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ABSTRACT 

Economic Dispatch (ED) is one of the major concerns for the efficient and economical operation of the modern 

power system. Actual ED problem is non-convex in nature due to Ramp Rate Limits (RRL), Valve-Point 

Loading Effects (VPLE), and Prohibited Operating Zones (POZs). It is generally converted into a convex 

problem as mathematical programming based approaches cannot handle the non-convex cost functions except 

dynamic programming, which also suffers from the curse of dimensionality. Heuristic techniques are potential 

solution methodologies for solving the non-convex ED problem. Artificial Algae Algorithm (AAA), a recent 

meta-heuristic optimization approach showed remarkable results on certain MATLAB benchmark functions 

but its application on industrial problem such as ED is yet to be explored. In this paper, AAA is used to 

investigate convex and non-convex ED problem due to valve-point effects and POZs while considering the 

transmission losses. The robustness and effectiveness of the proposed approach are validated by implementing 

it on IEEE standard test systems (3, 6, 13 and 40 unit Test Systems), which are widely addressed in the 

literature. The simulation results are promising when compared with other well-known evolutionary 

algorithms, showing the potential and stability of this algorithm. 

 

Keywords: Artificial Algae Algorithm, Artificial Intelligence, Economic Load Dispatch, Metaheuristic  
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1. INTRODUCTION 

lectrical Power Systems assume a key role in a 

country’s economy. Efficient and optimum 

operational planning is necessary to cope with 

the limited energy resources, increased fuel-cost, and 

ever-growing energy demand. In the recent years, 

power system operational planning and control have 

become extremely complicated due to the increased 

penetration of electricity markets and integration of 

renewable networks. Solving the issues related to 

Economic Dispatch (ED) is a vital step in operational 

planning of a power system. It is a generation 

allocation problem. The main objective of ED problem 
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is to minimize the generation cost of the generating 

units while satisfying equality and inequality 

constraints associated with the system [1].  

Generally, ED problem can be classified into static and 

dynamic economic dispatch problem depending upon 

the load profile. In static ED problem, the load curve 

remains straight for the whole time interval under 

consideration and consequently load demand remains 

constant. While in dynamic ED problem, the time 

interval is divided into equal sub-intervals and load 

demand varies for each subinterval making the 

problem a multi-stage dynamic optimization problem. 

Emission constraints of thermal generating stations 

E
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can also be incorporated resulting in a multi-objective 

economic emission dispatch problem. In practice, 

many real-time factors like usage of different types of 

fuels, remote location of generating stations, real-time 

operational limitations, up and down time of thermal 

generators further complicates the ED problem. In 

Multi area ED problem, the tie line constraint must be 

taken into consideration because the congestion of 

transmission lines greatly affects the power system 

planning & operational cost [2].  

In traditional ED problem, the fuel costs of generating 

units are addressed by quadratic functions which are 

smooth, convex and differentiable. Various classical 

and numerical optimization techniques have been 

widely used in literature to solve the convex ED 

problem such as lambda iteration [3], LaGrange 

relaxation [4], quadratic programming [5], interior 

point technique [6], linear programming and dynamic 

programming [1]. Although this convex and 

differentiable formulation of ED can be solved with 

much ease, it is impractical because the presence of 

real-world constraints such as Prohibited Operating 

Zones (POZs), ramp rate limits, and valve point effects 

make the objective function non-convex, non-smooth 

and non-differentiable. In general, mathematical 

programming based approaches cannot handle the 

non-convex cost fuel cost functions except dynamic 

programming, which also suffers from the curse of 

dimensionality. 

Evolutionary and metaheuristic techniques are 

potential solution methodologies for non-convex ED 

problem due to their inherent ability to be independent 

of differentiability and continuity of the objective 

function. Recent Evolutionary approaches which have 

been widely utilized to address ED problem are: 

Differential Evolution (DE) [7], Particle Swarm 

Optimization (PSO) [8], Modified Artificial Bee 

Colony (MABC) [9], Hybrid GA–PS–SQP [10], New 

Global Particle Swarm Optimization (NGPSO) [11], 

Shuffled Differential Evolution (SDE) [12], Moth-

Flame Optimizer [13], Harmony Search (HS) [14], 

Hybrid Big Bang–Big Crunch (HBB–BC) [15], Quasi-

Oppositional Teaching Learning Based Optimization 

(QOSLTLBO) [16], Chaotic Krill-Herd algorithm 

(CKH) [17], Modified Water Cycle approach [18], 

Hybrid Cuckoo Search technique [19], Hybrid DE-FA 

algorithm [20], Chaotic Teacher Learner Based 

Optimization (CTLBO) [21], Modified Symbiotic 

Organisms Search Algorithm (MSOSA) [22], 

Tournament-based Harmony Search (THS) [23], 

Improved Grey Wolf optimizer (IGWO) [24], Hybrid 

Chemical Reaction Optimization (HCRO) [25], 

Diffusion Particle Optimization (DPO) [26], Chaotic 

Bat Algorithm (CBA) [27], Kinetic Gas Molecular 

Optimization (KGMO) [28], Orthogonal Learning 

Competitive Swarm Optimizer (OLCSO) [29].  

Artificial Algae Algorithm (AAA) is a relatively 

recent population-based evolutionary approach 

inspired by the natural living behaviors of microalgae 

and being used to solve uni-modal and multimodal 

functions. A practical design optimization case study 

and MATLAB benchmark functions have been used 

previously to test the efficiency of the AAA [30]. The 

IEEE CEC’05 function set was used as benchmark 

functions and AAA gave successful results over 

various dimensions of the IEEE suite. A pressure-

vessel design problem, which is among the extensively 

addressed optimization problems, was utilized as a 

sample real-world design problem to verify the 

effectiveness of the algorithm. Results obtained from 

these case studies suggest that AAA is a stable 

approach having balanced local and global search 

qualifications. The promising results of AAA give the 

motivation to use this technique for solving a practical 

engineering problem, since this technique has not been 

used for the ED problem yet. The ED of thermal 

generating units using AAA is presented in this paper. 

Both non-convex and convex problems are solved and 

the algorithm performance is tested on IEEE standard 

test systems (3, 6, 13 and 40 unit test systems). The 

simulation results show that AAA provides superior 

results when compared with other evolutionary 

techniques reported in the literature.   

The remainder of this paper is structured as follows. 

Mathematical formulation of the ED problem is 

presented in Section 2. Section 3 describes the basic 

structure of AAA. Section 4 shows the implementation 

of AAA on standard IEEE test systems. The 

experimental results are presented and analyzed in 

Section 5. The conclusion is outlined in Section 6. 
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2. ED PROBLEM FORMULATION 
 
The main objective of ED problem is to schedule the 

output power of each generating unit so that the overall 

production cost is minimized and the equality, 

inequality, and various operating constraints are 

satisfied. The problem of minimizing the overall fuel 

cost can be mathematically expressed as [31]:  

 Minimize F	
�� =   ∑ F�(P�)����                                  (1) 

  

where, ������ is the overall fuel cost of production, �� 

is the real power generation of jth generating unit and F�(P�) is the production cost of jth generator and D 

represents the number of generating units. 

 

Based on the nature of objective function, the 

Economic Dispatch (ED) Problem can be 

predominantly categorized into convex and 

nonconvex ED problem. The convex ED problem is 

generally designed by a quadratic fuel cost function 

[31]. For the jth generating unit, the expression is as 

follows: 

 F��P� =  α�P�" +  β�P� + γ�                                      (2) 

   

where α�, β�, γ� denote fuel cost coefficients of jth 

generating unit in $/MW"h, $/MWh and $/h 

respectively.  

In general, the active power output of the thermal 

generating units is controlled by using multiple valves 

for fuel input. The sudden opening and closing of these 

valves result in the inclusion of discontinuous and 

non-differential points in the fuel cost curve of thermal 

units making it non-smooth and non-convex. This 

phenomenon is referred to as valve-point loading 

effect [1]. This non-convex behavior of thermal 

generating units in the presence of multiple valves is 

modeled by the superposition of a sinusoidal function 

with the original objective function as follows: 

F��P� = α�P�" + β�P� + γ� + )e� × sin (f� × �P�-. −P� ))                                                                          (3)  

   

where, e� and f� are the fuel cost coefficients of jth 

generating unit with Valve-Point Effect (VPE) and P�-. is the minimum active power generation limit of 

jth generating unit.   

ED is considered as a multi-constrained and hard 
optimization problem. The active power balance 
constraint, Prohibited Operating Zones (POZs), power 
generation limits, transmission losses and Valve-Point 
Effects (VPEs) are taken into account.  

The equality constraint conditions that the total 

generated power must be equivalent to the sum of load 

demand and transmission losses. It is expressed 

mathematically as follows: 

∑ P����� =  P�01�23 + ��_5�66                                     (4)  

where, �789�:;  denotes the total load demand and ��_5�66 is the total transmission loss of the system.  

The real power component generated by the generators 

should lie between P�-. and P�<. (MW) so that: 

P�-= < P� < P�<=, j = 1,2,3, … , D                             (5) 

Transmission losses cannot be neglected because the 

center of load is distant from the generating plants. 

They are addressed as follows by using the E − 

coefficient method [28]: 

P	_-
FF =  ∑ ∑ PGβG�P� + ∑ βH�P� +���������G�� βHH     (6) 

   
where βI�, βH� and βHH represents the loss coefficients. 

To study the economic aspect of the generator 

scheduling problem, it has been assumed in literature 

that the variation in production capacity of thermal 

generators follows a step response and power output 

of these generators can be regulated instantly. 

Although these assumptions help us solve the ED 

problem with much ease, they actually contradict the 

actual operational characteristics of thermal 

generators. An acceptable and realistic approach to 

model the generators state and production changes is 

to consider the long startup and shutdown processes of 

thermal generators and use the ramp functions.  Due to 

the physical limitation of generating units, the sudden 
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and drastic changes in the generator output are 

prohibited. These can be mathematically described as 

follows: 

 P�,� − P�(�L�) M URL�,  j = 1,2,3, ⋯ , D    P�,(�L�) −  P�,� M  DRL�,    j = 1,2,3, ⋯ , D   

 

where RST� and UST� indicates the up and down ramp 

limits. ��,�  and ��(�L�) denotes the power output at 

current and previous interval. The integration of ramp 

rate constraint in ED of thermal generators makes the 

problem a multistage non-convex dynamic 

optimization problem. 

In practice, associated auxiliaries or the faults in the 

machines prohibit generating units from operating in 

some regions, which are called prohibited operating 

zones of the generators [22].  

VW ∈ Y VWZ[ M VW M VW,\] , (W = \, ^, _, ⋯ , `)VW,aL\b M VW M VW,a] , (W = \, ^, _, ⋯ , `) (a = \, ^ ⋯ , c)VW,cab M VW M VWd[, (W = \, ^, _, ⋯ , `)  
                                                                                                       (7)                                                                                   

where i� denotes the number of prohibited zones of jth 

generating unit. P�,Ie and P�,I  are the upper and lower 

limits of ith prohibited operating zone of jth generator, 

respectively. 

3. AN ESSENTIAL BACKGROUND 
FOR APPLICATION IN ED 
PROBLEM   

 
3.1 Algae 
 

Algae belong to a distinct class of photosynthetic 

species called eukaryotes. Algae have a discrete 

nucleus and chloroplasts which contains a green 

pigment called chlorophyll. They have the ability to 

synthesize their own food using CO" and H"O in the 

presence of sunlight. They are highly adaptive to the 

changing and extreme environments like brine lakes 

and hot springs. The population dynamics of micro-

algae is mainly dependent upon two processes: growth 

process and loss process [32]. Nutrient uptake and 

photosynthesis are key factors affecting the growth 

processes while the loss processes include grazing, 

sedimentation (settling in the bottom), parasitism, 

competition, washout and eventually the death of 

microalgae. The growth rate of microalgae is the 

balance between procreation and loss rate. Inertial 

resistance of the fluid and viscous drag restricts the 

accelerated movement of an algal colony. Viscous 

drag force is the rearward exerted pressure by the fluid 

particles adhering to the exterior of algal cells due to 

their movement in the viscous fluid. 

 

3.2 Algal growth characteristics 

The specific growth rate of microalgae biomass are 
determined from the result of Batch tests. The 
following equation is used to address the growth rate 
of algae per unit of biomass: 
 3i3� =  μX                                                                     (8) 

 

where l is the algal biomass concentration(mn T⁄ ), pl pq ⁄ represents the rate of change of microalgae 

biomass, q is the time and r is the specific rate of 

growth. Under adequate illumination and a specified 

temperature, a typical algae growth characteristic of an 

algal batch in the presence of appropriate supply of st" and other nutrients is represented by Fig. 1. 

 

 
 

FIG. 1: TYPICAL GROWTH CHARACTERISTICS OF 
MICROALGAE [30] 

As seen from the Fig.1, when the algal cell 

concentration is low and mutual-shading is assumed to 

be negligible, growth rate increases exponentially and 

specific growth rate (μ) is a constant. For a high 
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intensity of incident illumination, if the concentration 

of algal cells is low and they are sustained at above 

sunlight saturation level, the exponential growth 

behavior may continue despite mutual shading. As the 

concentration of algal cell rises and light absorbance 

rate gradually approaches 100%, the increase in the 

quantity of cells is reflected by a linear behavior and dX dt ⁄  is constant. As the algal cell concentration rises 

and absorbance rate gradually approaches 100%, the 

increase in the quantity of cells is reflected by a linear 

behavior and dX dt ⁄  is constant. Afterwards, a 

compensation point will reach where the quantity of 

algal cells will be maximum and the effective 

illumination will approach a specific value. 

Monod function is used to address the biological 

growth process of microalgae. Monod function relates 

specific growth rate(r) and substrate concentration. 

 μ =  v,wxyz{|}~z{                                                                 (9) 

 

Here r indicates the specific growth-rate of algae 

colonies, μ1�� indicates maximum specific growth-

rate (1 Time)⁄  and it is assumed to be 1 (according to 

mass conservation principle), and kF represents the 

substrate half-saturation constant (Mass Volume⁄ ). It 
is calculated as change in growth at semi nutrient 

condition of the colony and F� is the concentration of 

nutrient at time q, which is actually the objective 

fitness value in time q. 

 

 3.3  Variation in Light Intensity 
 

Light intensity is generally measured as solar 

irradiance which is expressed as the power per unit 

area or the number of energy photons (μ Einstein/m"s; 1 Einstein ≈ 6 × 10"� Photons). Light 

penetration is restricted by the large amounts of 

pigments present in microalgae due to their 

photosynthetic nature [33]. Algal growth is usually 

limited by the light intensity and is confronted with the 

complications of light harvesting & attenuation 

capacity problems. Light intensity is subjected to 

reduce exponentially as it penetrates through the liquid 

surface. This exponential behavior make sure that 

even considerable changes in the solar irradiance will 

have negligible effect on depth of the light penetration 

through the liquid. So, light limited algal bio-mass 

production ratio will be roughly constant [34].  

3.4  Changes in environmental conditions  
 
Variations in liquid composition, temperature of the 

surroundings and sunlight intensity individually or 

together in combination have a significant effect on 

the growth characteristics of microalgae. So, algae 

have altered metabolic properties under different 

setting of temperature and light intensity.  

 3.5 Artificial Algae. Algorithm  
 
Artificial algae corresponds to search space solution 

by mimicking the behavior of microalgae. Like real 

microalgae, artificial algae can reproduce by mitotic 

division phenomena, they are highly adaptive to the 

surrounding conditions and can change the dominating 

species depending upon the light and nutrient 

conditions. They also swim helically in the liquid 

toward the light source for photosynthesis. Thus the 

algorithm is composed of three main steps called 

“Helical Movement”, “Evolutionary phase” and 

“Adaptation”. Algae cells are the main 

species/character/spirit in this algorithm. The entire 

population consists of algae colonies and a single 

algae colony is composed of a cluster of cells existing 

together. When a single cell reproduces by the mitotic 

division to form two identical daughter cells, they live 

together and when these two algal cells further 

reproduce, the four new cells live adjacently and so on. 

In this way, an algae colony performs similar to a 

single algal cell, they move jointly and cells in an algae 

colony may cease to exist under any inappropriate 

nutrient circumstances. An external shear force and 

any other unsuitable life scenario may disperse the 

algae colony and every dispersed portion becomes a 

new algae colony and life continues.  

 

Population of Algal colony =  � P�� ⋯ P��⋮ ⋱ ⋮P��� ⋯ P��� �   (10) 

 kth algal colony =  �P��, P�", P��, ⋯ , P��� 
 



Artificial Algae Algorithm with Multi-Light Source Movement for Economic Dispatch of Thermal 
Generation 

 
 

Mehran University Research Journal of Engineering  and Technology, Vol. 39, No. 3, July 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219] 

 

569 

 

The algae colony which exists at an optimal point is 

called optimum colony and cells it consists of are 

called optimum cells. 

3.5.1 Evolution: 

Under the appropriate nutrient conditions, if algae 

colony absorbs sufficient light, it grows in the liquid 

and mitotic division takes place in which a parent algal 

cell reproduces itself to produce two identical daughter 

algal cells. On the other hand, an algae colony which 

does not obtain sufficient sunlight tries to survive in 

the environment but dies eventually. Monod model is 

used to address the growth kinetics of artificial algae 

colony. The size of �qℎ algae colony at time (t +1) can be calculated using the Monod function, as 

follows: 

 S��~� =   μ�� S�� ,   k = 1,2,3,4, …, Np                            (11) 

 
where S��  denotes the size of kth colony at time t and N= represents the number of algae colonies. Algae 

colonies providing the most appropriate and cost 

efficient solutions grow more rapidly because they 

obtain large amount of nutrients and sunlight. For an 

individual cell of the tiniest algae colony expiring 

during the development course, the corresponding cell 

of largest algae colony takes its place. 

 Biggest¢

2£� = maximum(S�� ), k = 1,2,3, ⋯ , N¥          

                                                                               (12) 

 Smalest¢

2£� = minimum(S�� ),   k = 1,2,3, ⋯ , N¥ 

                                                                               (13) 

 Smallest¢

2£¦� =  Biggest¢

2£¦� ,  r = 1,2,3, …, D 

                                                                               (14) 

 
where problem dimension is represented by D, Biggest¢

2£�  is the largest algae colony and Smallest¢

2£�  represents the smallest algae colony at 

time t. In the algorithm, colonies are arranged in order 
of their sizes. A randomly nominated cell of the most 
poorly grown colony expires in the evolution process 
and a corresponding algal cell of largest colony is 
replicated in its place. 
 

3.5.2 Adaptation: 

In an environment, insufficiently grown algae colonies 

attempt to adjust themselves to the surrounding 

environment and consequently the dominant class 

alters. In the adaptation process, an inadequately 

grown algae colony tries to adjust itself according to 

the surroundings which leads to a change of prevailing 

species. It tries to attain the same resemblance as that 

of the fittest (largest) algae colony of the population. 

The starvation level is subjected to change due to this 

adaptation.  Initially, the starvation level is taken as 

zero for all colonies and it increases as the time q  
passes by, when a particular colony does not absorb 

sufficient sunlight. In this phase, the algae colony 

having the highest starvation value is adopted 

according to following equations.  

 starve� =   maximum(A�� )                                   (15) starve�~� =  starve� + (biggest� − starve�) × rand 

                                                                               (16) 

 

where A��  represents the starvation of kth algae colony 

and ªq«¬®�  is the most starved algal colony of the 

population at time q. Decision if adaptation of colonies 

will occur at time q or not is made by the adaptation 

parameter (A¥). Its value is a constant in the 

interval [0,1].  
3.5.3 Helical Movement Pattern: 

Algae colonies and cells move helically in the fluid 

with the help of their flagella and they try to exist 

nearby water surface for their survival because 

adequate sunlight is available. Forward motion of 

micro-algae colonies is constrained by viscous-drag 

force of the liquid and gravity. Algal cell movements 

are different. As an alga grows in the liquid, its 

frictional surface gets larger which causes the 

frequency of helical movement to rise which in turn 

increases its local search capability. All the algal cells 

can move in the liquid according to their energy. While 

energy ± of an alga at any time q has a direct relation 

with the absorption of sunlight and uptake of nutrient 

at q. So, algal cells closer to water surface will have 

more energy and they can dive more inside the liquid. 

On the other hand, algal cells far beneath the water 
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surface will have smaller size and proportionally less 

energy but due to their smaller size, frictional surface 

will be less so their movement distance inside the fluid 

will be longer. Hence, their global search ability will 

be more. However, they will be able to cover less 

distance in the liquid in correlation to their energy.  

 

In the algorithm, gravity which is restricting the 

forward movement is assumed to be negligible and is 

taken as zero. While viscous drag, which is presented 

as a shear force, varies in direct proportion to the 

frictional surface size of the algal colony. Since 

colonies are in spherical shape so its size is modeled 

as volume. Therefore, the surface area of hemisphere 

gives us the friction surface of the colony.  

 ²(�³) =   2´¬"                                                     (18) 

τ(P�) = 2π · ¸�¹º»¼x ½"
                                           (19) 

 

 
FIG. 2: HELICAL MOVEMENT OF MICROALGAE [30] 

For the helical swimming of microalgal cell, three 

dimensions are chosen randomly. One dimension 

addresses the linear movement while the other two 

provide angular movement. Eq. (19) is used in uni-

directional problems and algal cell movement is 

considered to be in straight line. In bidirectional 

optimization problems, the algal cell movement is 

considered to be sinusoidal and Eq. (20) are used to 

address this movement pattern. In the event of three or 

more dimensional problem, the movement pattern of 

algal cells is helical, as shown in Fig.2. The step size 

for each algal colony is determined by its distance 

from the source of light and frictional surface of the 

colony. P�¾�~� =   P¦¾� + (PF¾� − P�¾� ) × (∆ − τ�(P¦))p             (20) P�1�~� =   PF1� + (P�1� − P¦1� ) × (∆ − τ�)(PF))cosα (21) P�2�~� =   P�:� + (�À:� − PF2� ) × (∆ − τ�)(P�))sinβ   (22)  

 

where, k = 1,2,3 … , N=;  k Á r Á s Á t;  l Á m Án; Â, m, Ã = 1,2,3, … U; ∆ represents the shear (i.e. 

external) force, ²�(�³) is the frictional surface area of kth algae colony; β ϵ [0,2π] ; p ϵ [−1,1]. The 

flowchart of AAA is shown in Fig. 3. 

4 MODELING OF ELD PROBLEM  
   INAAA ENVIRONMENT 
 
4.1 Constraint handling methods for ED  
      Problem 
 
The discussion to follow presents the schemes for the 

handling of different constraints associated with the 

ED problem. 

 

FIG. 3:  FLOWCHART OF AAA 
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4.2  Handling of Generation Capacity Limits 

 

During the search for optimal solution, the generation 

capacity limits of Åqℎ generator addressed by equation 

(5) is handled by using the following equation: 

 

P� =  
⎩⎪⎨
⎪⎧ P�, �P�1I2 M P� M P�1�� P�1I2, �P� < P�1I2 P�1��, �P� > P�1�� where  j = 1,2,3, ⋯ , D 

                             (23) 

 
4.3 Handling the Constraint of Power Balance  
 
To handle the constraint of power balance of ED 

problem, an iterative repair scheme is used in this 

paper. First of all, the difference among the generated 

power and sum of transmission losses and power 

demand is computed as follows: 

 ∆p =   p�01Ì�23 +  P	_-
FF −  ∑ P�����                      (24) 

  
Now, if (ΔP = 0), the generated output power is in the 

feasible generation region and equality constraint is 

satisfied and solution does not need to go through any 

repair process. However, if (ΔP Á 0), then generated 

output power does not meet our demand and 

transmission losses and the solution needs to be 

modified. When (Δ� > 0), this implies 

that (�789�:; + ��_5�66 > ∑ ��)7��� , and the 

generated power needs to be increased. Similarly, 

when (ΔP� < 0), then (�789�:; + ��_5�66 <∑ ��)7��� , and the generated power needs to be 

decreased. This repair process is illustrated in the 

following equations: 

 

P� =
⎩⎪⎨
⎪⎧P� + min ·�P�1�� − P� z� ,   Î |∆=|∑ =ÐÑÐÒÓ Ô P�  ½ ;  ∆P > 0 

P� − min ·�P� − P�1I2 z� ,   Î |∆=|∑ =ÐÑÐÒÓ Ô P�  ½ ;  ∆P > 0      

                                                                               (25)  

                                                                       

where Õ�  represents a random numeral between 

interval [0, 1]; ��9�Ö(×Ø) and ��9Ù:(×Ø) are the 

upper and lower bounds of output power generation 

for jth generator; and P�(MW) is the actual generated 

power of jth generating unit. 

 

Equation (25) shows that any change in output power 

is done in accordance with the load demand. Further, 

this equation uses an iterative approach to modify the 

output power of generating units and the steps of the 

repair scheme is inscribed in Algorithm.1. An 

important feature of this scheme is that it bounds the 

power generation within the capacity limits of 

generators during the iterative procedure. An external 

penalty function is also integrated, along with the 

above mentioned constraint handling scheme, to 

handle any violation of the power balance restriction 

if it still persists. The conventional objective function 

addressed by equation (1) is integrated with a penalty 

function as described below.  

 

F¢�P�  =  Ú F¢�P� , if  P� ∈ FRF¢�P� + r∆P" otherwise               (26) 

 
where �S represents the feasible region for power 

output, ¬ denotes a positive and very large number and ΔP represents any violation of power balance 

constraint as indicated by equation (24). Equation (26) 

indicates that a very large penalty is imposed on the 

fuel cost (�Û)  only when the power generation (��), 

violates the equality constraint, otherwise, there is no 

penalty on the objective function. 

Algorithm 1: Handling of Power Balance 

Constraint (Repair Scheme) 

1. Read the generated power, P� (j = 1,2,3 … D), 

total load demand (P�), Maximum iterations (MAXIter), Number of generation units (D), 

upper and lower limits of generating 

units �UB�, LB� , Tolerance (TOL) and β −coefficient matrix �β�I, βH�, βHH  for the 

calculation of transmission loss.  

2. Set a counter for iteration numbers, (Iter = 0). 
3. Update the counter: (Iter = Iter + 1). 
4. Calculate the sum of generated power outputs, ∑ P� ����  

5. Evaluate the transmission losses (P	_-
FF) 

using equation (6). 
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6. Calculate the power difference, (ΔP), using 

equation (24). 

7. If (ΔP M  TOL); terminate. 

8. If (ΔP > 0), then adjust the output power 

generation (P�) using equation (25) and use 

equation (23) to fix any violation in generation 

capacity limits. 

9. If (ΔP <  0), then again adjust the output power 

generation (P�) using equation (25) and use 

equation (23) to fix any violation in generation 

capacity limits. 

10. If (Iter M MAXIter), GO TO 3; otherwise 

terminate. 

 

4.4 Handling of Prohibited Operating Zones  
 

For the optimum operation of thermal power 

generating plants, the power generation is prohibited 

in some regions called prohibited operating zones of 

the generators [1]. Whenever, the output power of a 

generating unit violates these POZ limits, the power 

generation is regulated heuristically according to the 

following scheme: 

 

P� = ⎩⎨
⎧P�,¥Ý-. − Î=Ð,�Þßà L=Ð,�Þáà

=â,Ðß Ô w if (Z� M Z")
P�,¥Ý<. + Î=Ð,�Þßà L=Ð,�Þáà

=Ð,�Þß Ô w otherwise              (27) 

where  Z� = �P�−P�,¥Ý-.  ;  Z" = �P�,¥Ý<. − P� ;  j =1,2,3 … . D;  pz = 1,2,3 … . NPZ�. P�,¥Ý-. (MW) and P�,¥Ý<.(MW) are the lower and upper limits of äÕqℎ 

prohibited operating zone of jth generation unit; å is 

a random numeral in the interval [0, 1]; P�(MW) is the 

generated power of jth generator and NPZ� denotes the 

number of POZs of Åqℎ generating unit. 

4.5 Pseudo Code of AAA for ELD Problem 

The discussion to follow presents the pseudo code of 

AAA for the ED problem.  

Algorithm.2: AAA for ED problem. 

1. Specify parameters of the ED problem i.e. 

Number of generators (D), load demand (P�), 

upper and lower bounds for each generation 

unit (UB�, LB�), fuel cost 

coefficients (a�, b�, c�, e�, f�), prohibited 

operating zones (POZs) of each unit and β − 

coefficient matrix (β�I, βH�, βHH) for calculation 

of transmission loss.  

2. Specify the parameters of the AAA i.e. loss of 

Energy(ε), Adaptation probability (A=), Shear 

force (∆), population size(N=), Maximum 

number of fitness evaluations (MNFEs). 

3. Initialize the size of every algae colony (S� =1 ;  k = 1,2,3 … N=) and set the starvation 

value of these colonies at zero (H� = 0). 
4. Initialize the microalgae colonies with random 

solutions using the following equation. It keeps 

the random solutions within the bounds of 

generator.  x�� = LB� + �UB� − LB� × random, where j = 1,2,3 … … D and k = 1,2,3, … … N= 

5. Use Algorithm.1 to regulate the generated 

power of all the algal cell in feasible generation 

region and fulfill other inequality and POZ 

constraints using equations (23)-(27). 

6. Compute the total generation cost, �Û(Å), 
corresponding to all algal colonies and identify 

the best cost, F�ç, associated with the fittest 

algae colony(P�ç; j = 1,2,3 … N=). 

7. Set a counter for iteration numbers: (� = 0) 

8. Update the counter: (� = i + 1) 

9. Update the algal colony size matrix, è³ , using 

equation (11). 

10. Calculate energy (E�(i)) of the algae colonies 

from their sizes (S) using: 

 E�I~�  =  énorm êrank�S�I  ë"ì 

 

11. Calculate the frictional surface, (τ�(i)) of each 

algae colony using equation (19). 

12. Set a counter for population(agents) number:  (k = 0). 
13. Update the population number : (k = k + 1). 
14. Setup a starvation level flag: (IH = 0). 
15. While (Algae_Energy(±³) > 0) 

16. Select a colony among the population by using 

tournament selection method. 
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17. Choose three unique algal cells �P�, P1� , P2�  of 

selected k�G algae colony in such a way 

that (l Á m Á n).  

18. Choose three distinct light sources (r Á s Á t) 

by using tournament selection method for the 

three selected algae cells (l, m, n) of  k�G algal 

colony. 

19. Implement the helical movement and modify 

the colony using the equations (20)-(22) and 

decrease energy of the colony, E�(i),  caused 

by the movement of algal cells using: 

E�(i) = E�(i) − εI2  

20. Use Algorithm.1 to regulate the updated power 

of every algal cell in feasible generation region 

and fulfill other inequality and POZ constraints 

using equations (23)-(27). 

21. Evaluate and compare the updated solution, if 

updated cost is less than the old cost, then move 

the algae colony to a new position, update the 

cost function value and the starvation flag (IH = 1); else reduce  energy of the 

colony, E�(t), caused by the metabolism 

process using equation described in Step 19.  

22. End the while loop. 

23. If an algal colony does not produce good 

solution (IH = 0), then increase its starvation 

value, (H�  =  H�  +  1). 
24. Now If (k < N=) then move back to step 13; 

otherwise move forward to step 25. 

25. Update the fittest (i.e. best) algae colony (P�ç) 

and the algal size matrix, è³  of all colonies 

using equation (11) and select the smallest and 

biggest algal colonies. 

26. Replace a randomly chosen cell of smallest 

algae colony with the corresponding cell of 

biggest colony using equation (12)-(14). 

27. Update the fittest algae colony (P�ç) among the 

population. 

28. If (rand (0, 1) < A¥I ) then implement the 

adaptation of algae colonies using equation 

(16)-(17) and update the best generation (P�ç). 
29. Perform exploitation of the search space in the 

proximity of best algae colony (PIç) and use 

Algorithm.1 to regulate the generated power of 

all the algal cell in feasible generation region 

and fulfill other inequality and POZ constraints 

using equations (23)-(27). 

30. If (NFE< MNFEs) than go to 8; otherwise 

terminate. 

 
5. CASE STUDIES 
 
In order to assess the performance of AAA for solving 

the Economic Load Dispatch (ELD) problem, it is 

implemented on 5 IEEE standard test systems and the 

results are analyzed. MATLAB R2016a is used to 

implement all the case studies on an Intel corei3, 

2.40GHz with 4GB RAM. 20 independent trials are 

conducted to evaluate average, best and worst fuel 

costs because of the probabilistic nature of AAA. 

These test system are described in the following 

sections.   

5.1  Case Study 1 
 
This test system consists of three generation units with 

total load demand of 850 MW. All the test system data 

which include the fuel cost coefficients, lower and 

upper limits for the generating units and power 

demand are taken from [31]. 

AAA requires a fine tuning of its parameters to 

converge to global optimum. These parameters are 

set as follows: Energy loss,® − 0.3, probability of 

adaptation, A¥ − 0.5 and shear force, ∆ − 2. In FIG. 

4, the convergence characteristics of generators fuel 

cost against number of iterations is plotted. The curve 

shows that AAA converges very quickly towards the 

global optimum in the initial iterations. 

FIG. 4: CONVERGENCE CURVE OF 3 UNIT TEST 

SYSTEM (P3 = 850 MW) 
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The optimum results achieved by the proposed AAA 

approach is compared with other competitive methods 

in terms of generation fuel cost, average execution 

time and standard deviation (SD) and are summarized 

in Table 1. AAA does not use the memory while 

selecting a light source. However, AAA compensates 

this disadvantage by gradually approaching the source 

of light with the helical movement of algal colonies 

and through their evolution and adaptation phase. This 

feature enables the AAA to provide results that are 

optimum. 

5.2 Case Study 2 

This test system consists of six generation units with 

convex cost curves. The constraints of transmission 

losses, POZs and valve point loading effects are also 

taken into account. The control parameters for this 

system is set as follows: Energy loss, ® − 0.02, 
probability of adaptation, ïð − 0.7 and shear 

force, ∆ − 2. The load demand of this system is 

1263MW. All the related test system data is applied 

from [35]. In FIG. 5, the convergence characteristics 

of generators fuel cost against number of iterations is 

plotted. The convergence characteristic shows that 

AAA approached the global optimal very 

systematically by escaping the local minima.  

The optimum generators loading corresponding to best 

trial is recorded in appendix in Table A1. The optimum 

fuel cost along with transmission losses, average CPU 

time and standard deviation achieved by the proposed 

AAA approach is compared with other competitive 

methods in Table 2. It can be concluded from these 

tables that AAA provides the competitive results in 

terms of fuel cost, standard deviation and execution 

time. It is also observed from the algorithm  

that smaller values of energy leads to faster 

convergence.  

 

FIG. 5: CONVERGENCE CURVE OF 6 UNIT TEST 
SYSTEM (P3 = 1263 MW) 

 

4.3 Case Study 3 
 
This is a 13 unit system with 1800 MW load demand. 

The test system data is obtained from [31]. The total 

numbers of trials. The control parameters for this 

system is set as follows: Energy loss, ® − 0.002, 
probability of adaptation, ïð − 0.8 and shear 

force, ∆ − 2. The convergence curve for this system is 

presented in FIG. 6.  

 
TABLE 1: COMPARISON OF RESULTS FOR TEST CASE 1 

Algorithm Individual Generation Total 
Generating 

Cost 
($/hr) 

CPU Time 
(Sec) 

SD 

P1 P2 P3 

GA-PS-SQP 
[10] 

300.300 400 149.700 8234.10 1.282 - 

SDE [12] 301.678 400 148.321 8241.59 - - 

NTHS [14] 300.267 400 149.733 8234.07 - - 

βHC [31] 300.267 400 149.733 8234.07 1.701 3.061 

AAA 300.267 400 149.733 8234.07 0.235 1.004 
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TABLE 2: COMPARISON OF RESULTS FOR TEST CASE 2 

Algorithm Total 
Power 
(MW) 

Ploss 
(MW) 

Total Generating Cost ($/hr) CPU Time 
(sec) 

 

SD 

Min. Cost Max. Cost Avg. Cost 

DE-IR [7] 1275.829 12.829 15,442.72 15,442.72 15,442.72 0.400 0.000 

PSO-WPF 
[8] 

1275.412 12.412 15,442.66 15,442.66 15,442.66 0.770 0.000 

MFO [13] 1275.42 12.422 15,444.19 - - - - 

HBB-BC 
[15] 

1275.570 12.570 15,444.26 15,448,89 15,466.46 - 1.52 

IGWO [24] 1275.312 12.312 15,442.20 15,442.67 15,442.60 - 0.123 

CBA [27] 1275.985 12.985 15,450.24 15,518.65 15,454.76 0.704 2.965 

MCSA [36] 1275.958 12.958 15,449.89 15,449.89 15,449.89 0.259 0.000 

AMKMTOA 
[37] 

1275.204 12.282 15,441.22 15,442.30 15,445.26 0.025 0.782 

JAYA-
SML[38] 

1275.335 12.335 15,445.16 15,450,65 15,447.29 2.110 6.221 

AAA 1275.427 12.427 15,440.39 15,442.48 15,441.37 0.388 0.634 

Table A2 in appendix presents the generator loadings 

corresponding to best trial. The optimum fuel cost 

along with transmission losses, average CPU time and 

standard deviation achieved by the proposed AAA 

approach is compared with other competitive methods 

in Table 3. The convergence characteristics shows that 

AAA is a competitive approach in the ELD domain. 

The parameter of energy loss controls the number of 

new potential candidates that are generated during 

each iteration due to mitotic division of parent algal 

cells. It was observed that a smaller initial value of the 

parameter of energy loss increases the exploitation 

ability of the AAA but it may lead to premature 

convergence and local optima stagnation. On the other 

hand, the higher this parameter is, the higher the global 

search ability of the algorithm but it slows down the 

convergence rate of the AAA algorithm. Therefore, 

AAA requires a fine tuning of this parameter to 

achieve the optimized results. 

 

 4.4 Case Study 4 

This is also a 13 unit system with load demand of 2520 

MW. The test system data is obtained from [31]. The 

total numbers of trials are 20 while each trial had 60 

iterations. The convergence curve in FIG. 7 shows the 

best trial curve. The optimum generators loading 

corresponding to best trial is recorded in appendix in 

Table A3. The optimum results achieved by the 

proposed AAA approach is compared with other 

competitive methods in Table 4. The standard 

deviation and average computational time of AAA for 

test system under consideration is also given in the 

Table. The adaptation parameter(A¥), basically

 

FIG. 6: CONVERGENCE CURVE OF 13 UNIT TEST 
SYSTEM (P3 = 1800MW) 

regulates the speed with which the algal colonies, 

which are unable to find the fit solutions, adapts 

themselves to the environment. It was observed that a 

large value of the adaptation parameter increases the 

convergence rate and hence computational time and 

production cost reduces.  
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FIG. 7:  CONVERGENCE CURVE OF 13 UNIT TEST SYSTEM 

(P� = 2520MW) 

Table 4 presents a comparison of the AAA results with 

recent evolutionary approaches for the 13 Unit test 

System. It is clear that the proposed AAA obtains the 

minimum fuel cost, similar to nine of the comparative 

methods. 

 
4.5 Case Study 5 
 
In this case study, a large test system of 40 generation 

units with valve point effects is considered. Total 

power demand of this system is 10500 MW. The 

related test system data is taken from [31]. FIG. 8 

shows the smooth convergence of AAA for this large 

system. The control parameters for this system is set 

as follows: Energy loss, e − 0.002, probability of 

adaptation, ïð − 0.8 and shear force, ∆ − 2. Table A4 

is appendix shows the optimized dispatch values for 

40 generators.  

 
TABLE 3: COMPARISON OF RESULTS FOR TEST CASE 3 

Algorithm Total Generating Cost ($/hr) CPU Time (Sec.) SD 

Min. Cost Max. Cost Avg. Cost 

MABC [9] 17,963.82 17,963.82 17,963.82 - 0.000 

QOSL TLBO [16] 18,421.17 18.031.00 17,994.67 4.582 - 

CKH [17] 17,961.99 17,968.22 17,965.33 3.772 0.874 

MSOS [22] 17,963.83 17,963.82 17,963.82 0.811 0.000 

HCRO-DE [25] 17,960.38 17,961.04 17,960.59 5.230 - 

CBA [27] 17,963.83 17,995.22 17,965.49 0.972 6.847 

βHC [31] 17,960.41 18,132.06 17,988.60 - 16.97 

AMKMTOA [37] 17,960.11 17,964.74 17,961.78 0.641 0.906 

GWO [39] 17,974.22 18,031.00 17,994.67 4.271 4.671 

AIS [40] 17,972.81  17,999.56  17,986.18  - - 

AAA 17,960.37 17,969.49 17,967.92 3.540 0.754 

 
TABLE 4: COMPARISON OF RESULTS FOR TEST CASE 4 

Algorithm Total Generating Cost ($/hr) CPU Time (Sec.) SD 

Min. Cost Max. Cost Avg. Cost 

MABC [9] 24,169.91 24,169.91 24,169.91 - 0.000 

NTHS [14] 24,164.06 - 24,201.10 5.710 - 

CKH [17] 24,164.18 24,166.11 24,168.43 4.550 0.667 

THS [23] 24,164.06 - 24,185.21 3.951 30.20 

IGWO [24] 24,202.16 24,228.35 24,210.00 4.582 7.021  

βHC [31] 24,164.18 24,232.06 24,204.90 - 31.27 

MCSA [36] 24,169.92 24,169.92 24,169.92 1.722 0.000 

Jaya-SML [38] 24,169.90 24,285.89 24,217.08 2.453 - 

CGAC [41] 24,170.04 24,190.97 24,181.31 - - 

AAA 24,164.05 24,168.81 24,175.07 3.940 0.874 
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TABLE 5: COMPARISON OF RESULTS FOR TEST CASE 5

Algorithm Total Generating Cost ($/hr) CPU Time (Sec.) SD 

Min. Cost Max. Cost Avg. Cost 

NTHS [14] 121412.73 - 121459.95 - - 

HBB-BC [15] 121471.72 122137.42 121984.24 16.52 - 

CKH [17] 121412.75 121412.90 121412.84 1.780 0.0758 

CTLBO [21] 121553.83 122116.18 121790.23 4.830 150.00 

CBA [27] 121412.54 121436.15 121418.98 1.550 1.6110 

OLCSO [29] 121415.81 121504.04 121460.77 47.24 21.799 

βHC [31] 121414.68 - 121496.84 7.940 53.704 

MCSA [36] 121412.53 121421.12 121414.16 3.990 2.7456 

AMKMTOA [37] 121411.56 121416.60 121413.25 1.446 1.4864 

JAYA-SML [38] 121476.39 122039.87 121689.07 12.89 147.89 

AGWO [42] 121403.90 121464.80 121424.00 2.432 7.5040 

AAA 121409.17 121436.15 121430.12 4.361 3.3644 

The comparison between the optimum fuel cost 

obtained by AAA and other latest evolutionary 

algorithms is presented in Table 5. It is obvious from 

the table that AAA produced balanced and successful 

results. Balanced local and global search qualifications 

allow AAA to produce results near to global optimum. 

 
FIG. 8: CONVERGENCE CHARACTERISTIC OF 40 UNIT 

TEST SYSTEM (P3 = 10500MW) 

The ability to balance local and global search 

contributes to success of AAA. Light source selection 

on the basis of updated information for this large test 

system reduces the risk of local optima stagnation. The 

success and efficacy of AAA is reflected in its smooth 

convergent behavior and its speed. For all the test 

systems under considerations, AAA delivers the 

optimized results. It is also a fast, robust and stable 

algorithm as it provides shorter computational time 

and lower standard deviation. 

CONCLUSION:   

This paper uses a novel, highly efficient meta-heuristic 

approach called AAA for solving the ED problem. 

AAA is a population based evolutionary optimization 

algorithm. It is based on mimicking the natural living 

behavior of algae. Basically, the microalgae model has 

been developed by employing the property of an algal 

cell to be close to sunlight, its helical movement 

pattern and features of reproduction and adaptation to 

the surrounding environment. In the algorithm, an 

algae colony is assumed to be an individual candidate 

searching for optimum solutions continuously within 

the search space.  

 

AAA has basically three control parameters (shear 

force, energy loss and adaptation parameter) and two 

basic operators (evolutionary and adaptation process). 

In adaptation phase, an insufficiently grown algae 

colony tries to resemble itself to the largest algae 

colony of the search space in each iteration. While In 

evolutionary phase, a single cell of smallest algae 

colony dies and corresponding algae cell of the largest 

colony replaces its position. This process provides 
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fine-tuning to achieve the global optimum.  New 

candidate solutions are produced by the application of 

helical movement of algae. In AAA, the step size is 

calculated by the weighted difference between a 

solution chosen with tournament selection and the 

current solution. AAA uses a greedy selection 

approach to choose between the current and new 

candidate solution.  

 

The performance of AAA was accessed by 

implementing it on 5 IEEE standard test systems for 

solving the Economic Load Dispatch (ELD) problem. 

The results are then compared with the most recent 

evolutionary approaches and AAA is found to be a 

consistent and balanced algorithm. The main 

drawback of AAA is its large number of parameters 

which require fine tuning to achieve global optimum 

compared to other algorithms. Inappropriate 

parameter values may lead to premature convergence 

and local optima stagnation. 

 

AAA requires further hybrid studies and parameter 

tuning to increase the rate of convergence and achieve 

better optimum solutions. In addition, it can be 

extended to address the multi area ED problem with 

multiple fuel options (MFO) and dynamic power 

system operational studies. AAA is highly sensitive to 

its parameters so adaptive version of AAA can be 

proposed to enhance its performance. Future research 

can be oriented to considering other constraints and 

making improvements in presented results. Practical 

engineering optimization problems can also be solved 

using AAA. 
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APPENDIX 

 
TABLE A1: OPTIMAL GENERATIONS FOR TEST CASE 2 

Unit 
No. 

Pmin 

(MW) 

Pmax 

(MW) 

Generation  
(MW) 

Fuel cost  
($/hr.) 

1. 100 500 446.7171 4763.09 

2. 50 200 173.1548 2216.40 

3. 80 300 262.7959 3075.30 

4. 50 150 143.4912 1962.70 

. 50 200 163.9148 2155.00 

6. 50 120 85.35422 1267.90 

Total 1275.4277 15440.39 

Transmission losses 12.4277  

TABLE A2: OPTIMAL GENERATIONS FOR TEST CASE 3 

Unit 
No. 

Pmin 

(MW) 

Pmax 

(MW) 

Generation  
(MW) 

Fuel cost  
($/hr) 

1 0 680 628.318 5749.90 

2 0 360 224.398 2154.80 

3 0 360 297.549 2777.10 

4 60 180 60.0000 716.064 

5 60 180 60.0000 716.064 

6 60 180 109.866 1129.50 

7 60 180 60.0000 716.064 

8 60 180 109.866 1129.50 

9 60 180 60.0000 716.064 

10 40 120 40.0000 474.554 

11 40 120 40.0000 474.554 

12 55 120 55.0000 607.591 

13 55 120 55.0000 607.591 

   1800 17960.37 

 

 
TABLE A4: OPTIMAL GENERATIONS FOR TEST CASE 5 

Unit 
No. 

Pmin 

(MW) 

Pmax 

(MW) 

Generation  
(MW) 

Fuel cost 
($/hr.) 

Unit 
No. 

Pmin 

(MW) 

Pmax 

(MW) 

Generation 
(MW) 

Fuel cost 
($/hr.) 

1 36 114 110.7998 925.096 21 254 550 523.2793 5061.30 

2 36 114 110.7998 925.096 22 254 550 523.2792 5061.30 

3 60 120 120.0000 1544.70 23 254 550 523.2793 5067.20 

4 80 190 179.7333 2043.60 24 254 550 523.2794 5057.20 

5 47 97 87.79990 706.500 25 254 550 523.2793 5275.10 

6 68 140 140.0000 1596.50 26 254 550 523.2794 5275.10 

7 110 300 299.8777 3276.30 27 10 150 10.00000 1140.50 

8 135 300 284.5997 2779.80 28 10 150 10.00000 1140.50 

9 135 300 284.5995 2798.20 29 10 150 10.00000 1140.50 

10 130 300 130.0000 2502.10 30 47 97 87.80030 706.260 

11 94 375 243.5994 4023.20 31 60 190 190.0000 1644.00 

12 94 375 168.7995 2977.50 32 60 190 190.0000 1644.00 

13 125 500 214.7596 3792.10 33 60 190 190.0000 1644.00 

14 125 500 214.7596 4005.70 34 90 220 220.0000 2228.40 

15 125 500 394.2794 6136.60 35 90 220 220.0000 2164.50 

16 125 500 304.5192 5071.20 36 90 220 220.0000 2164.50 

17 220 500 489.2793 5296.70 37 25 110 110.0000 1220.20 

18 220 550 550.0000 6215.10 38 25 110 110.0000 1220.20 

19 242 550 511.2793 5540.90 39 25 110 110.0000 1220.20 

20 242 550 331.7598 3636.40 40 242 550 511.2790 5540.90 

Total Demand(MW) 10500 Total Fuel Cost ($/hr) 121,409.17 
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TABLE A3: OPTIMAL GENERATIONS FOR TEST CASE 4 

Unit 
No. 

Pmin 

(MW) 

Pmax 

(MW) 

Generation 

(MW) 

Fuel cost 
($/hr) 

1 0 680 628.3185 5749.900 

2 0 360 299.1993 2782.600 

3 0 360 294.6480 2770.400 

4 60 180 159.7331 1559.000 

5 60 180 159.7331 1559.000 

6 60 180 159.7331 1559.000 

7 60 180 159.7330 1559.000 

8 60 180 159.7331 1559.000 

9 60 180 159.7331 1559.000 

10 40 120 77.39965 808.6526 

11 40 120 77.39954 808.6528 

12 55 120 92.39984 944.8859 

13 55 120 92.39966 944.8864 

 Total  2520 24164.05 

 


