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ABSTRACT

Objective: To investigate whether ethanol extracts of Hizikia 
fusiforme could induce apoptosis in human prostate cancer PC3 

cells. 

Methods: Cell viability was evaluated using 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide. Apoptosis and mitochondrial 

membrane potential (MMP) were measured using flow cytometry  

in PC3 cells. DNA damage was assessed by nuclear staining and 

DNA fragmentation assay. Expressions of apoptosis-associated 

proteins were determined by Western blotting assays. Activities 

of caspase-3, -8, and -9 were determined by colorimetric assay. 

Moreover, intracellular reactive oxygen species (ROS) generation 

was detected using a flow cytometer and fluorescence microscope. 

Results: Treatment of PC3 cells with ethanol extracts of Hizikia 
fusiforme inhibited proliferation, which was associated with 

induction of apoptosis, and accompanied by increased expression 

of Fas, Fas-ligand (FasL), Bax and tBid, and decreased expression 

of Bcl-2. In addition, ethanol extracts of Hizikia fusiforme reduced 

c-Flip expression and activated caspase-8, -9 and -3, resulting in 

an increase in poly (ADP-ribose) polymerase (PARP)cleavage. 

However, in the presence of a pan-caspase inhibitor, ethanol extracts 

of Hizikia fusiforme-mediated growth inhibition and apoptosis 

were significantly attenuated. Ethanol extracts of Hizikia fusiforme 

also destroyed the integrity of mitochondria due to the loss of 

MMP, leading to cytosolic release of cytochrome c. Moreover, the 

levels of ROS were markedly increased by treatment with ethanol 

extracts of Hizikia fusiforme, which was significantly suppressed 

by the ROS scavenger N-acetyl-L-cysteine. Further investigation 

of whether ethanol extracts of Hizikia fusiforme-induced apoptosis 

was related to the generation of ROS was conducted and the results 

showed that N-acetyl-L-cysteine fully blocked ethanol extracts of 

Hizikia fusiforme-induced apoptotic events including loss of MMP, 

activation of caspase-3, the cytosolic release of cytochrome c and 

cytotoxicity. 

Conclusions: Ethanol extracts of Hizikia fusiforme have chemopreventive 

potential via induction of ROS-dependent apoptosis. Therefore, ethanol 

extracts of Hizikia fusiforme may be useful for developing effective and 

selective natural sources to inhibit cancer cell proliferation. 
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1. Introduction

  Prostate cancer has high morbidity in elderly men and is the second-

most common cause of death among all male cancer patients[1,2]. 

During the early stages, many patients with prostate cancer have 

good prognosis following prostatectomy, hormone therapy and 

radiation therapy. However, some progressing patients with late 

stage prostate cancer, involving metastatic lesion, local invasion, or 

differentiated cancer cells, have high resistance to chemotherapy 

and very poor prognosis[3]. Although chemotherapy, including anti-

cancer drugs or chemotherapeutic agents, is effective during the 

early stages of prostate cancer development, there are often adverse 

side effects[4]. Therefore, there is growing interest in alternative 

or combination therapies to supplement chemotherapy. Recent 

epidemiological surveys have shown Western diet and lifestyle as 

risk factors for prostate cancer in Asian men. In this respect, the role 

of dietary supplements is coming into focus as a means of lowering 

cancer risk, due to their low cost, low toxicity, and low repulsion[5,6]. 

Indeed, several lines of scientific evidence suggest that some natural 

substances have been used efficaciously in the treatment of chronic 

prostatitis and prostate cancer[6,7]. 

  Recently, there have been attempts to suppress proliferation of 

prostate cancer based on the biochemical and pharmacological 

actions of various marine extracts[8]. Among them, marine algae 

are widely used as a common food in Eastern Asia, and are a rich 

source of various bioactive components including proteins, fiber, 

vitamins, and essential minerals[9]. In particular, Hizikia fusiforme 

(H. fusiforme), a brown seaweed, has been generally used as a 

food resource in Asia for hundreds of years[10]. Several studies 

revealed that extracts of H. fusiforme and its active ingredients 

have antioxidative, immune-enhancing, osteoprotective and anti-

inflammatory effects[11-14]. In addition, some studies have described 

anti-carcinogenic effects in vitro and in vivo[15-17]. We have 

previously reported that an ethanol extract of H. fusiforme inhibited 

tumor metastasis in Hep3B human hepatocarcinoma cells through 

the tightening of tight junctions[15]. Moreover, we also reported that 

an ethanol extract of H. fusiforme possessed anti-cancer effects by 

suppressing the resistance to tumor necrosis factor-related apoptosis-

inducing ligand-mediated apoptosis, in AGS human gastric 

adenocarcinoma cells[16]. Recently, Son et al.[17] demonstrated that 

H. fusiforme has chemopreventive potential for colorectal cancer 

by interfering with cytochrome P450 2E1 pathway due to strong 

antioxidant effects[17]. Even though H. fusiforme has apparent 

efficacy for some kinds of cancers based on these earlier studies, in 

sum, there are relatively few studies specifically focused on anti-

carcinogenic properties. Therefore, in this study, we investigated the 

effect of an ethanol extract of H. fusiforme on human prostate cancer 

PC3 cells, and attempted to identify the mechanism of action.   

2. Materials and methods 

2.1. Preparation of ethanol extracts of H. fusiforme 

  Preparation of the freeze-dried powder of ethanol extracts of H. 
fusiforme followed the reported protocol[15]. Ten mg/mL of ethanol 

extracts of H. fusiforme stock solution was diluted with cell culture 

medium to 20, 40, 60, 80 and 100 μg/mL, prior to use. The plant was 

authenticated by the Department of Marine Life Sciences of Jeju 

National University and preserved in College of Korean Medicine of 

Dong-eui University with a voucher number DEU/HF02/2008.

2.2. Cell culture and cell viability

  The human prostate cancer PC3 cells were obtained from the 

American Type Culture Collection (ATCC; Manassas, MD, USA) 

and grown in RPMI 1640 medium (WelGENE Inc., Daegu, Republic 

of Korea) supplemented with 10% heat-inactivated fetal bovine 

serum (WelGENE Inc.) at 37 曟 in 5% CO2 humidified incubator. 

Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT; Invitrogen) as described 

previously[18]. Briefly, PC3 cells were treated with the various 

concentrations of ethanol extracts of H. fusiforme (0-100 μg/mL) 

for 12, 24 and 48 h. Cells were treated with 50 μg/mL MTT for 2 

h, and then dissolved in dimethyl sulfoxide. The absorbance was 

detected with a microplate reader (VERSA Max, Molecular Device 

Co., Sunnyvale, CA, USA) at 540 nm. Cell morphology changes 

were visualized with a phase-contrast microscope (Carl Zeiss, 

Oberkochen, Germany). In order to confirm that ethanol extracts of 

H. fusiforme-induced apoptosis was mediated by caspase- and ROS-

dependent pathways, cells were pre-treated with the pan-caspase 

inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (50 

μM z-VAD-FMK; Promega Corporation, Madison, WI, USA) or the 

ROS scavenger N-acetyl-L-cysteine (10 mM NAC; Invitrogen) for 1 

h, respectively, and then incubated with 100 μg/mL ethanol extracts 

of H. fusiforme for 48 h.

2.3. Nuclear staining and DNA fragmentation assay

  Changes in nuclear morphology were assessed by 4’,6’-diamidino-

2-phenylindole (DAPI; Sigma-Aldrich Chemical Co., St. Louis, MO, 

USA) staining, a cell-permeable nucleic acid dye. After 48 hours of 

treatment with ethanol extracts of H. fusiforme (0-100 μg/mL), the 

cells were fixed with 4% paraformaldehyde, and dyed with 1 μg/mL 

DAPI for 10 min. Then, the stained cells were visualized by using 

a fluorescence microscope (Carl Zeiss). DNA fragmentation assay 

was performed as previously described[16]. The fragmented DNAs 

were observed by Fusion FX Image system (Vilber Lourmat, Torcy, 

France).
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2.4. Apoptosis analysis using a flow cytometer

  After 48 hours of treatment with ethanol extracts of H. fusiforme 

(0-100 μg/mL), the cells were stained with fluorescein isothiocyanate 

(FITC)-conjugated annexin 桋/propidium iodide (PI) for 20 min. 

Then, the stained cells were detected using by a flow cytometer 

(Becton Dickinson, San Jose, CA, USA).

2.5. Immunoblotting

  After 48 h treatment with varying concentrations of ethanol extracts 

of H. fusiforme (0-100 μg/mL), the expressions of death receptor 

(DR)-related (Fas and FasL), Bcl-2 family proteins (Bcl-2, Bax 

and Bid), caspases, cellular FADD-like IL-1β-converting enzyme-

inhibitory protein (c-Flip) and poly (ADP-ribose) polymerase 

(PARP) were evaluated by Western blotting analysis with whole 

cell lysates. Total proteins were extracted with a protein extraction 

solution (Intron Biotechnology, Gyeonggi-do, Republic of Korea). 

The mitochondrial and cytosolic fractions kit was purchased from 

Active Motif (Carlsbad, CA, USA). The protein lysates were 

separated to SDS-PAGE, and transferred into PVDF membranes 

sequentially. The membranes were subjected with specific primary 

antibodies at 4 曟 overnight, and horseradish peroxidase-conjugated 

secondary antibodies for 2 h in sequence. Primary and secondary 

antibodies were purchased from Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA, USA) and Cell Signaling Technology, Inc. 

(Danvers, MA, USA). Protein expression was visualized by Fusion 

FX Image system. Quantitative analysis of mean pixel density was 

performed using the ImageJ® software.

2.6. Caspase activity

  Caspase colorimetric assay kits (R&D Systems, Minneapolis, 

MN, USA) were used to assess the activity of caspase-3, -8 and -9 

following the manufacturer’s protocol[19]. 

2.7. Mitochondrial membrane potential (MMP, Δψm) 

  To evaluate the MMP, after 48 hours of treatment with ethanol 

extracts of H. fusiforme (0-100 μg/mL), PC3 cells were dyed with 

10 μM of 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl 

carbocyanine iodide (JC-1; Invitrogen) for 30 min, and MMP was 

detected via flow cytometry[19].

2.8. Intracellular reactive oxygen species (ROS) generation
 

  In order to measure the intracellular ROS, 5,6-carboxy-2′,7′-
dichlorodihydrofluorescein diacetate (DCF-DA; Invitrogen) staining 

assay was performed as described previously[18]. PC3 cells were 

treated with 100 μg/mL ethanol extract of H. fusiforme for 30 min, 

1 h and 2 h, and then stained with 10 μM DCF-DA for 20 min 

sequentially. In addition, to measure the effect of ROS scavenger 

on PC3 cells treated with ethanol extracts of H. fusiforme, after 

pretreatment with 10 mM NAC for 1 h, 100 μg/mL ethanol extract 

of H. fusiforme was added to the medium for another 1 h. Finally, 

10 μM DCF-DA dye was added and incubated for 20 min. The 

stained cells were observed using flow cytometry and fluorescence 

microscope (Carl Zeiss). 

2.9. Statistical analysis

  All data were obtained from at least three experiments. Data was 

presented as mean ± standard deviation (SD), which was analyzed by 

variance via ANOVA-Tukey’s post hoc test (version 5.03; GraphPad 

Prism Software, Inc., La Jolla, CA, USA). P<0.05 was considered 

statistically significant.

3. Results 

3.1. Ethanol extracts of H. fusiforme induced apoptotic cell 
death in PC3 cells

  Figure 1A indicates that ethanol extracts of H. fusiforme markedly 

reduced the viability of PC3 cells in a time- and concentration-

dependent manner. Ethanol extracts of H. fusiforme significantly 

reduced cell viability at concentrations over 60 μg/mL compared 

with the controls for 24 h and 48 h treatments (24 h: 80.79%; 48 h: 

64.83%). In particular, after 48 h, PC3 cell viability was suppressed to 

39.77% and 26.15% of control values by 80 μg/mL and 100 μg/mL of 

ethanol extracts of H. fusiforme, respectively (P<0.001). In addition, 

as shown in Figure 1B, agarose gel electrophoresis demonstrated that 

ethanol extracts of H. fusiforme concentration-dependently induced 

DNA fragmentation. Further evidence of the induction of apoptosis 

by ethanol extracts of H. fusiforme was found via DAPI staining. As 

shown in Figure 1C, ethanol extracts of H. fusiforme induced change 

to characteristic morphology of apoptotic nuclei and destruction 

of cell membrane in PC3 cells. Furthermore, ethanol extracts of H. 
fusiforme-treated cells increased the number of apoptotic cells in a dose-

dependent manner (Figure 1D). 

3.2. Effect of ethanol extracts of H. fusiforme on the 
expression of DR-related and Bcl-2 family proteins in PC3 
cells 

  We next assessed whether DR-related and Bcl-2 family proteins were 

involved in ethanol extracts of H. fusiforme-induced apoptosis. Figure 2 

indicates the expressions of Fas and FasL were markedly upregulated 

to 4.35-fold and 2.02-fold of control by 100 μg/mL of ethanol extracts 

of H. fusiforme, respectively. However, the expressions of DR4, DR5 

and TRAIL were not changed in ethanol extracts of H. fusiforme-

treated cells. Among the Bcl-2 family proteins, 100 μg/mL of 
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Figure 1. Induction of apoptosis by ethanol extracts of Hizikia fusiforme (EHF) in PC3 cells. (A) Cell viability was measured by MTT assay. (B) DNA 
fragmentation. (C) The nuclear morphological changes were observed using DAPI staining, and then photographed under a fluorescence microscope. (D) The 
percentages of apoptotic cells are expressed (n=3). *P<0.05 and ***P<0.001 compared to untreated cells. 
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Figure 2. The effects of ethanol extracts of Hizikia fusiforme (EHF) on the expression of DR-related and Bcl-2 family proteins in PC3 cells. (A) Protein 
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untreated cells. 
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ethanol extracts of H. fusiforme led to upregulation of pro-apoptotic 

Bax (1.40-fold of control) and downregulation of anti-apoptotic 

Bcl-2 (0.45-fold of control). In addition, the expression of Bid was 

suppressed, whereas the expression of truncated Bid (tBid) markedly 

increased. 

3.3. H. fusiforme extracts-induced apoptosis mediated by a 
caspase-dependent pathway in PC3 cells

  The expressions of both procaspase-8, (an initiator caspase of the 

DR-initiated extrinsic apoptosis pathway), and procaspase-9, (an 

initiator caspase of the mitochondria-mediated intrinsic apoptosis 

pathway), were apparently reduced with increasing concentrations 

of ethanol extracts of H. fusiforme (Figure 3A). In addition, ethanol 

extracts of H. fusiforme suppressed the expression of procaspase-3, a 

typical effector caspase that converges on both extrinsic and intrinsic 

pathways. Furthermore, cleaved form of PARP was upregulated by 

treatment with ethanol extract of H. fusiforme in a concentration-

dependent manner. As shown in Figure 3B, ethanol extracts of H. 
fusiforme markedly increased the activity of caspase-3, -8 and -9, 
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Figure 3. Hizikia fusiforme ethanol extracts (EHF)-induced apoptosis mediated by a caspase-dependent pathway in PC3 cells. (A) The expression of 
procaspases, cFlip and PARP. (B) The activities of caspases. (C) Cell viability. (D) Morphological changes. (E) The percentage of apoptotic cells (n=3). 
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which corresponded with the results of Western blotting assays. 

In particular, the activity of caspsase-3 was prominently enhanced 

after treatment with ethanol extracts of H. fusiforme over 20 μg/

mL by 1.35 times (P<0.001), and the relative activity in 100 μg/

mL extract-treated cells was increased to 3.7-fold compared with 

the control. Meanwhile, in the case of c-Flip, ethanol extracts of 

H. fusiforme downregulated the expression of short c-Flip (c-FlipS) 

and long c-Flip (c-FlipL) (Figure 3A). As shown in Figure 3C, 

pre-treatment with 50 μM z-VAD-FMK recovered cell viability to 

82.34% of control compared with the cells treated with 100 μg/mL 

ethanol extract of H. fusiforme (27.05%). In addition, pre-treatment 

with 50 μM z-VAD-FMK also improved DNA damage elicited by 

ethanol extracts of H. fusiforme, and the morphology of nuclei was 

normalized (Figure 3D). Moreover, the percentage of apoptotic cells 

was significantly decreased to 13.57% by z-VAD-FMK treatment 

(P<0.05 compared with the control, Figure 3E).

3.4. Ethanol extracts of H. fusiforme destroyed mitochondrial 
integrity in PC3 cells

  To further evaluate the effect of ethanol extracts of H. fusiforme on 

mitochondria-mediated intrinsic apoptosis in PC3 cells, we assessed 

mitochondrial-function using JC-1 dye, an indicator of MMP. Figure 

4A shows that ethanol extracts of H. fusiforme significantly decreased 

the number of JC-1 aggregates, and concurrently increased JC-1 

monomers in a concentration-dependent manner. In addition, ethanol 

extracts of H. fusiforme gradually upregulated the expression of 

cytosolic cytochrome c, whereas it downregulated the expression 

of mitochondrial cytochrome c. This result suggested that ethanol 

extracts of H. fusiforme induced release of cytochrome c from 

mitochondria by destruction of mitochondrial membrane intensity. 

3.5. Ethanol extracts of H. fusiforme stimulated intracellular 
ROS generation in PC3 cells

  To investigate the effect of ethanol extracts of H. fusiforme on 

intracellular ROS generation, DCF-DA staining was performed. 

As shown in Figure 5A, the accumulation of intracellular ROS 

was markedly increased within 1 h after treatment with 100 μg/mL 

ethanol extract of H. fusiforme, after which it gradually decreased. 

However, ethanol extracts-induced ROS level was significantly 

suppressed from 35.27% to 10.73% by ROS scavenger NAC, based 

on flow cytometric analysis (Figure 5B). In addition, fluorescence 

microscopy also demonstrated that ethanol extracts of H. fusiforme 

markedly increased ROS production, which was mitigated by NAC 

treatment (Figure 5C). 

3.6. H. fusiforme extract-induced apoptosis mediated by 
ROS-dependent pathways in PC3 cells

  To evaluate whether H. fusiforme extracts-induced apoptosis was 

related to the production of ROS, we evaluated the effect of NAC on 

loss of MMP induced by ethanol extracts of H. fusiforme. Our results 

showed that ethanol extracts of H. fusiforme induced decrease in 

JC-1 aggregates and increase in JC-1 monomers, which was reversed 

by NAC (Figure 6A). In addition, NAC markedly suppressed H. 
fusiforme extracts-induced cytosolic release of cytochrome c (Figure 

6B). These results demonstrated that blocking ROS inhibited H. 
fusiforme extracts-induced destruction of mitochondrial integrity, 

and subsequently suppressed the cytosolic release of cytochrome 

c. We further evaluated the effect of NAC on activity of caspase-3 

and found that NAC significantly suppressed activation of caspase-3 

induced by ethanol extracts of H. fusiforme (Figure 6C). Furthermore, 

we assessed the effect of NAC on cytotoxicity mediated by ethanol 

extracts of H. fusiforme. Based on MTT assay, NAC significantly 

attenuated the suppressed cell viablity caused by ethanol extracts 

of H. fusiforme (Figure 6D) as well as decreased DNA damage and 

apoptosis induced by ethanol extracts of H. fusiforme (Figures 6E and 

F).

4. Discussion

  Apoptosis is an essential mechanism for maintaining cellular 

homeostasis, and maintains a healthy balance[20]. Cancer occurs as 

a result of a series of genetic alterations, during which malignant 

cells will not die and experience abnormal growth[21]. Hence, 

dysregulation of the apoptotic pathway is a prominent hallmark 

of cancer, which not only promotes carcinogenesis but also makes 

tumor cells resistant to chemotherapy[22]. It is well known that 

prostate cancer shows low apoptotic activity along with increased 

cell replication[23]. Through numerous studies, it has been verified 

that some natural substances have potential anti-cancer activity 

via induction of apoptosis, in various prostate cancer models[7,8]. 

In the present study, we investigated whether ethanol extracts of 

H. fusiforme induce apoptosis in human prostate cancer PC3 cells, 

and whether it can be considered a natural source of therapeutic for 

prostate cancer. One of the most commonly used prostate cancer 

cell lines is PC3 cells derived from bone metastases. It has been well 

established through numerous studies that PC3 cells show highly 

aggressive form of PC, and it have been used to represent androgen-

independent and castration-resistant tumors[24-26]. According to our 

findings, ethanol extracts of H. fusiforme concentration- and time-

dependently induced cytotoxicity, DNA fragmentation and apoptosis. 

Since understanding the mechanism of apoptosis is important in the 

pathogenesis of cancer, we studied whether apoptosis pathways were 

affected by cytotoxicity in PC3 cells induced by ethanol extracts of 

H. fusiforme. 

  In general, apoptosis is divided into either DR-initiated extrinsic 

and/or mitochondria-mediated intrinsic pathways[27,28]. The 

extrinsic pathway initiates when death ligands (i.e. TNF and FasL) 

bind to their DRs [i.e. type 1 TNF (TNFR1) and Fas], which then 

triggers activation of caspase-8[28,29]. Subsequently, activation of 

caspase-8 leads to activation of effector caspases, which act as the 

final executors of apoptosis[30]. c-Flip is an important regulator 

that determines the activity of caspase-8 as an inhibitor of extrinsic 

apoptosis. c-Flip suppresses DR-mediated apoptosis by blocking 
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caspase-8 activation in DISC as it competes with procaspase-8 to 

bind to the Fas-associated death domain[31]. Our results showed 

that the expressions of Fas and its ligand FasL were concentration-

dependently increased by treatment with ethanol extracts of H. 
fusiforme. In addition, ethanol extracts of H. fusiforme downregulated 

the expression of c-FlipL and c-FlipS, and activated caspase-8. 

These results indicated that H. fusiforme ethanol extracts-induced 

apoptosis derives from Fas/FasL interaction in PC3 cells, and leads 

to activation of caspase-8 through downregulation of c-Flip, thus 

indicating that the extrinsic pathway is involved.

  On the other hand, onset of the intrinsic pathway is accompanied 

by cytosolic release of cytochrome c with increased mitochondrial 

permeability[27,28,30,32]. This pathway is closely regulated by 

Bcl-2 family proteins, namely the anti-apoptotic proteins (Bcl-2, 

Bcl-XL, Bcl-W, etc.), and the pro-apoptotic proteins (Bad, Bax, 

Bak, tBid, Bik, etc.)[31,32]. In the present study, we verified that 

ethanol extracts of H. fusiforme led to upregulation of pro-apoptotic 

Bax and downregulation of anti-apoptotic Bcl-2, and induced 

activation of caspase-9 and -3. Furthermore, our results also showed 

upregulation of tBid expression with downregulation of total Bid 

expression in H. fusiforme extracts-treated PC3 cells. Truncation of 

Bid for the production of tBid is induced by activated caspase-8, 

and tBid oligomerizes in the outer membrane of mitochondria 

to cause mitochondrial dysfunction[33,34]. As a result, the loss of 

MMP leads to cytosolic release of cytochrome c, which serves 

to link and amplify the two apoptotic pathways[35,36]. Our results 

indicated that ethanol extracts of H. fusiforme destroyed the integrity 

of mitochondria as a result of loss of MMP, which contributed to 

cytosolic release of cytochrome c. However, H. fusiforme extracts-

induced cytotoxicity and apoptosis in PC3 cells were markedly 

suppressed by pretreatment with pan-caspase inhibitor. Therefore, 

our results indicated that both caspase-dependent extrinsic as well as 

intrinsic pathways may be by the regulation of Bcl-2 family proteins 

in PC3 cells.

  Mitochondria is a major cellular source of ROS, and oxidizing 

mitochondrial pores leads to increase of ROS levels[37]. Increasing 

cellular ROS levels accelerates oxidation of DNA, proteins and 

lipids, thus leading to cell death by cellular dysfunction[38,39]. 

Therefore, we further evaluated the effect of ethanol extracts of 

H. fusiforme on ROS production. The results showed that ROS 

production was significantly increased by ethanol extracts of 

H. fusiforme, but the accumulation of ROS induced by ethanol 

extracts of H. fusiforme was markedly suppressed by NAC. We also 

confirmed that ethanol extracts-induced apoptotic events, including 

loss of MMP (Δψm), activation of caspase-3, cytosolic release of 

cytochrome c and cytotoxicity, were all fully blocked by NAC. These 

results demonstrated that H. fusiforme extracts-induced apoptosis was 

markedly attenuated when ROS generation was artificially blocked 

by NAC. Therefore, apoptosis of PC3 cells which was induced by 

ethanol extracts of H. fusiforme was clearly ROS-dependent.

  In summary, our results show that H. fusiforme extracts-induced 

apoptosis mediated Fas/FasL interaction, and activation of caspase-8 

through downregulation of c-Flip. In addition, ethanol extracts of 

H. fusiforme induced mitochondrial dysfunction through modulation 

of Bcl-2 family proteins. Meanwhile, the induced apoptosis in PC3 

cells was simultaneously mediated by both the caspase-dependent 

intrinsic pathway, and the extrinsic pathway which was ROS 

dependent. Based on these findings, we suggest that ethanol extract 

of H. fusiforme has chemopreventive potential via induction of ROS-

dependent apoptosis in PC3 cells. Taken together, these results 

suggest that ethanol extract of H. fusiforme may be an effective 

treatment for prostate cancer. However, it is necessary to identify 

the active ingredients contained in the ethanol extract of H. fusiforme 

and to confirm the anticancer efficacy of the ethanol extract of H. 
fusiforme through animal experiments. In addition, further studies 

are warranted for clinical application of the ethanol extract of H. 
fusiforme. 
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