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ABSTRACT

Objective: To evaluate the effect of standardized extract of Centella 
asiatica ECa 233 on inflammatory mediator production through 

cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 

(ERK1/2) and nuclear factor-κB (NF-κB) pathway in keratinocyte 

HaCaT cells. 

Methods: HaCaT cells were treated with 0.1, 1, 10 and 100 

μg/mL ECa 233 in the presence of lipopolysaccharide (LPS). 

Proinflammatory cytokines and prostaglandin E2 were assessed with 

ELISA. Western blotting was used to determine the inhibition of 

COX-2, ERK1/2 and NF-κB protein expression.

Results: ECa 233 suppressed LPS-induced release of interleukin-

1β, tumor necrosis factor-α, and prostaglandin E2. ECa 233 also 

inhibited COX-2, phosphorylation of ERK1/2 and the activation of 

NF-κB. Moreover, the formation of reactive oxygen species (ROS) 

was decreased in response to LPS-inflamed keratinocytes.

Conclusions: ECa 233 inhibits LPS-stimulated production of 

inflammatory mediators in keratinocytes via suppressing ERK1/2 

and NF-κB pathways. The suppressive effect of ECa 233 may be 

related to an inhibition of ROS production. 

KEYWORDS: Centella asiatica; Cyclooxygenase-2; HaCaT; 

Interleukin-1β; Tumor necrosis factor-α

1. Introduction

  The human largest organ in the body is the skin which possesses 

an important role in the immune defense mechanism. Nonetheless, 

an improper immune response results in the initiation of 

inflammatory skin disease[1]. One of the most typical complications 

in dermatology is an inflammatory skin condition that affects the 

quality of life and produces excessive financial inconvenience. The 

inflammatory skin condition is characterized in acute condition by 

occasional rashes with itching as well as redness and in chronic 

condition elicited by dermatitis, rosacea, seborrheic dermatitis, 

and psoriasis[2]. Upon skin injury, keratinocyte cytokines including 

tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) 

are produced responsible for cutaneous inflammation[3,4]. To date, 

non-steroidal and steroidal anti-inflammatory drugs are common 

medications used to treat acute inflammation; however, they have 

not yet improved chronic inflammatory diseases. Additionally, 

gastrointestinal bleeding and cardiovascular complications are 

generally adverse effects found after treating with some of these 

medications[2]. Recently, many studies have been conducted 

to suppress the inflammatory cytokines and chemokines of 

lipopolysaccharide (LPS)-inflamed keratinocytes and discover the 

linked mechanisms[5,6]. Keratinocytes are the prominent cell type 

of epidermis which play an important part in the pathogenesis of 

inflammatory skin diseases such as atopic dermatitis[7]. In order to 

represent the keratinocyte-like features, HaCaT cell line which is an 

immortalized aneuploidy from normal adult human skin has been 
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employed in the in vitro study[8]. 

  In traditional medicine, Centella asiatica (C. asiatica) (Linn) 

Urban has been generally consumed for treating a wide range of 

dermatological diseases[9] that contains a source of various bioactive 

compounds including asiaticoside, asiatic acid, madecassoside and 

madecassic acid[10,11]. C. asiatica possesses excellent antioxidant 

and antiinflammatory properties[12,13]. C. asiatica has been reported 

to suppress inflammatory responses in macrophages[12,13] and 

attenuate phthalic anhydride-induced atopic dermatitis in mice[13]. 

Madecassoside and asiaticoside, a major constituent isolated 

from C. asiatica, have also been extensively investigated on its 

pharmacological activities. Asiaticoside and madecassoside have 

potent anti-inflammatory effects in vitro[14] and protective effects 

against LPS-induced inflammation in an animal model[15-18]. ECa 

233, a C. asiatica extract with the patent-pending procedure, was 

kept the ratio between madecassoside and asiaticoside in a range of 

1.5 ± 0.5 and also ensured the content of triterpenoid glycoside at 

least 80%[19]. Since ECa 233 displays anti-inflammatory activity[20], 

it is likely to note that this compound could promote skin disorder 

treatment. Nonetheless, the cellular mechanism of ECa 233 in 

ameliorating LPS-induced inflammatory cytokines in keratinocytes 

has not been clarified. The aim of this study was to evaluate the anti-

inflammatory properties of ECa 233 on the inflammatory conditions 

in human keratinocytes. 

2. Materials and methods

2.1. Cell culture and reagent

  Human keratinocytes (HaCaT) cell line was obtained from the 

CLS cell line service (Heidelberg, Germany). HaCaT cells were 

maintained in Dulbecco’s modified Eagle’s medium (Biochrom, 

Germany) containing 10% fetal bovine serum, 1% antibiotic 

(penicillin/streptomycin) and 1% L-glutamine (Gibco, USA) in a 

CO2 incubator at 37 曟. ECa 233, a standardized C. asiatica extract, 

was provided by Siam Herbal Innovation Co., Ltd (Samutprakan, 

Thailand). Liquid chromatography-tandem mass spectrometry 

was used to quantify the contents of madecassoside (52%) and 

asiaticoside (41%) in the standardized C. asiatica extract ECa 

233[19,21]. ECa 233 was dissolved in dimethylsulfoxide (Sigma, 

St. Louis, MO, USA). Dimethylsulfoxide concentration in culture 

medium was consistently less than 0.1% (v/v), which was non-toxic 

to the HaCaT cells. Lipopolysaccharide (LPS) from Escherichia 
coli 055:B5 was obtained from Sigma (St. Louis, MO, USA). Other 

reagents were all of high grade for experiments.

2.2. Determination of nitric oxide (NO) level and cytotoxicity 
in HaCaT cells

  In our previous study, ECa 233 (0.1-100 μg/mL) did not cause a 

reduction in viability of HaCaT cells after 24 h treatment[22], so we 

used this concentration for all experiments in this study. HaCaT 

cells were activated with 10 μg/mL of LPS and then administered 

with 0.1, 1, 10 and 100 μg/mL of ECa 233 for 24 h. Additionally, 

we used either 100 μg/mL of ECa 233 or 1 μg/mL dexamethasone 

alone in order to observe the individual effect of ECa 233 and 

dexamethasone on HaCaT cells. After incubation, Griess reagent 

was used to evaluate nitrite levels in the medium. In brief, 100 μL of 

Griess reagent was combined with 100 μL of media and incubated 

for 10 min. Then, a microplate reader (Bio-Tex Instruments, Inc., 

VT, USA) was utilized to measure the nitrite-containing samples in 

culture medium at 540 nm. A standard curve was made using sodium 

nitrite. In addition, the cells were incubated with 500 μg/mL of MTT 

solution for 2 h and then the HaCaT viability was detected at 570 nm 

by using a microplate reader. 

2.3. Evaluation of intracellular reactive oxygen species (ROS) 
generation in HaCaT cells

  The oxidation of 2′,7′-dichlorofluorescein diacetate (Sigma, St. 

Louis, MO, USA) was used to assay the production of intracellular 

ROS in HaCaT cells. Briefly, HaCaT cells were grown in 96-well 

plate at the density of 5伊104 cells/well. Then, HaCaT cells were 

stimulated with LPS in the presence or absence of the ECa 233 

at 0.1, 1, 10 and 100 μg/mL for 24 h. Dexamethasone (Sigma, 

St. Louis, MO, USA) at the concentration 1 μg/mL was used as a 

reference drug. After 24 h of incubation, the cells were exposed with 

50 μM of 2′,7′-dichlorofluorescein diacetate for 1 h, at 37 曟 in dark 

condition. A fluorescence microplate reader (Bio-Tex Instruments, 

Inc., VT, USA) was used to assess the intensity of DCF at 485 nm of 

excitation wavelength and 530 nm of emission wavelength. 

2.4. Determination of prostaglandin E2 (PGE2), TNF-α  and 
IL-1β  production

  IL-1β and TNF-α have been stated to play a critical role during 

inflammatory responses[23,24]. HaCaT cells were stimulated with 

LPS in the presence or absence of 1 μg/mL dexamethasone and ECa 

233 at concentrations of 0.1, 1, 10 and 100 μg/mL for 24 h. After 24 

h incubation, the ELISA method was used to evaluate the level of 

PGE2, TNF-α, and IL-1β in the cultured medium of HaCaT cells.

2.5. Determination of the expression of cyclooxygenase-2 
(COX-2), extracellular signal-regulated kinase 1/2 
(ERK1/2) and nuclear factor-κB (NF-κB) in HaCaT cells

  After the cells were stimulated with LPS in the presence or 

absence of ECa 233 (0.1, 1, 10 and 100 μg/mL) and 1 μg/mL 

of dexamethasone for 24 h, RIPA buffer contained protease and 

phosphatase inhibitor cocktail was applied to HaCaT cells at 4 曟 for 

30 min for cell lysis. Bradford protein assay (Bio-Rad, California, 

USA) was utilized to determine the concentration of protein in 

each collected sample. Then, proteins were loaded to 10% SDS-
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polyacrylamide gel electrophoresis and moved to nitrocellulose 

membranes. Then, the membranes were blocked using 5% skim 

milk in Tris-buffered saline, and 0.1% Tween 20. Then, primary 

antibodies against NF-κB (Santa Cruz Biotechnology; 1:200), 

ERK1/2 (Abcam; 1:1 000), p-ERK1/2 (Abcam; 1:1 000), and COX-2 

(Thermo Scientific; 1:1 000) were incubated overnight at 4 曟. Then, 

the secondary antibody conjugated with HRP (Thermo Scientific, 

Waltham, Massachusetts, USA) was applied for 1 h at room 

temperature. Chemiluminescence (Supersignal West Pico; Pierce 

Biotechnology) was used to recognize the specific protein bands.

2.6. Immunofluorescence

  After the cells were stimulated with LPS in the presence or absence 

of ECa 233 and dexamethasone for 24 h, the HaCaT cells were fixed 

with 4% paraformaldehyde for 20 min and soaked twice with PBS. 

Subsequently, the HaCaT cells were incubated with 0.1% Triton 

X-100 for 20 min and blocked nonspecific proteins with bovine 

serum albumin (1%) for 1 h. Then, the cells were incubated with 

the NF-κB primary antibody (Santa Cruz Biotechnology) (1:100) 

at 4 曟 overnight, followed by incubation with FITC conjugated 

secondary antibodies for 1 h at room temperature. The nuclei were 

counterstained with Hoechst 33342 (10 μg/mL). The cells were then 

identified under a fluorescence microscope (Olympus IX73, Japan).

2.7. Statistical analysis

  All data were represented as mean ± SD. One-way analysis of 

variance (ANOVA) was used for testing the differences of the mean 

values among groups and pairwise comparison between groups was 

analyzed by LSD post hoc test. P<0.05 was considered statistically 

significant.

 

3. Results

3.1. Effect of ECa 233 on LPS-induced ROS and NO levels 
in HaCaT cells

  As shown in Table 1, the level of intracellular ROS significantly 

raised approximately 134.76% of untreated control when the 

keratinocytes were treated with LPS alone. After 10 and 100 μg/

mL ECa 233 treatment, ROS level was significantly decreased to 

121.83% and 116.91%, respectively (Table 1). In contrast to the 

cells stimulated with LPS, treatment with ECa 233 at concentrations 

of 0.1, 1, 10 and 100 μg/mL and 1 μg/mL dexamethasone for 24 h 

did not significantly change the content of nitrite, as a NO indicator 

(Table 1). Additionally, the inhibition was not due to chemically 

induced cytotoxicity at any dosages that were measured by MTT 

(Figure 1).

Table 1. Effect of standardized extract of Centella asiatica ECa 233 on ROS 

generation and NO level in LPS-inflamed skin keratinocytes.

Treatment   ROS level
 (% of control)

NO level 
(% of control)

Normal control 100.00±0.00 100.00±0.00
LPS (10 μg/mL)    134.76±10.49* 106.74±4.60
LPS + ECa 233 (0.1 μg/mL) 126.58±9.62 103.29±2.25
LPS + ECa 233 (1 μg/mL) 126.12±4.65 101.12±2.01
LPS + ECa 233 (10 μg/mL)  121.83±3.35#   99.84±1.08
LPS + ECa 233 (100 μg/mL)  116.91±0.74# 102.32±1.69
ECa 233 (100 μg/mL) 106.37±4.42   98.37±1.18
Dexamethasone (1 μg/mL) 107.37±5.83 100.36±1.38
LPS + Dexamethasone   105.24±7.36** 100.77±2.37

Data are represented as mean ± SD of four independent experiments. 
*P<0.001 vs the untreated control, **P<0.001 vs the LPS alone, #P<0.05 vs the 

LPS alone. LPS: lipopolysaccharide.
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Figure 1. Effect of ECa 233 on the cell viability in LPS-inflamed skin 

keratinocytes. Data are represented as mean ± SD of four independent 

experiments. Dexa: dexamethasone. LPS: lipopolysaccharide.

3.2. Effect of ECa 233 on LPS-induced PGE2 level and 
COX-2 expression

  As shown in Figure 2A-2C, the PGE2 level and the expression of 

COX-2 protein were significantly increased in the LPS-stimulated 

HaCaT cells. Interestingly, ECa 233 (1, 10 and 100 μg/mL) and 

dexamethasone treatments showed a significant reduction in the 

level of PGE2 in the HaCaT cells. In addition, dexamethasone and 

all concentrations of ECa 233 could inhibit the expression of COX-2 

protein in the LPS-stimulated keratinocyte cells. The treatment of 

ECa 233 and dexamethasone alone did not affect the PGE2 level and 

COX-2 protein expression. Based on this finding, it was observed 

that ECa 233 was responsible for the anti-inflammatory activity 

via the reduction of COX-2 protein expression and subsequently 

decrease of PGE2 generation.

3.3. Effect of ECa 233 on LPS-activated TNF-α  and IL-1β  
levels

  As shown in Figure 3A and 3B, the levels of IL-1β and TNF-α were 

significantly enhanced after treatment with LPS at a concentration 

of 10 μg/mL in HaCaT keratinocytes. All concentrations of ECa 233 
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Figure 2. Effect of ECa 233 on PGE2 level and COX-2 expression in LPS-inflamed skin keratinocyte HaCaT cells. (A) COX-2 expression; (B) PGE2 level was 

evaluated by using ELISA; (C) Relative protein level of COX-2. Data are expressed as mean ± SD of four independent experiments. *P<0.001 compared to the 

untreated control, **P<0.001 compared to LPS alone. Dexa: dexamethasone. LPS: lipopolysaccharide.
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Figure 3. Effect of ECa 233 on TNF-α and IL-1β in LPS-inflamed skin keratinocyte HaCaT cells. TNF-α and IL-1β levels were determined using an ELISA 

method. (A) TNF-α level and (B) IL-1β level are represented as mean ± SD (n = 4). *P<0.001 compared to the untreated control, #P<0.05 compared to the LPS 

alone group, **P<0.001 compared to the LPS alone group. Dexa: dexamethasone. LPS: lipopolysaccharide.
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Figure 4. Effect of ECa 233 on LPS-induced inducible ERK1/2 expression in skin keratinocyte HaCaT cells. (A) the gel photographs display ERK1/2 protein 

expression, (B) the relative protein ratio of pERK/ERK is represented as mean ± SD (n=4). §P<0.01 compared to the untreated control, #P<0.05 compared to 

the LPS alone group, **P<0.001 compared to the LPS alone group. Dexa: dexamethasone. LPS: lipopolysaccharide.
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and dexamethasone ameliorated these changes in LPS-stimulated 

HaCaT cells (Figure 3A and 3B). Thus, these results indicated that 

LPS-induced skin inflammation could be alleviated by ECa 233 

through terminating the production of proinflammatory cytokines. 

3.4. Effect of ECa 233 on ERK1/2 expression

  The ERK1/2 pathway involvement in the LPS-activated skin 

inflammation was investigated. The expression of phospho-ERK1/2 

was significantly upregulated after 24 h of LPS treatment without 

changing the expression of total ERK1/2 protein in keratinocytes 

HaCaT (Figure 4A and 4B). Interestingly, the expression of 

phospho-ERK1/2 was significantly decreased after ECa 233 (1, 10 

and 100 μg/mL) and dexamethasone treatments in the LPS-induced 

keratinocytes HaCaT (Figure 4A and 4B). Additionally, ECa 233 

and dexamethasone alone did not induce alteration of the ERK1/2 

phosphorylation. These results confirmed ECa 233 showed the 

anti-inflammatory activities against LPS-activated inflammation 

in keratinocytes partly via suppression of the ERK1/2 signaling 

pathway.

3.5. Effect of ECa 233 on the activation of NF-κB in 
keratinocyte HaCaT cells

  To investigate the ECa 233 anti-inflammatory mechanism, we 

examined its effect on the activation of NF-κB in LPS-induced 

HaCaT cells. As shown in Figure 5A, the expression of NF-κB p65 

protein was enhanced in LPS-stimulated keratinocytes. After ECa 

233 and dexamethasone treatments, the level of NF-κB expression 

was decreased. Moreover, the nuclear translocation of NF-κB p65 

was determined by immunofluorescence assays and shown in 

Figure 5B. In immunofluorescence assays, 10 μg/mL of ECa 233 
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Figure 5. Effect of ECa 233 on p65 NF-κB expression and translocation in LPS-inflamed skin keratinocyte HaCaT cells. (A) NF-κB was examined by Western 

blotting assay and (B) by fluorescent microscopy after being stained with the NF-κB primary antibody, followed by incubation with FITC conjugated secondary 

antibodies. Dexa: dexamethasone. LPS: lipopolysaccharide.
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was used because there was no significant difference on the potency 

between 10 and 100 μg/mL as shown in all results previously 

(Figure 1 to Figure 4). Therefore, low dose was used due to its 

low toxicity. The results showed that LPS-activated keratinocyte 

HaCaT cells presented larger numbers of nuclear NF-κB p65 than 

untreated HaCaT cells (Figure 5B). Dexamethasone and 10 μg/mL 

ECa 233 could slightly reduce the intensity of NF-κB p65 nuclear 

staining, illustrating that ECa 233 had abolished NF-κB p65 nuclear 

translocation in LPS-inflamed keratinocytes HaCaT cells (Figure 

5B). These results indicated that ECa 233 might suppress the 

stimulation of NF-κB signaling pathway. 

4. Discussion

  Over the past decade, traditional herbal extracts are capable to 

abolish inflammatory disorders[25]. C. asiatica is a source of natural 

bioactive constituents, triterpenoid saponins, flavonoids, phenolic 

acids and triterpenic steroids[10,11] and also used in the therapy of 

dermatological conditions including small wounds, hypertrophic 

wounds, burns, atopic dermatitis and psoriasis[9]. ECa 233 has been 

reported as a standardized extract from C. asiatica containing a 

high level of asiaticoside and madecassoside[19,21]. Remarkably, C. 
asiatica extract and its bioactive components have vigorous anti-

inflammatory effects in vitro[14-18,20] and protective effects against 

chemical-induced inflammation in animal model[15-18]. Moreover, 

C. asiatica was used as an active compound in skin care due to its 

antioxidant, anti-inflammatory, and anti-aging activity[9,13]. 

  Previous study has been reported on the association between 

LPS-induced inflammations and the activation of keratinocytes. 

Concurrent with this process, active keratinocytes produce the 

cytotoxic-inflammatory mediators containing reactive oxygen and 

nitrogen intermediates, hydrolytic enzymes, and inflammatory 

cytokines[26]. Inflammatory state has been triggered by either 

NO or ROS[27]. Oxidative stress is elevated in patients with skin 

inflammatory-associated diseases[28]. We found that the generation 

of intracellular ROS was enhanced in LPS activated cells compared 

to the untreated cells, which was suppressed by 10 and 100 μg/mL of 

ECa 233 in human keratinocyte HaCaT cells. The inhibitory effect 

was not due to the cytotoxicity of ECa 233. This result is consistent 

with previous studies, implying that C. asiatica, ECa 233 and its 

active components possess antioxidant property in both in vitro and 

in vivo model[19,29-32]. 

  Additionally, it has been known that the conversion of PGE2 

from arachidonic acid is catalyzed by COX-2. Several studies 

proposed that the elevated level of PGE2 and the activity of COX 

may develop skin inflammation[33]. In addition, the high level of 

COX-2 expression is related to the skin barriers disruption[34]. In 

this study, our results showed that ECa 233 treatment at 1, 10 and 

100 μg/mL caused a reduction of PGE2 production and COX-2 

protein expression in LPS-inflamed HaCaT cells. This result agrees 

with the previous finding which demonstrated C. asiatica extract, 

ECa 233 and its active components significantly decreased the 

PGE2 production and COX-2 expression in both in vitro and in vivo 

study[13,17,20]. Taken together, these data illustrate that the anti-

inflammatory mechanisms of ECa 233 are linked to the control of 

COX-2 protein expression in keratinocytes. 

  Keratinocyte was investigated as the primary source of epidermis 

cytokines and stated to release cytokines including IL-1, IL-3, 

IL-6, IL-8, colony-stimulating factor, TNF-α, transforming growth 

factor (TGF) alpha (TGF-α) and TGF-β[35]. TNF-α and IL-1β are 

the most dominant secreted cytokines that negotiate and involve 

in the skin inflammatory disorders including psoriasis, and atopic 

dermatitis[24,25]. TNF-α plays a crucial role in proinflammatory 

cytokines cascade and thereby results in the development 

of inflammation[36]. IL-1β is involved in the progression of 

pathophysiology that develops during skin inflammation including 

dermatitis, and psoriasis[37]. Therefore, the upregulation of 

proinflammatory cytokines’ mediators in the skin area indicates the 

inflammatory skin disorders[35]. Our present study demonstrated that 

ECa 233 suppressed LPS-stimulated TNF-α and IL-1β production. 

Specifically, the secretion of IL-1β was more susceptible to be 

suppressed by ECa 233 than TNF-α. Several reports revealed that 

ECa 233 and its active compound derived from C. asiatica could 

decrease the proinflammatory cytokine including TNF-α, IL-

1β, IL-6, and interferon gamma in both in vitro and in vivo model 

through suppressing NF-κB signaling pathways[13,14,16,20]. The 

results give a hint that TNF-α and IL-1β would be a crucial factor for 

the antiinflammatory activity of ECa 233 in skin keratinocytes. 

  The transcription of inflammatory negotiators such as inducible 

nitric oxide synthase, COX-2, IL-1β, IL-6, and TNF-α is mediated 

by the control of NF-κB and the mitogen-activated protein kinases 

signaling pathway that is influenced during the progression of acute 

and chronic inflammatory diseases[38,39]. Stimulation of the NF-

κB signaling cascade by LPS and other cytokines, IκB proteins are 

phosphorylated by IκB kinase, then ubiquitinated and additionally 

impaired by the proteasome[40]. Thereafter, an active form of NF-κB 

is secreted and changed to activate the target gene transcription in 

the nucleus[38]. In keratinocytes, the activation of NF-κB is affected 

in the progression of skin inflammation and associated with the 

production of inflammatory cytokines. In addition, activation of 

ERK1/2 leads to increased production of proinflammatory mediators, 

such as TNF-α and IL-1β[39]. Previous reports showed that NF-

κB and ERK1/2 signaling pathways are affected by the control of 

cytokine, chemokine, and adhesion molecule generation in HaCaT 

keratinocyte cells[41,42]. In this present finding, we demonstrated 

that ECa 233 inhibited the expression of NF-κB p65 determined 

by Western blotting and immunocytochemistry. Moreover, the 

upregulation of LPS-induced phosphorylation of ERK1/2 was also 

significantly suppressed by ECa 233. These results demonstrate that 
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ECa 233 could inhibit the production of TNF-α, IL-1β, and PGE2 

and also the expression of COX-2 by suppressing the activation of 

ERK1/2 pathways. 

  ECa 233 exerts a significant anti-inflammatory effect via the 

decline of PGE2 generation, which is due to the inhibition of COX-2 

expression, as well as of proinflammatory mediators, including 

IL-1β and TNF-α. ECa 233 inhibited ERK1/2 activation through 

the suppression of the release of proinflammatory cytokines in 

LPS-stimulated skin inflammation (Figure 6). In conclusion, our 

findings propose a new therapeutic usage of ECa 233 towards skin 

inflammation. 
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