetSales GrossProfitCalculation

GrossProfit=NetSales-

CostOfGoodSold

GrossProfit

OperatingProfitCalculation

OperatingProfit=GrossProfit-

OperatingExpenses

OperatingProfit

NetProfitCalculation

NetProfit

NetProfit=OperatingProfit-

Taxes-Interest

OperatingExpenses

Taxes

Interest

CostOfGoodSold

Received: December 21, 2019 288

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

cannot be developed by users freely using web

services that can be found spread across the internet.

As a result users cannot compose web services that

are currently being developed for free.

Therefore, we propose a method that aims to

replace an input in the workflow with an output in

another workflow in the BI application that we

propose, so that the reuse of the workflow is

realized. In addition, the method we propose can

also provide a web service backup on the BI

application that we propose, so that the system can

directly use the web service backup without having

to match the input and output parameters with the

web service metadata again which takes a long time.

These are our contributions to this research.

This paper is organized as follows. Related work

and contribution is shown in introduction in section

1. Section 2 shows a research method of this

research. Section 3 shows a proposed automatic web

service composition. Section 4 shows a

experimental result. Finally, section 5 provides

conclusions and future work.

2. Research method

This section presents background knowledge on

services language descriptions and planners for

solving web service composition problems.

2.1 Business intelligence

Business Intelligence (BI) is a process for taking

large amounts of data, analyzing data, and

presenting high-level sets of reports that summarize

data related to business actions, enabling

management to make fundamental daily business

decisions [18]. Based on the 2019 Magic Quadrant

for Analytics and Business Intelligence Platforms

[19], BI is led by several well-known vendors,

namely Microsoft, Tableau, Salesforce, Qlik, SAP,

and others. They compete to get the top position in

serving users. Currently, the technology they use is

Software as a Service (SaaS). SaaS allows users to

access applications through the Internet that are up

and running on the SaaS provider’s server and to use

them for free or for a fee based on usage [20-22].

Figure. 2 Business intelligence architecture

BI applications offered by each provider are

different, which can be seen from the BI architecture

provided. However, in general the BI architecture is

as depicted in Fig. 2.
In BI applications, one or more types of data can

be used, as shown in Fig. 2. Furthermore, the data

are extracted, transformed, and loaded for storage in

a data warehouse. The data warehouse contains data

used for online analytical processing (OLAP) and

dashboards in BI [23]. In the BI application, the data

warehouse is processed with OLAP to produce the

information needed by the user.

2.2 Term frequency inverse document frequency

Tf-idf weighting was first introduced by G.

Salton [24]. It stands for term frequency (tf) ×

inverse document frequency (idf). The tf-idf method

is used to determine to what extent a word (term) is

related to a document by weighting each word. It is

often used as a weighting factor in information

retrieval, text mining, and user modeling. Given a

collection of terms t ∈ T that appear in a set of N

documents d ∈ D, each with length nd, tf-idf

weighting is computed as follows:

𝑡𝑓𝑡,𝑑 =
𝑡𝑓𝑡,𝑑

𝑛𝑑
 (1)

𝑖𝑑𝑓𝑡 = log
𝑁

𝑑𝑓𝑡
 (2)

𝑊𝑡,𝑑 = 𝑡𝑓𝑡,𝑑 x 𝑖𝑑𝑓𝑡 (3)

𝑊𝑑𝑖 = 𝑊𝑑0 x 𝑊𝑑𝑖 (4)

where tft,d is the frequency of term t in document d,

𝑡𝑓𝑡,𝑑 is the inverse document frequency of term t, dft

is the document frequency of term t, 𝑊𝑡,𝑑 is the

weight (W) of term tin relation to document d, and

𝑊𝑑𝑖 is the weight (W) of document d in index i.

2.3 Cosine similarity measurement

Cosine similarity measurement was used in this

research to calculate the similarity between two

elements in a web service that have two or more

syllables. In the cosine similarity method two types

of documents are distinguished [25].

The first type is the occurrence document and

the second type is the query document [26]. The

occurrence document can be described as follows :

𝑑=(𝑤𝑑0, 𝑤𝑑1, ..., 𝑤𝑑𝑘) (5)

Received: December 21, 2019 289

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Fig. 3. Workflow of automatic web service composition

Table 1. Features and modules of Business intelligence application

Report Executive Dashboards Forecasting What-If Analysis

Total Sales in a Year Range (Q1) Sold Product Quantity in Current... (Q9) Quantity (Q13) Sales Projection (Q16)

Total Sales per Month in a Year (Q2) Total Sales in Current Year (Q10) Sales (Q14) Calculate Bonus (Q17)

Total Sales per Product Id in a Year (Q3) Total Profit in Current Year (Q11) Profit (Q15) Sales Analysis to ...(Q18)

Total Sales per State in a Year (Q4) Sales Average Per Three Month (Q12) Gross Profit (Q19)

Total Sales per State based on... (Q5) Operating Profit (Q20)

Total Sales per Customer in a Year (Q6) Net Profit (Q21)

Total Profit in a Year Range (Q7)

Total Profit per Product in a Year (Q8)

The query document is described as a vector shape:

�⃗�=(𝑤𝑞0, 𝑤𝑞1, ..., 𝑤𝑞𝑘) (6)

where 𝑤𝑑𝑖 and 𝑤𝑞𝑖 (0≤1≤k) are float numbers that

indicate the frequency of each term in the document,

while the dimensions of each vector correspond to

all terms available in the document.

Based on the similarity vector, the similarity

between the two vectors can be defined as follows:

𝑆𝑖𝑚 (𝑞,⃗⃗⃗ ⃗ 𝑑)=
�⃗⃗�. 𝑑⃗⃗⃗⃗

|�⃗⃗�|.|𝑑|⃗⃗⃗⃗⃗
=

∑ 𝑤𝑞𝑘
𝑡
𝑘=1 𝑥𝑤𝑑𝑘

√∑ (𝑤𝑞𝑘)2𝑡
𝑘=1 𝑥√∑ (𝑤𝑑𝑘)2𝑡

𝑘=1

 (7)

where �⃗� is vector q, 𝑑 is vector d, |�⃗�| is the length

of vector q, |𝑑| is the length of vector d, and

𝑆𝑖𝑚 (𝑞,⃗⃗⃗ ⃗ 𝑑) is the similarity between vector q and

vector d.

3. Proposed automatic web service

composition

In general, the method that is proposed in this

paper has three processes, namely, 1) creating the

web service metadata; 2) automatic web service
composition; and 3) running the workflow, as

shown in Fig. 3.

3.1 Creating the web service metadata

The first process shows that the provider creates

the web service metadata that will be used to create

composite web services or workflows. Anyone can

register as a user to the application manager.

Parsing WSDL File and XSD File

Service

provider

WSDL File

Word tokenization

Creating web service

metadata

XSD File

Wordnet

ontology

Matching web service metadata

and input parameters

Matching the previous result and

the output parameters

Automatic web Service

composition

User
Input parameters

Output parameters

Web service

metadata

Matching output parameters that

have not been found and the

metadata web services

Matching input that have been

found and existing workflows

output Workflow

repository

Selecting workflow

Calculating the form that will be

created

Running workflow

User

Workflow

Creating the form

Invoking workflow

Sales data

BI informationWorkflow

Received: December 21, 2019 290

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Table 2. Variants of ProductInformation web service

Service

Code

Grounding Model Profile

Input

Type

Output

Type

Input Name Output

Name

Operation Name Service Name

A.000 String

String

ProductId

Category

getProductInformation SeekProductInformation String SubCategory

String ProductName

A.001 String

String

ProductId

Category

getProductExplanation SearchProducExplanation String SubCategory

String ProductName

A.010 String

String

ProductId

Category

getProductInformation SeekProductInformation String SubCategory

String ProductTitle

A.011 String

String

ProductId

Category

getProductExplanation SearchProducExplanation String SubCategory

String ProductTitle

A.100 String

String

ProductId

Category

getProductInformation SeekProductInformation String SubCategory

String ProductName

A.101 String

String

ProductId

Category

getProductExplanation SearchProducExplanation String SubCategory

String ProductName

A.110 String

String

ProductId

Category

getProductInformation SeekProductInformation String SubCategory

String ProductTitle

A.111 String

String

ProductId

Category

getProductExplanation SearchProducExplanation String SubCategory

String ProductTitle

Table 3. Upload table

Field name Type Size

WebServiceId Int 3

Userid Varchar 20

UploadDate Date

WsdlFile Varchar 100

XsdFile Varchar 100

WebServiceName Varchar 100

OperationName Varchar 100

WebServiceAddress Varchar 100

InputName Varchar 50

OutputName Varchar 50

InputType Varchar 20

OutputType Varchar 20

Furthermore, the application manager authorizes

new users to create web service metadata, compose

web services, and run workflows. To support this

research, we replicated the dataset that was used in

[11]. We wanted to use the actual dataset, but the

server that stores it

(http://www.webservicex.net/new/Home/Index) and

the services repository (http://www.service-

repository.com/) cannot be accessed. Therefore the

authors replicated the dataset and stored it a

http://budiharjo.disertasi.com:4848/common/index.j

sf. The data the authors used for the BI application

were data shared by Tableau Communications at

https://community.tableau.com/docs/DOC-1236.

Making complex BI applications such as those

made by vendors requires a lot of time and energy,

therefore in this research a simple application was

created to simulate the proposed method, as

described in Table 1. However, the application can

easily be developed further. In order to support the

BI application, 147 web services were created using

the Netbeans IDE 8.0.2 software. Each of them is

able to produce wsdl and xsd files. They contain

information about the web service concerned. To

achieve the information, parsing files are needed.

However, the information in the form of text

contains prefixes, infixes, and suffixes that must be

removed for calculating the similarity between texts.

This removal is done using tokenization. The

tokenization results are saved as web service

metadata. The web service metadata were divided

into 21 groups, which were given initial letter codes

from ‘A’ to ‘U’. From group ‘A’ to ‘R’ each had 8

web services encoded from ‘000’ to ‘111’. For

example, in Table 2, group ‘A’ contains product

information web services and has 8 variants,

whereas from ‘S’ to ‘U’ each group only has 1

variant.

Received: December 21, 2019 291

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Each web service metadata consists of 3 groups

of elements, namely grounding, model, and profile.

In this case, the terms used by OWL-S were adopted

[5]. The web service metadata were stored in an

upload table, as described in Table 3.

3.2 Automatic web service composition

The second process requires 2 types of

parameters, namely, input parameters and output

parameters. Input parameters are a collection of

inputs that will be entered into the workflow by the

user, while output parameters are a collection of

outputs expected by the user in the workflow to be

run. They will be matched with the web services

metadata stored in the upload table (Table 3). The

automatic web services composition flow is

expressed in the TF-

IDFwithCosineSimilarityMeasure algorithm

provided in Appendix A and the

AutomaticWSComposition algorithm provided in

Appendix B. This process has 4 sub processes,

namely, 1) matching web service metadata with the

input names; 2) matching the previous result with

the output names; 3) matching the output names that

have not been found with the web services

metadata; 4) matching the input names that have

been found with existing workflows.

3.2.1. Matching input parameters with web service

metadata

In The method allows more than 1 input

parameter to be entered, for example in the first case,

OperatingProfit, Taxes, and Interest. The output

parameter is NetProfit. They are semantically

matched with the web service metadata. Before

being matched both are cleaned so that they do not

contain prefixes, infixesor suffixes.

The web service metadata readings are

expressed in the AutomaticWSComposition

algorithm, step 1 and 2, where the system reads the

Upload table that contains the web service metadata.

The input parameter is added to the query

array(ArrayQI) and the web service metadata are

added to the document array (ArrayD). This step is

expressed in the AutomaticWSComposition

algorithm, step 4 to 12. Furthermore, ArrayQI and

ArrayD are sent to the TF-

IDFwithCosineSimilarityMeasure algorithm, which

is a tf-idf algorithm that uses cosine similarity.

ArrayQI and ArrayD must be tokenized before they

are added to ArrayTerm. Hence, ArrayTerm is an

array that contains members of ArrayQI and ArrayD.

Each of member of this array will be semantically

matched with all members of ArrayQI and ArrayD.

The matching result is used to calculate the tf of the

words presented by ArrayTerm in the document

(ArrayD). To calculate tf, a similarity threshold of

0.8 was used here. Thus, tf will have a value of 1 if

the similarity threshold is more than or equal to 0.8.

To calculate tf, Eq. (1) is used.

The TF-IDFwithCosineSimilarityMeasure

algorithm has several steps to look for similar words

in the documents or ArrayQI and ArrayD, namely,

a) calculating inverse document frequency; b).

calculating weighted term document; c) calculating

the length of each document; d) calculating the

vector length; e) calculating the similarity between

ArrayQI and ArrayD with the cosine similarity

method.

3.2.1.1. Calculating inverse document frequency

The tf result is used to calculate idf as explained

in the TF-IDFwithCosineSimilarityMeasure

algorithm, step 27 to 36, where df is the number of

tf that have values greater than or equal to 0.8.

3.2.1.2. Calculating weighted term document

Weighted Term Document is formulated by Eq.

(3). It is expressed in TF-

IDFwithCosineSimilarityMeasure algorithm, step 37

to 41.

3.2.1.3. Calculating the length of each document

The length of each document is calculated with

Eq. (4). It is expressed in the TF-

IDFwithCosineSimilarityMeasurealgorithm, step 42

to 46.

3.2.1.4. Calculating the vector length

The vector length is formulated by Vector

Length = Wd x Wd,i. It is expressed in the TF-

IDFwithCosineSimilarityMeasure algorithm, step 47

to 68.

3.2.1.5. Calculating the similarity of ArrayQI and

ArrayD with cosine similarity

The cosine similarity of ArrayQI and ArrayD is

calculated with Eq. (7). This is expressed in the TF-

IDFwithCosineSimilarityMeasure algorithm, step 69

to 75.

Received: December 21, 2019 292

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

3.2.2. Matching the previous result and the output

parameters

This sub process needs the previous result, i.e.

the result of matching the input parameters with the

web service metadata to calculate the similarity

between the output parameters and the web service

metadata. This sub process is expressed in the

AutomaticWSComposition algorithm, step 18 to

22.

3.2.3. Matching the output parameters that were not

found with the web service metadata

This sub process serves to match the output

parameters that were not found based on the results

of matching the input parameters with the web

service metadata. In the first case, all output

parameters were found, so this sub process was

skipped. This sub process is expressed in the

AutomaticWSComposition algorithm, step 23 to

28.

3.2.4. Matching input parameters that have been

found with existing workflows

This sub process serves to calculate the

similarity between inputs that have been found with

the outputs of each workflow stored in the workflow

repository. This subprocess is expressed in the

AutomaticWSComposition algorithm, step 29 to 43.

3.3 Running the workflow

The third process is shown in Fig.3. This process

serves to run the workflow that was created by the

user. It has 4 sub processes, namely 1) selecting

workflow; 2) calculating form that will be created,

3) creating a form; and 4) invoking the workflow.

3.3.1. Selecting the workflow

This sub process serves to display all workflows

created by the user. The user can choose one of

them to run.

3.3.2. Calculating the form that will be created

The second sub process is used to calculate the

form that will be created. The number of forms

depends on the web service group separated by the

‘&&’ symbol. For example, the workflow in the

second case, ‘57-58-61-62-59-60-63-

64&&ZipCode_9-ZipCode_10-ZipCodes_13-

ZipCodes_14-ZipCode_11-ZipCode_12-

ZipCodes_15-ZipCode_16&& - ProductId_1-Zip-

IdOfProduct_5-IdOfProduct_6-ProductId_3-

ProductId_4-IdOfProduct_7-IdOfProduct_8’.This

workflow has 3 forms, because the workflow is

separated by an ‘&&’ symbol 2 times.

3.3.3. Creating the form

This sub process serves to create the form. The

number and name of the inputs in the form are

created based on the names of the inputs and the

outputs in the web service.

3.3.4. Invoking the workflow

This sub process serves to call the workflow that

has been chosen by the user. The workflow results

can be used as input for the next workflow

according to the method proposed in this paper.

4. Experimental result

There are 21 BI modules proposed as described

in Table 1. The web service composition is

automatically used to find the most appropriate

workflow for each module. Fig. 4 shows the web

service composition data input form for the module

Net Profit (Q21). After running, the results are

shown in Fig. 5.

In this research, to compare specifically with the

results of other methods the authors decide to use

the method [11], because the dataset and the method

we used are similar to those used by them. The

results of the comparison are explained in Table 4. It

only displays 3 modules, because the other modules

are the same type as them.

In the experiment, every atomic web service

stored in a repository is coded from numbers 1 to

147. They are composed to be workflows or more

complex workflows. The notation in the workflow

that we use is not the same as the notation used by

[11], but the meaning is the same, that is, the

workflow generated consists of a standalone web

service or more interconnected web services.

Some symbols are used in notation of workflows,

including, the symbol '-' is used as a separator

between similar web services in a workflow, for

example, in the results of the module (Q1) for the

results of the proposed method, meaning that the

web service coded with number 17 has similarities

to the web services behind it. The level of similarity

starts from number 18 to number 24. Each web

service coded from '18' to '24' is a backup of the web

service coded '17'. Web service backups are not

provided by workflows generated by the method

[11].

Received: December 21, 2019 293

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Figure. 4 Web service composition data input form for the module Net Profit (Q21)

Figure. 5 Final results of cosine similarity measure for the module Net Profit (Q21)

Input Name Parameters

Query Name Net Profit (Q21)

Output Name Parameters

Submit Exit

Term Name Q

OperatingProfit

D1

OperatingProfit

147

df Log (n/df)

Operate 1.000 1.000 2 0.000

Profit 1.000 1.000 2 0.000

Q D1

0.000 0.000

0.000 0.000

tf-idf

wtd
D1

0.000

0.000

0.000

wdi
Q D1

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

Vector length
D1

WsId

1.000

147

Result of Cosine similarity

Composition name : Net Profit (Q21)

Final result : C20/OperatingProfit,Taxes,Interest

Received: December 21, 2019 294

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Table 4. The results of the specific comparison

Name

of

Module

Parameters entered
Results of method

[11]

Results of proposed

method
Input Name Output Name

(Q1) BeginningYear,

EndingYear

TotalSales 17 17-18-19-20-21-22-23-24

(Q3) DemandedYear ProductName,TotalSales 41&&ProductId_1 41-42-43-44-45-46-47-

48&&ProductId_1-

ProductId_2-IdOfProduct_5-

IdOfProduct_6-ProductId_3-

ProductId_4-IdOfProduct_7-

IdOfProduct_8

(Q21) OperatingProfit,Taxes,

Interest

NetProfit 147

147||C20/operatingProfit,

taxes,interest

The symbol '&&' is used to separate two

workflows composed in a more complex workflow,

for example the results in the module (Q3) for the

results of the proposed method, the first workflow

'41-42-43-44-45-46-47-48' is joined with the second

workflow 'ProductId_1-ProductId_2-

IdOfProduct_5-IdOfProduct_6-ProductId_3-

ProductId_4-IdOfProduct_7-IdOfProduct_8' using

the symbol '&& '. This explains that the workflow

that is run first is the first workflow, then the second

workflow. In the second workflow there is a '_'

symbol, the meaning is that to run the second

workflow, the system has to match between the key

field ProductId or IdOfProduct of first workflow

and the key fields ProductId or IdOfProduct of the

second workflow. They are stored in a web service

that has codes '1' to '8'. ProductId or IdOfProduct

matching is aimed to search for output name

parameter ProductName not found in the first

workflow. Workflow like this is generated by [11],

but it does not have a web service backup as

workflows generated by the proposed method.

Symbol '||' is used to separate 2 pieces of workflow,

but only one of them can be selected, for example,

in the results module (Q21) for the results of the

proposed method. This workflow offers 2 choices.

As the first choice the user can only run a workflow

that has an atomic web service using WebServiceId

‘147’ and as the second choice the user can run a

workflow that has an atomic web service using

WebServiceId ‘147’, but the value of the

OperatingProfit input is obtained from an existing

workflow saved in the workflow repository with

CompositionId ‘20’. If a workflow with

CompositionId ‘20’ contains an input value that

must be obtained from another workflow, the

system will also look for that workflow. This step

also applies to the next workflow. Replacing a

workflow input with another workflow output

cannot be done in method [11].

In this research, as a comparison of results in

general with other methods are described in Table 5.

The comparison results described in Table 5 prove

that only the proposed method can replace an input

workflow with another workflow output and provide

a web service backup.

4.1 Accuracy measurement

For measuring the accuracy of the web service

composition system, the authors used a percentage

of precision Eq. (8), recall Eq. (9), and F measure

Eq. (10).

Precision =
TP

FP+TP
 x100% (8)

Recall =
TP

TP+FN
 x100% (9)

F − Measure = 2x
PrecisionxRecall

Precision+Recall
 x100% (10)

As shown in Table 6, the overall F measure score,

i.e. the average accuracy of the proposed method,

was 97.67%. The overall accuracy shown by the

precision score was 95.45%, while the overall

completeness of the web service search represented

by recall was 100%. While data in the Healthcare

domain is obtained from [11].

Mistakes (FP and FN) occurred when

semantically matching parameters and web service

metadata gave a result that was not expected by the

authors. For example, the matching result of the

words ‘City’ and ‘Total’ was 0.8. We think that this

result is too high. This affects the use of other words

in the parameters used.

Received: December 21, 2019 295

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

Table 5. The results of the general comparison

The Methods Replacing a workflow input with

another workflow output

Web service backup

The Proposed Method Available Available

Process Execution Language (BPEL)

Designer Project [3]
Not available Not available

Business Process Model and Notation

(BPMN) [4]
Not available Not available

Semantic Markup for Web Services

(OWL-S) [5]
Not available Not available

The Semantic Web Service Ontology

(WSMO)[6]
Not available Not available

Annotation paths [7] Not available Not available

Efficient planners in large-scale

service repository [8]
Not available Not available

Planning-based semantic web service

composition [9]
Not available Not available

Parallel Genetic Algorithm (PGA)

based on Q-learning [10]
Not available Not available

Graph-based searching [11] Not available Not available

Composition context-based web

services similarity measure [12]
Not available Not available

Context Sensitive Grammar [13] Not available Not available

Weighted-Tree Declarative Pattern

Models [14]
Not available Not available

Heuristic linear temporal logic pattern

algorithm [15]
Not available Not available

Uncertainty Execution Effects [16] Not available Not available

Standardized Descriptions [17] Not available Not available

Table 6. Metric performance comparison of the proposed method

Domain

Number

of WS

Number

of queries

TP FP FN Precision Recall F-measure

Business Intelligence 147 10 8 2 0 95.45% 100% 97.67%

Healthcare 90 24 220 10 30 95.65% 88.00% 91.66%

5. Conclusions and Future work

In this research , we provided 147 web services

that can be composed automatically into workflows

used in BI application. The proposed method can

replace an input workflow with another workflow

output and provide a backup web service on the web

service composition automatically. The overall

accuracy of the proposed method is better than [11],

which is 97.67% compared to 91.66%.

The future research can be done by adding a

Quality of Service (QoS) requirements and a facility

to convert workflows to xml-based graphs. Thus,

users can choose workflows that are faster, safer,

cheaper, and easier to access.

Acknowledgments

We would like to thank Institut Teknologi

Sepuluh Nopember and Dian Nuswantoro

University for supporting the research.

References

[1] F. S. Hsieh and J. B. Lin, “A self-adaptation

scheme for workflow management in multi-

agent systems”, J. Intell. Manuf., Vol. 27, No.

1, pp. 131–148, 2016.

[2] A. De Renzis, M. Garriga, A. Flores, A.

Cechich, C. Mateos, and A. Zunino, “A domain

independent readability metric for web service

descriptions”, Comput. Stand. Interfaces, Vol.

50, pp. 124–141, 2017.

[3] Eclipse, “BPEL Designer Project,” 2018.

[Online]. Available:

Received: December 21, 2019 296

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

https://www.eclipse.org/bpel/. [Accessed: 01-

Aug-2020].

[4] BPMN, “Object Management Group Business

Process Model and Notation”, 2019. [Online].

Available: http://www.bpmn.org/. [Accessed:

01-Aug-2020].

[5] M. Burstein, J. Hobbs, O. Lassila, D.

Mcdermott, S. Mcilraith, S. Narayanan, M.

Paolucci, B. Parsia, T. Payne, E. Sirin, N.

Srinivasan, and K. Sycara, “OWL-S: Semantic

Markup for Web Services”, W3C Member

Submission, 2004. [Online]. Available:

http://www.w3.org/Submission/2004/SUBM-

OWL-S-20041122/. [Accessed: 16-Jan-2020].

[6] H. H. Wang, N. Gibbins, T. R. Payne, and D.

Redavid, “A formal model of the Semantic

Web Service Ontology (WSMO)”, Inf. Syst.,

Vol. 37, No. 1, pp. 33–60, 2012.

[7] J. Köpke, “Annotation paths for matching

XML-Schemas”, Data Knowl. Eng., Vol. 122,

No. February 2017, pp. 25–54, 2019.

[8] G. Zou, Y. Gan, Y. Chen, and B. Zhang,

“Dynamic composition of Web services using

efficient planners in large-scale service

repository”, Knowledge-Based Syst., Vol. 62,

pp. 98–112, 2014.

[9] J. Puttonen, A. Lobov, M. A. Cavia Soto, and J.

L. Martinez Lastra, “Planning-based semantic

web service composition in factory automation”,

Adv. Eng. Informatics, Vol. 29, No. 4, pp.

1041–1054, 2015.

[10] D. Elsayed, E. Nasr, A. El Din Ghazali, and M.

Gheith, “PGAQK: An adaptive QoS-aware

Web Service Composition approach”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 4, pp. 231–240, 2018.

[11] N. Arch-int, S. Arch-int, S. Sonsilphong, and P.

Wanchai, “Graph-Based Semantic Web Service

Composition for Healthcare Data Integration”,

J. Healthc. Eng. 2017, Vol. 2017, 2017.

[12] F. Zhang, Q. Zeng, H. Duan, and C. Liu,

“Composition context-based web services

similarity measure”, IEEE Access, Vol. 7, pp.

65195–65206, 2019.

[13] R. Sarno, W. W. Ayu, A. N. Fajrin, D. Manfaat,

M. S. Arif, and I. Baihaqi, “Context sensitive

grammar for composing business process

model variants”, In: Proc. of 2015 Int. Conf. Sci.

Inf. Technol. Big Data Spectr. Futur. Inf. Econ.

ICSITech 2015, pp. 53–57, 2016.

[14] C. S. Wahyuni, K. R. Sungkono, and R. Sarno,

“Novel Parallel Business Process Similarity

Methods based on Weighted-Tree Declarative

Pattern Models”, International Journal of

Intelligent Engineering and Systems, Vol. 12,

no. 6, pp. 236–248, 2019.

[15] K. R. Sungkono, U. E. N. Rochmah, and R.

Sarno, “Heuristic linear temporal logic pattern

algorithm in business process model”,

International Journal of Intelligent Engineering

and Systems, Vol. 12, No. 4, pp. 31–40, 2019.

[16] P. Wang, Z. Ding, C. Jiang, M. Zhou, and Y.

Zheng, “Automatic Web Service Composition

Based on Uncertainty Execution Effects”, IEEE

Trans. Serv. Comput., Vol. 9, No. 4, pp. 551–

565, 2016.

[17] B. Harjo, R. Sarno, and S. Rochimah, “Web

Service Similarity with Standardized

Descriptions”, In: Proc. of 2015 Int. Conf. Sci.

Inf. Technol. Big Data Spectr. Futur. Inf. Econ.

ICSITech 2015, pp. 115–120, 2015.

[18] T. P. Liang and Y. H. Liu, “Research

Landscape of Business Intelligence and Big

Data analytics: A bibliometrics study”, Expert

Syst. Appl., Vol. 111, No. 128, pp. 2–10, 2018.

[19] Sisense Inc, “2019 Gartner Magic Quadrant for

BI and Analytics | Sisense”, 2019. [Online].

Available: https://www.sisense.com/de/gartner-

magic-quadrant-business-intelligence/.

[Accessed: 01-Aug-2020].

[20] E. Loukis, M. Janssen, and I. Mintchev,

“Determinants of software-as-a-service benefits

and impact on firm performance”, Decis.

Support Syst., Vol. 117, No. October 2018, pp.

38–47, 2019.

[21] S. Dutton, C. Marnay, W. Feng, M. Robinson,

and A. Mammoli, “Moore vs. Murphy:

Tradeoffs between complexity and reliability in

distributed energy system scheduling using

software-as-a-service”, Appl. Energy, Vol. 238,

No. January, pp. 1126–1137, 2019.

[22] I. Van De Weerd, I. S. Mangula, and S.

Brinkkemper, “Adoption of software as a

service in Indonesia : Examining the influence

of organizational factors”, Inf. Manag., 2016.

[23] N. U. Ain, G. Vaia, W. H. DeLone, and M.

Waheed, “Two decades of research on business

intelligence system adoption, utilization and

success – A systematic literature review”, Decis.

Support Syst., Vol. 125, No. July, p. 113113,

2019.

[24] G. Salton and C. Buckley, “TERM-

WEIGHTING APPROACHES IN

AUTOMATIC TEXT RETRIEVAL”, Inf.

Process. Manag., Vol. 24, No. 5, pp. 513–523,

1988.

[25] J. Ye, “Vector similarity measures of simplified

neutrosophic sets and their application in

Received: December 21, 2019 297

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

multicriteria decision making”, Int. J. Fuzzy

Syst., Vol. 16, No. 2, pp. 204–211, 2014.

[26] B. T. McInnes and T. Pedersen, “Evaluating

measures of semantic similarity and relatedness

to disambiguate terms in biomedical text”, J.

Biomed. Inform., Vol. 46, No. 6, pp. 1116–

1124, 2013.

Appendix A:

TF-IDFwithCosineSimilarityMeasure algorithm.

TF-IDFwithCosineSimilarityMeasure Algorithm:

Analyzing the relationship between a phrase/sentence and

a collection of documents.

Input: ArrayQI and ArrayD

Output: WebServiceList1

1:Procedure TF-

IDFwithCosineMeasure(ArrayQI,ArrayD)

2: max=Maximum number of ArrayD elements

3: for all m ∈ ArrayQI do

 4: for all a <max do

5 : Initialized empty Array to

ArrayQ,ArrayTerm,TermQD,ArrayDF,ArrayW

DT,ArrayIDF,ArrayWD_WDi,Sum_ArrayWD_

WDi,VectorLength,SumVectorLength,SQRTS

umVectorLength, DocId,CosineMeasure

6: ArrayQ=split 𝐴𝑟𝑟𝑎𝑦𝑄𝐼𝑚 with ","

7: for all b ∈ ArrayQ do

8: 𝐴𝑟𝑟𝑎𝑦𝑄𝑏 is stemmed, 𝑡ℎ𝑒𝑛 𝐴𝑟𝑟𝑎𝑦𝑄𝑏 =

𝐵{𝑆𝑡𝑒𝑚𝑚𝑒𝑑𝑇𝑒𝑥}

9:

𝐴𝑑𝑑𝑖𝑛𝑔 𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ𝐴𝑟𝑟𝑎𝑦𝑄𝑏

10: end for

11: for all b ∈ArrayD do

12: 𝐴𝑟𝑟𝑎𝑦𝐷𝑏 is stemmed, 𝑡ℎ𝑒𝑛 𝐴𝑟𝑟𝑎𝑦𝐷𝑏 =

𝐵{𝑆𝑡𝑒𝑚𝑚𝑒𝑑𝑇𝑒𝑥𝑡}

13:

𝐴𝑑𝑑𝑖𝑛𝑔 𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ𝐴𝑟𝑟𝑎𝑦𝐷𝑏

14: end for

15: for all b ∈𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚 do

16: for all c ∈ ArrayQ do

17: SimValue=similarity(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚𝑏, 𝐴𝑟𝑟𝑎𝑦𝑄𝑐)

18: 𝐴𝑑𝑑𝑖𝑛𝑔 TermQD 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎSimValue

19: end for

20: end for

21: for all b ∈𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚 do

22: for all c ∈ ArrayD do

23: SimValue=similarity(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚𝑏, 𝐴𝑟𝑟𝑎𝑦𝐷𝑐)

24: 𝐴𝑑𝑑𝑖𝑛𝑔 TermQD 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎSimValue

25 end for

26: end for

27: for all b < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚) do

28: TotalArrayDF=0.0

29: for all c < n(ArrayD) do

30: if((𝐴𝑟𝑟𝑎𝑦TermQD𝑐𝑏 ≥ 0.8) then

31: 𝑇𝑜𝑡𝑎𝑙𝐴𝑟𝑟𝑎𝑦𝐷𝐹 = 𝑇𝑜𝑡𝑎𝑙𝐴𝑟𝑟𝑎𝑦𝐷𝐹 + 1.00;

32: end if

33: TotTermQD++;

34: 𝐴𝑟𝑟𝑎𝑦𝐼𝐷𝐹𝑏 =Math.log10(TotTermQD

 /TotalArrayDF)

35: end for

36: end for

37: for all b < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚) do

38: for all c <(n(ArrayD)+1)do

39: 𝐴𝑟𝑟𝑎𝑦WTD𝑐𝑏 = 𝑇𝑒𝑟𝑚𝑄𝐷𝑐𝑏𝑥 𝐴𝑟𝑟𝑎𝑦𝐼𝐷𝐹𝑏

40: end for

41: end for

42: for all b < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚) do

43: for all c <(n(ArrayD)+1)do

44: 𝐴𝑟𝑟𝑎𝑦WD_WDi(𝑐−1)𝑏 = 𝐴𝑟𝑟𝑎𝑦WTD0𝑏 ∗

 𝐴𝑟𝑟𝑎𝑦WTD𝑐𝑏

45: end for

46: end for

47: for all b <(n(ArrayD)+1)do

48: msum=0.0

49: for all c < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚)do

50: msum=msum+ 𝐴𝑟𝑟𝑎𝑦WD_WDi𝑐𝑏

51: end for

52: 𝑆𝑢𝑚_𝐴𝑟𝑟𝑎𝑦WD_WDi𝑐 = msum

53: end for

54: for all b < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚) do

55: for all c <(n(ArrayD)+1)do

56: 𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑏 =𝐴𝑟𝑟𝑎𝑦WDT𝑐𝑏x

 𝐴𝑟𝑟𝑎𝑦WDT𝑐𝑏

57: end for

58: end for

59: for all b <(n(ArrayD)+1)do

60: msum=0.0

61: for all c < 𝑛(𝐴𝑟𝑟𝑎𝑦𝑇𝑒𝑟𝑚)do

62: msum=msum+ 𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑐𝑏

63: end for

64: 𝑆𝑢𝑚_ 𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑐=msum

65: end for

66: for all b <(n(ArrayD)+1)do

67: 𝑆𝑄𝑅𝑇𝑆𝑢𝑚𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑏

 =Math.sqrt(𝑆𝑢𝑚_ 𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑐)

68: end for

69: x=0.0

70: y=0.0

71: for all b <(n(ArrayD)+1)do

72: x=Sum_ArrayWD_WDic

73: y=(𝑆𝑄𝑅𝑇𝑆𝑢𝑚𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ0

 x 𝑆𝑄𝑅𝑇𝑆𝑢𝑚𝑉𝑒𝑐𝑡𝑜𝑟𝐿𝑒𝑛𝑔𝑡ℎ𝑐+1

74: 𝐴𝑟𝑟𝑎𝑦𝐶𝑜𝑠𝑖𝑛𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑏=x/y

Received: December 21, 2019 298

International Journal of Intelligent Engineering and Systems, Vol.13, No.2, 2020 DOI: 10.22266/ijies2020.0430.28

75: end for

76: text=""

77: for all b <(n(𝐴𝑟𝑟𝑎𝑦𝐶𝑜𝑠𝑖𝑛𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒))do

78: if(𝐴𝑟𝑟𝑎𝑦𝐶𝑜𝑠𝑖𝑛𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑏>0.8) then

79: text=

 text+','+string(𝐴𝑟𝑟𝑎𝑦𝐶𝑜𝑠𝑖𝑛𝑒𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑏)

80: end if

79: end for

80: adding WebServiceList1 element

81: end for

82:end for

83: End Procedure

Appendix B:

AutomaticWSComposition algorithm.

AutomaticWSComposition Algorithm: Automatic web

service compositionusing TF-IDF and cosine similarity

measure

Input: InputName Parameters and OutputName

Parameters

Output: A workflow that corresponds to InputName

Parameters and OutputName Parameters

1: Data=read(upload table

{WebSeviceId,Userid,WebServiceName,

WebServiceAddress,Input-

Name,OutputName,InputType OutputType})

2: Initialized ArrayWsId = 𝐷𝑎𝑡𝑎0 , ArrayWsAddress

=𝐷𝑎𝑡𝑎2, ArrayIN =𝐷𝑎𝑡𝑎4, ArrayON =𝐷𝑎𝑡𝑎5

3: Initialized Empty Array to WebServiceList1,

WebServiceList2,

WebServiceList3,ArrayD,ArrayDWs,ONNotFound,

Result1,Result2,FinalResult

4: ArrayQI= split 𝐼𝑛𝑝𝑢𝑡𝑁𝑎𝑚𝑒 text with ","

5: ArrayQN= split 𝑂𝑢𝑡𝑝𝑢𝑡𝑁𝑎𝑚𝑒 text with ","

6: for all a ∈ArrayIN do

7: ArrayArrayIN=split 𝐴𝑟𝑟𝑎𝑦𝐼𝑁𝑎 text with ","

8: if n(ArrayQI)=n(ArrayArrayIN)then

9: 𝐴𝑟𝑟𝑎𝑦𝐷𝑎= 𝐴𝑟𝑟𝑎𝑦𝐼𝑁𝑎

10: 𝐴𝑟𝑟𝑎𝑦𝐷𝑊𝑠𝑎= 𝐴𝑟𝑟𝑎𝑦𝑊𝑠𝐼𝑑𝑎

11: end if

12: end for

13: TF-IDFwithCosineSimilarityMeasure(ArrayQI,ArrayD)

14: if(n(WebServiceList1)==0) then

15: print "Result of Matching InputNames with web

service metadata is Null"

16: else then

17: Result1= WebServiceList1;

18: ArrayQI= ArrayQN

19: ArrayD= WebServiceList1;

20: TF-IDFwithCosineSimilarityMeasure

 (ArrayQI,ArrayD)

21: if (n(WebServiceList1==0) then

22: print "Result of Matching OutputNames

with WebServiceLis2 is Null"

23: else then

24: for all a <n(WebServiceList1)do

25: if (𝑊𝑒𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠1𝑎 = "") then

26: ONNotFound= 𝑊𝑒𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠1𝑎

27: end if

28: end for

29: ArrayQI= ONNotFound

30: ArrayD= ArrayWsIdelement but not

WebServiceList1 element

31: TF-IDFwithCosineMeasure

 (ArrayQI,ArrayD)

32: Result2= WebServiceList2;

33: Data=read(findingresult table

 {WorkflowId,OutputName })

34: Initialized ArrayWorkflowId=

 𝐷𝑎𝑡𝑎0,ArrayONResult=𝐷𝑎𝑡𝑎1

35: ArrayResult2=split Result2 with ","

33: for all a <n(ArrayResult2) do

37: for all b <n(ArrayONResult) do

38: if(Array𝑅𝑒𝑠𝑢𝑙𝑡2𝑎 == 𝐴𝑟𝑟𝑎𝑦𝑂𝑁𝑅𝑒𝑠𝑢𝑙𝑡𝑏)

 then

39: Array𝑅𝑒𝑠𝑢𝑙𝑡2𝑎= Array𝑅𝑒𝑠𝑢𝑙𝑡2𝑎 + "||"

 +String(ArrayON𝑅𝑒𝑠𝑢𝑙𝑡𝑎

40: end if

41: end for

42: end for

43: Insert(findingresult table

 {CompositionId,CompositionName,InputName,

 OutputNameEffect,OutputName,Workflow })

