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MicroRNA deregulation and cancer and medicinal plants as microRNA regulator  
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ABSTRACT

MircroRNAs (miRNAs) are short non-coding RNAs with a length 
of approximately 20-22 nucleotides, which interact with their target 
mRNAs at 3’-untranslated region by partial pairing. The miRNA-
mRNA interaction leads to induction of mRNA degradation and 
eventually translational inhibition. Thus, miRNAs play an important 
role in virtually all cellular processes, especially differentiation, 
proliferation, migration, and apoptosis. The deregulation of miRNAs 
may lead to serious diseases including cancer. There is mounting 
evidence demonstrating the participation of miRNA regulation 
during carcinogenesis. In this review, we discuss an updated miRNA 
biogenesis, mechanisms involved in their deregulation, and their 
role in cancer development. This review also summarizes updated 
information on potential medicinal plants which regulate miRNA 
expression as a promising molecular miRNA therapeutic approach 
for cancers.  
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1. Introduction

 Small endogenous RNA molecules can be classified into several 
types, including transfer RNA (tRNA), ribosomal RNA (rRNA), small 
nucleolar RNA (snoRNA), small interfering RNA (siRNA) and micro 
RNA (miRNA). The endogenous small miRNA molecules which are 
approximately 20-22 nucleotides long are derived from the double 
stranded RNA precursor molecules[1]. The breakthrough of miRNA was 
first discovered in Caenorhabditis elegans and the disclosure of small 
non-coding lin-4 transcript from Caenorhabditis elegans which was 22 
nucleotides long found to downregulate LIN-14 protein expression via 
sequence complementary binding to 3’-untranslated region (UTR) of 
lin-14 mRNA[2]. Since then, miRNA has attained great attention and 
led to detailed investigation of miRNA biogenesis and function in 
the advancement of molecular biology. Contemporarily, 38 589 
mature miRNAs from 271 species have been identified[3-7]. This 
arising principal class of regulatory genes have been identified by 
bioinformatics prediction approaches and validated through several 
experimental methods. The involvement of miRNA in the negative 
regulation of gene expression at post transcriptional level and 
subsequent protein translational repression[8] clearly substantiates 
the major role of miRNA in diverse biological processes such 

as cell death[9], cell proliferation[10], cell development[11], cell 
differentiation[12], stress resistance[13], haematopoiesis[14], fat 
metabolism[15,16] and insulin secretion[17]. Hence, the evolution of 
miRNA has exposed a novel and attractive therapeutic target and 
diagnostic tool for various diseases including cancer.

2. MiRNA biogenesis

  In like manner of precursor mRNA synthesis, miRNAs are also 
generated by RNA polymerase 栻 by initially producing a lengthy 
transcript called the primary miRNA (pri-miRNA)[8,18]. The pri-
miRNA transcripts have been evidently validated to possess 5’ 
cap and poly (A) tail at 3’ end as any other typical mRNA[19,20]. 
Previous studies suggest that the length of pri-miRNA transcript 
can be approximately 1 000 nucleotide[19,21]. Considering the 
length of pri-miRNA is pretty long with complementary bases 
within the transcript, it is legitimate to form a partially paired stem-
loop structure[22]. This structure acts as substrate for RNase 栿 
class of enzymes, namely Drosha and DiGeorge Syndrome critical 
region gene 8 (DGCR8) which eventually recognises the hairpin-
loop structure of pri-miRNA and catalyzes it into a short precursor 
miRNA (pre-miRNA)[23-25]. This first cleavage process is initiated 
by the binding of the microprocessor complex (complex of Drosha 
and DGCR8) to the open-ended part of the stem-looped miRNA 
and finally the double-stranded cleavage produces a concise hair-
pin shaped RNA molecule with a two nucleotide over hang at the 3’ 
end[26,27]. The double stranded stem-loop structure of pre-miRNA 
has been identified to be approximately 70-100 bp long[22]. 
  Subsequently, the transportation of pre-miRNA from nucleus to 
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the cytoplasm is mediated by the nuclear export receptor, known as 
the Exportin 5[28,29]. Previous studies demonstrated that the Exportin 
5 performs its role as nuclear cargo with the aid of RanGTP in 
which stable complexes of pre-miRNA•Exportin 5•RanGTP are 
productively exported to cytoplasm down the RanGTP gradient 
across the nuclear envelope and pre-miRNA and Exportin 5 
are dissociated upon the hydrolysis of RanGTP to RanGDP in 
cytoplasm[30]. The free Exportin 5 is then returned back to the 
nucleus to mediate new pre-miRNA exportation. 
  Instantaneously, the second cleavage in the biogenesis process of 
miRNA takes place in the cytoplasm by RNase 栿 enzyme called the 
Dicer[31,32]. Dicer incorporates PAZ (Piwi, Argonaute and Zwille) 
domain that binds to the two nucleotide 3’ overhangs and anchors 
the pre-miRNA in position while placing the stem loop terminal 
at the positively charged catalytic domain of the Dicer[33,34]. This 
arrangement enables the Dicer to act as a molecular ruler, thereby 
assisting the cleavage to occur efficiently at approximately 65 
angstrom (Å) from PAZ domain and cleaves off the loop from 
the pre-miRNA[1,33,35]. The subsequent shorter double stranded 
RNA of about 20-25 nucleotides in length, with two nucleotide 3’ 
overhangs at both terminals is known as miRNA duplex or miRNA/
miRNA*[36]. 
  miRNA duplex is then loaded into the miRNA-Induced Silencing 
Complex (miRISC) and releases one of the strands while selectively 
binds to one strand in order to generate an active complex[8]. The strand 
which is integrated into the miRISC is termed as the guide strand 
(miRNA) while the strand which is released and degraded is termed 
as the passenger strand (miRNA*). The Argonaute protein, being the 
major component of RISC, acts as the capital for catalytic process. The 
Argonaute protein comprises two essential domains, namely PAZ and 
PIWI. The PAZ domain has been demonstrated to bind to the backbone 
of the guide strand[37,38] while the PIWI domain acts as the RNase 
H which breaks down the passenger strand[39-41]. Figure 1 shows an 
overview of the miRNA biogenesis process.

3. MiRNA and cancer

  Ever since the exploration of miRNA and its correlation with 

the widespread biological processes mainly including apoptosis 

and cell proliferation, the fundamental significance of miRNA 

in tumorigenesis is strongly postulated. Henceforth, the miRNA-

mediated molecular mechanism in cancer biology has unfastened 

a novel dimension for cancer therapeutic targets as well as cancer 

biomarkers. The miRNA binds to its target mRNA by partial 

complementary binding, thus silences the gene expression and 

represses the post translational activity. The means of function 

of miRNA via alteration of gene expression and consecutive 

translational expression, points out that miRNAs can act as tumor 

suppresser genes or oncogenes depending on their target genes[42,43]. 

For instance, up-regulation of specific miRNA targeting the tumor 

suppressor genes which eventually promotes cell growth and cancer 

initiation acts as oncogenes. On the other hand, up-regulation of 

specific miRNA targeting genes responsible for oncogenic activities 

which ultimately lead to cancer inhibition or repression acts as tumor 

suppressor genes[44]. However, the increasing investigations on 

miRNA have uncovered the dual role of miRNA in cancer, in which 

various evidence supports the concept that a same individual miRNA 

can act as both oncogene and tumor-suppressor gene depending on 

the cellular environment[45-47]. Based on the literature, extensive 

studies have reported the correlation between miRNAs and cancer to 

date. 

3.1. Mechanisms involved in miRNA deregulation in cancer

  The dysregulation of miRNAs in cancer occurs through numerous 

overlapping mechanisms including chromosomal abnormalities, 

transcriptional control alterations, epigenetic modulation and 

disruption in the miRNA processing machinery[48]. For instance, 

Figure 1. Overview of miRNA biogenesis process.
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chromosomal alterations may occur due to amplification of a 

chromosome site harbouring a specific miRNA, leading to an over-

expression of the particular miRNA[49,50] while deletion of the 

chromosome site may result in down-regulation of the specific 

miRNA[51,52]. 

  Other than that, various transcriptional factors have been evidently 

reported to control the expression of miRNAs such as c-Myc[51,53,54], 

p53[55,56], myeloid transcription factors PU.1 and C/EBPs[57] and 

transcription factors NFI-A and C/EBP毩[58]. Besides, miRNAs 

have also been reported to undergo epigenetic changes through 

CpG methylation[59], DNA methylation with histone acetylation 

inhibitors[60], and hypermethylation[61,62]. 

  Finally, dysregulation or mutation of any proteins involved 

in miRNA biogenesis process such as Drosha[63], DGCR8[64], 

Dicer[65,66], Argonaute proteins[67,68], TRBP[69] and Exportin 5[70] 

leads to miRNA dysregulation.

3.2. Pathways involved in miRNA regulation in cancer 

  The current chemotherapy targeting miRNA is attaining great 

interest due to their important participation in cancer pathway. 

Numerous miRNAs were also evidently shown to regulate apoptosis 

pathway induced by tumor necrosis factor-related apoptosis-inducing 

ligand (TRAIL). Based on the research conducted by Yang et al.[71], 

over-expression of miR-145 was shown to down-regulate ZEB2 

expression, which causes an increase in TRAIL-induced apoptosis in 

LX-2 cells through NF-毷B signaling pathway. The up-regulation of 

miR-221 and miR-222 was also demonstrated to be over-expressed, 

leading to the down-regulation of tumor suppressor p27kip in prostate 

carcinoma[72] and melanoma[73].

  Besides, interactions between miR-203a with ITGA4, miR-

6071 with ITGAV, and miR-375 with THBS2 were reported to be 

associated with the dysregulation of PI3K/Akt-signaling pathway in 

colorectal cancer[74]. Recently, miRNA-146b was found to regulate 

the PI3K/Akt/NF-毷B signaling pathway to mediate vascular 

inflammation and apoptosis in myocardial infarction by phosphatase 

and tensin homologue (PTEN)[75]. Another example of miRNA 

which participates in Fas-mediated apoptotic pathway is MicroRNA-

181c which was shown to hinder apoptosis by targeting FAS receptor 

in Ewing’s sarcoma cells[76]. Another cancer pathway, namely 

PTEN pathway, was also shown to be regulated by the expression 

of miRNAs. For instance, many miRNAs are reported to target and 

suppress the expression of PTEN which is one of the prominent 

tumor suppressor genes such as miR-17-5p[77], miR-19305p[77], 

miR-2127[74] and miR-221 and miR-222[78]. 

  There are various miRNAs which have been reported to regulate 

the cell cycle regulatory pathway, in which oncogenic miRNAs tend 

to expedite cell cycle progression while the miRNAs with tumor 

suppressor effect tend to facilitate cell cycle arrest. Exemplary 

oncogenic miRNAs include miR-106b and miR-17-92 families 

which have been reported to be over-expressed in various cancers 

that are known to target one of the important inducer of G1 arrest, 

namely p21 from the Cip/Kip family of CDK inhibitors[79,80]. Other 

studies have also experimentally validated other miRNAs to target 

other genes involved in cell cycle which eventually regulate the RAS/

RAF/MAPK pathway as well as the p53 pathway[81]. Furthermore, 

miRNAs are also very well known to target numerous genes involved 

in DNA damage response in cancer cells. For instance, miR-421 was 

reported to be highly over-expressed in neuroblastoma and B-cell 

lymphoma cell lines and was shown to target the apical damage 

sensor Ataxia-Telangiectasia Mutated kinase[82].

4. MiRNAs regulated by medicinal plants in human 
cancer cells

  Medicinal plants rich in bioactive phytochemicals are well utilized 

to treat various diseases including cancer by regulating diverse 

signaling pathway. Mechanistic studies revealed that plants exert 

their biologic effects, especially anti-cancer properties by inducing 

apoptosis in cancer cells through the regulation of miRNA. Plant-

derived chemotherapy has recently attained vast interest as the 

natural secondary metabolites exert lower toxic side effects 

compared to that of chemically synthesised anti-cancer drugs. Based 

on the extensive literature, various medicinal plants have been 

evidently reported to regulate a diversified range of miRNAs to date. 

 Various medicinal plants exhibit pharmacological properties by up-

regulating specific miRNAs in humans. For instance, the bioactive 

compound isolated from the root of Astragalus membranaceus 
(Fisch.) Bunge was reported to exhibit anti-cancer property on 

human osteosarcoma MG63 cells by inducing apoptosis through 

the up-regulation of miR-133a[83]. Furthermore, Western blotting 

analysis revealed that the over-expression of miR-133a induced 

the down-regulation of proteins such as p-JNK and p-c-Jun, which 

eventually inactivates the c-Jun N-terminal protein kinase (JNK) 

pathway[83]. Another well-known medicinal plant, Salvia miltiorrhiza 

(S. miltiorrhiza) was previously reported to induce caspase-dependent 

intrinsic apoptosis in multiple myeloma and myeloid leukemia[84-86]. 

Recent study also revealed the molecular mechanism underlying the 

induction of apoptosis by S. miltiorrhiza, in which up-regulation of 

tumor suppressor gene, miR-216b was reported in S. miltiorrhiza 

treated U266 and U937 cells in comparison with the untreated 

cells[87]. Interestingly, the target protein of miR-216b, namely c-Jun 

protein, was shown to be down-regulated in S. miltiorrhiza treated 

cells[87]. 

  Saponin-rich tuber extract from Cyclamen pseudibericum was 

reported to inhibit cell proliferation in A549 non-small cell lung 

carcinoma cells through the up-regulation of miR-200c[88]. Western 

blotting analysis showed that the over-expression of miR-200c 

inhibits its target protein, namely the zinc-finger E-box binding 

homeobox 1[88]. Similarly, various studies demonstrated the anti-

cancer properties of saponin content from American ginseng (Panax 
quinquefolius)[89,90]. Recently, hexane fraction of Panax quinquefolius 
was demonstrated to exhibit anti-proliferative activity in human 

colon cancer cell lines by up-regulating the miR-29b expression as 

compared to that of vehicle control cells, and subsequent Western 

blotting analysis confirmed the repression of its target protein matrix 

metalloproteinase-2 protein[91]. 

  Pterostilbene, one of the bioactive components isolated from 

the blueberries, was reported to promote anti-cancer activity in 

breast cancer cells by up-regulating the expression of miR-448, 

which eventually suppresses the expression of NF毷B[92]. Another 
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such phytochemical, namely sulforaphane which can be found 

in cruciferous plants, like broccoli sprouts, kale, and carrots, was 

shown to have anti-cancer property[93]. Sulforaphane exhibits anti-

cancer property in human gastric carcinoma cell lines, MGC803 

and BGC823 via up-regulation of miR-124, which directly targets 

and suppresses the expression of interleukin-6/IL-6 receptor/signal 

transducer and activator of transcription 3 signalling[94]. Oxymatrine, 

another bioactive compound which is found in various medicinal 

plants of the genus Sophora, was reported to inhibit cell proliferation 

and to induce apoptosis in various cancer types, including gallbladder 

cancer[95], breast cancer[96], melanoma[97] and prostate cancer[98]. 

Further investigation on the molecular mechanism underlying the 

pharmacology effect of oxymatrine revealed the up-regulation of 

miR-29b in oxymatrine-treated ovarian carcinoma OVCAR-3 cells, 

which led to reduction on the matrix metalloproteinase-2 expression, 

in order to inhibit proliferation and to induce apoptosis[99]. 

  Moreover, medicinal plants, along with their isolated phytochemicals, 

have been evidently reported to exhibit anti-cancer activity via 

down-regulation of specific miRNAs in human cancer cells. One 

such medicinal plant is Cnidium officinale Makino, which has been 

previously reported to exert anti-cancer effect on various cancers, such 

as liver cancer[100], colorectal cancer[101] and oral cancer[102]. In recent 

study, Cnidium officinale showed its anticancerous effect through the 

down-regulation of miR-211 in multiple myeloma U266 cells and 

lymphoma U937 cells, which caused the ROS generation/CHOP 

activation to induce apoptosis[103]. 

  One of the bioactive compounds, namely icariin, which is mainly 

found in the traditional Chinese medicinal plant Epimedium[104], has 

been well-documented to exhibit various pharmacological activities 

including anti-cancer[105,106]. In ovarian cancer A2780 cells, icariin 

induced caspase-dependent apoptosis through the down-regulation of 

miR-21 expression, which was then revealed to increase the expression 

levels of its target proteins, namely PTEN and RECK, in Western 

blotting assay[107]. Another bioactive compound responsible for anti-

cancer activity is mistletoe lectin-栺 (ML-栺) which was isolated from 

a medicinal plant called the mistletoe (Viscum album)[108]. The in vitro 

and in vivo experiments revealed the anti-cancer effect of ML-栺 in 

colorectal cancer cells, through MTT assay and nude mouse xenograft 

models, respectively[109]. Further investigation by miRNA expression 

array indicated the down-regulation of miR-135a&b expressions in 

ML-栺 treated colorectal cancer cells as compared to that of control 

cells. In addition, Western blotting analysis showed up-regulation 

of target proteins of miR-135a&b, namely adenomatous polyposis 

coli[109].  

  Interestingly, curcumin (diferuloylmethane) which is a flavonoid 

isolated from the rhizome of Curcuma longa has been reported to 

show anti-cancer activity in pancreatic cancer cell line through 

the regulation of miRNAs. The miRNA microarray revealed a 

significant up-regulation of miR-22 and down-regulation of miR-

199a* in curcumin treated BxPC-3 human pancreatic carcinoma 

cell line as compared to the untreated cell line. The over-expression 

of miR-22 was shown to significantly down-regulate the expression 

levels of SP1 transcription factor and estrogen receptor 1 proteins, 

corresponding to the prediction of target genes of miR-22 through 

PicTar and TargetScan bioinformatics tools[110].

5. Conclusion and future prospects

  Cancer which is one of the deadly diseases globally demands for 

more effective, cheap and less toxic therapies. Ever since miRNAs 

play an important role in regulating important biological processes 

including cell proliferation and apoptosis, gene therapy targeting 

miRNAs has been well established. Medicinal plants as the reservoir 

of various bioactive components responsible for anti-cancer 

properties through the regulation of miRNAs have been considered 

as a promising candidate for cancer chemotherapy. In this review, 

the possible pathways of miRNA regulation in cancer as well as the 

contribution of medicinal plants to regulating miRNAs are presented. 

To sum up, plant-derived anti-cancer drugs are highly recommended 

to treat cancers due to their effective miRNA targeting approach. 
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