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Abstract – Wireless Sensor Networks (WSN) based Internet-of-

Things (IoT) systems offer high efficient data transmission with 

enhanced Quality of Service (QoS). A multi-constraint based 

energy-efficient and fault-tolerant routing algorithm using 

Fractional Gaussian Firefly Algorithm (FGFA) and Darwinian 

Chicken Swarm Optimization (DCSO) are presented for 

performing optimal multipath communication. FGFA is an 

improved Firefly Algorithm in which the fractional theory and 

Gaussian function are incorporated to improve the convergence 

speed with higher efficiency. Likewise, the DCSO is an improved 

model of CSO based on the survival theory of Darwin to 

decrease the computation time and improve the convergence by 

eliminating the local optimal challenges. Initially, the network is 

clustered and the cluster heads (CH) are chosen optimally by 

FGFA based on the objective function with multiple QoS 

constraints. Then the best routing paths are chosen by DCSO 

through similar objective function with inter-cluster and intra-

cluster delay additionally included. The optimal paths are sorted 

in a hierarchical order from which multiple paths are utilized for 

data communication. The FGFA+DCSO routing protocol is 

assessed in NS-2 simulator and the outcomes shown the 

proficiency of the suggested approach with 6.3% reduced delay, 

6% improved throughput, 26.7% minimized energy, 11% 

increased lifetime, 20% higher PSNR, and hop count reduced by 

1. 

Index Terms – Internet-of-Things, Wireless Sensor Networks, 

Fault Tolerance, Energy Constraint Problem, Fractional 

Gaussian Firefly algorithm, Darwinian Chicken Swarm 

Optimization. 

1. INTRODUCTION 

IoT is the blooming technology that utilizes objects or things 

into the Internet to provide communication that ensures 

different control and processing applications [1]. Integration 

of IoT does not require specialized infrastructure but only 

application-oriented and connectivity possible objects. The 

fundamental virtual layer of the IoT networks is the WSN 

which enables the wide-area sensing and communication 

applications [2]. WSN consists of a large number of 

autonomous and multi-hop sensor nodes which increases the 

efficiency of the IoT networks. WSN based IoT has greater 

applications in the fields of military operations, agriculture, 

medical, transport, environmental and educational 

organizations [3]. Along with the benefits of the WSN 

integration for IoT networks, the challenges in WSN are also 

incorporated into the new IoT networks [4]. The major 

challenges are the energy constraint and link failure problems 

in addition to other pivotal problems of delay, packet loss and 

less throughput. As in the WSN, these problems are mostly 

related to the routing protocol and this enlightens that the 

development of an efficient multi-constraint routing protocol 

[5] for WSN based IoT networks can be the optimal solution 

for these problems. 

Traditional protocols are single-path routing protocols that 

rely on the shortest path selection process [6]. The shortest 

paths are not exactly the optimal path since they are 

dependent only on a single objective and not all shortest paths 

are efficient for routing. Hence the concept of multi-objective 

routing protocol was created which considers multi-

constraints for selecting the efficient path for data 

transmission [7]. Also, the Cluster Head (CH) selection in 

clustered WSN must be resolved to ensure energy efficiency 

[8]. The other problem with the single path routing protocols 

is that they are prone to packet loss due to congestion or link 

failures when the nodes expire. Once the selected CHs fail, 

the faulty CH cannot transmit the sensed data and results in 

data loss. The fault tolerance in the network using single-path 

routing is greatly prone to this problem. Multipath routing 

protocols considerably resolve this CH fault problem through 

the selection of two-or-three fault-free CH for transmitting the 

data when faulty CH occurs, so that it reduces the overhead 
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and possibility of link faults [9]. Developing multi-constraints 

based multipath routing protocol using advanced optimization 

algorithms for CH selection and route selection ought to be 

the main objective. Many studies have developed similar 

optimization based routing protocols, but their limitations 

have made way for newer algorithms. 

Previously, the Fractional Firefly Algorithm and Chicken 

Swarm Optimization (FFA+CSO) [10] based routing protocol 

in which the FFA optimally selected the CH and CSO 

selected the optimal routing path based on multiple 

objectives. Although efficient, the FFA and CSO algorithms 

can be enhanced by improving their global search abilities. 

Through extensive analysis, some interesting strategies have 

been devised to improve these algorithms. Thus in this paper, 

the FGFA+DCSO based routing protocol is developed by 

improvising the strategies to improve the optimization 

algorithms. Using this routing model, the multipath routing is 

achieved in IoT networks based on multi-constraints. The NS-

2 simulations are performed to evaluate the effectiveness of 

the suggested routing model. 

2. RELATED WORK 

Numerous optimization procedures have been exploited in the 

advancement of energy proficient routing algorithm for WSN 

and WSN based IoT. Lalwani and Das [11] utilized bacterial 

foraging optimization for CH selection to achieve optimal 

routing based on energy and distance parameters. Though 

efficient, this optimization algorithm also has limitations in 

the convergence rate. Hasan and Al-Turjman [12] developed a 

multipath fault-tolerant routing in IoT using the bio-inspired 

particle multi-swarm optimization which reduced energy and 

delay. However, this model did not utilize more objective 

parameters that influence the link failures. Haseeb et al. [13] 

proposed a dynamic energy-aware fault-tolerant routing 

algorithm using uniform network partitioning. Although it 

provided higher tolerance and reduced energy consumption, it 

has limitations in terms of delay. Lin et al. [14] proposed 

Bipartite-Flow Graph Modeling for providing fault-tolerant 

routing in IoT WSN. Muhammed et al. [15] designed a 

hierarchical clustered fault-tolerant routing model to improve 

the network lifetime. However it has the drawback of high 

energy wastage. Rui et al. [16] developed self-adaptive fault-

tolerant routing using autonomous failure detection. This 

approach reduced the data loss and network failures but 

increased complexity. 

Lalwani et al. [17] established an energy effective routing 

algorithm using the biogeography optimization in which the 

CH is selected based on energy while routing based on energy 

and distance. Despite providing high-performance routing, it 

has slow convergence. Preeth et al. [18] presented an adaptive 

fuzzy rule for CH selection and immune-inspired optimization 

for route selection in WSN-assisted IoT to decrease energy 

depletion and improve data delivery. Although significantly 

efficient than other routing models, the load balancing in the 

CHs is not effectively achieved. 

Thangaramya et al. [19] developed an energy-aware neuro-

fuzzy rule for CH selection and optimal routing in IoT 

networks. This approach provided path selection with smaller 

delay and minimum power depletion but it does consider all 

nodes are trusted nodes which is not practically possible. 

Vijayalakshmi and Anandan [20] presented multi constraint 

Tabu PSO for optimal CH selection and routing based on 

network lifetime and energy consumption. However, this 

hybrid model has a higher computation complexity than 

individual models. Mittal [21] utilized Moth flame 

optimization for energy effective CH detection and stabilized 

routing based on load balancing. This approach reduced the 

route link cost and energy consumption to ensure optimal 

communication but it has a high delay in data transmission 

due to the data fusion at the CH. Awan et al. [22] designed 

Gray Wolf Optimization (GWO) based routing optimization 

through CH selection with minimized routing cost. However, 

GWO is also limited by its low convergence speed. Vinitha 

and Rukmini [23] developed Taylor Series-based hybrid 

optimization of Cat Swarm and Salp Swarm Algorithms for 

CH and hop selection in secured multi-hop routing. This 

algorithm based on Taylor series improves the convergence 

and increases secured and energy-efficient routing 

performance. Still, this algorithm has performance 

degradation due to computation complexity when the network 

size increases. 

Pattnaik and Sahu [24] employed fuzzy approach for CH 

selection based on residual energy, node centrality, and 

neighbourhood overlap whereas Elephant Herding 

Optimization (EHO) ‐ Greedy algorithm for optimal route 

selection with reduced sink energy. However, the CHs elected 

were not able to handle massive data in dense networks and 

also increased the data forwarding delay. Kavitha et al. [25] 

also proposed cluster-based routing using Gravitational 

Search Algorithm for CH selection and optimal route 

selection based on energy, communication cost and lifetime. 

Still, this approach did not consider the link failures and it has 

degraded the overall efficiency. Vinodhini and Gomathy [26] 

developed a multi-objective dynamic routing model using k-

means based node clustering and Artificial Bee Colony 

(ABC) system for optimum CH and path assortment. This 

mixture model reduced the communication cost and energy 

wastage but it has limitations of the local optimum problem in 

ABC. For the same objective, Kumar et al. [27] recommended 

fractional artificial bee colony + Exponential Ant Colony 

Optimization (FABC+EACO). Correspondingly, Dhumane 

and Prasad [28] used Fractional Gravitational Search 

Algorithm (FGSA) + Fractional Grey Wolf Optimization 

(FGWO). But these two studies have limitations of slow 

convergence. Thus, from the literature studies, it is 

understood that irrespective of the efficient performance of all 
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the algorithms, the room for improvement is vast. 

Particularly, the local optimum problem and the 

corresponding slow convergence of optimization algorithms is 

one prominent area requiring improvements. Likewise, the 

routing techniques ensure energy efficiency and fault 

tolerance. However, fault-tolerant routing in IoT networks is 

more challenging to obtain than in the general WSN. Hence 

considering these limitations, the proposed study develops a 

routing model based on FGFA+DCSO that provides high 

performance multi-constraint multipath routing for the IoT 

networks. 

3. PROPOSED FGFA-DCSO BASED ROUTING 

PROTOCOL METHODOLOGY 

The proposed methodology focuses on selecting the optimal 

CH and best routing paths based on multiple constraints. To 

achieve this objective, the FGFA and DCSO algorithms are 

developed and used in the development of FGFA+DCSO 

routing model built on Ad hoc On-Demand Distance Vector 

(AODV) model. Figure 1 illustrates the processes involved in 

the proposed routing model. 

3.1. System Model 

IoT network is built on the WSN architecture and hence the 

internet-connected things are linked to the Base station (BS). 

The equipment in IoT performs as the sensing operations of 

nodes as per the application requirements. The BS can be 

placed inside the network or outside the network dimension 

depending upon the user requirements. The IoT nodes are 

equipped with the capability to act as CH as well as cluster 

member nodes to transmit packets to the BS and also shift 

their energy for this process. Each node collects information 

and transmits them to the BS over the CH which is designated 

based on energy, delay, link quality and lifespan. When one 

selected CH runs out of energy or attains a threshold energy 

level, the CH is replaced and this process repeats until the 

predefined minimum number of nodes is not present in the 

network. When considering a simulation area of R square 

meters with N nodes, the initial energy of each node is set as 

𝑃𝑖 = 𝑃0 . The proposed routing protocol consists of two main 

processes: CH selection and Routing path selection. FGFA 

performs CH selection while DCSO obtains the best routing 

paths for multipath data transmission. First, the node positions 

are stored in the cache table and similar nodes are clustered to 

form groups. The nodes are distributed as similar node groups 

to form clusters 𝐶𝐷 and each cluster contains one CH. Each 

node is positioned at (𝑥𝑖 , 𝑦𝑖), while the location of BS is 

represented as (𝑋𝐵, 𝑌𝐵). The energy model and the mobility 

models are utilized as similar to that of FFA+CSO [10]. The 

transmission model is constructed upon the AODV for path 

detection and preservation. The transmission paths are formed 

once the CH is chosen, using the AODV principle. Then the 

DCSO selects the multiple optimal paths based on the 

objective parameters. 

 

Figure 1 Proposed Workflow of FGFA+DCSO Based Routing 

Model 
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3.2. Fractional Gaussian Firefly Algorithm (FGFA) For CH 

Selection 

The FGFA algorithm is designed by integrating the fractional 

theory and Gaussian distribution function into the standard 

Firefly algorithm. Some studies have developed the fractional 

theory based optimization algorithms [27], [28] and Gaussian 

Firefly algorithm [29]. Based on such studies, the FGFA 

algorithm is designed. The main advantage of utilizing FGFA 

over standard FA is that it improves the global search ability 

of the algorithm and increases the chances of obtaining global 

optimum solutions. This eradicates the problem of algorithm 

getting stuck at local optima and reducing the convergence 

rate. This enhancement is greatly handy in improving the CH 

selection in fault-tolerant routing performance for IoT 

networks. A good CH must satisfy multiple QoS constraints 

and still provide effective data transmission to the BS. Hence 

the FGFA models a fitness function using four essential 

parameters for CH selection. 

The fitness function thus contains metrics: fault tolerance 

through link quality metric, time through delay metric and 

energy efficiency through energy and lifetime. The fitness 

function formulated is given as follows: 

𝐹(𝑥) = 𝑤1 × 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑤2 × 𝑑𝑒𝑙𝑎𝑦 + 𝑤3 × 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 +
𝑤4 × 𝐿𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦                                                             (1) 

Here 𝑤1, 𝑤2, 𝑤3and 𝑤4 are the weight values assigned to the 

four parameters computed for each node. The values for 

𝑤1, 𝑤2, 𝑤3and 𝑤4 are chosen such that 𝑤1, 𝑤2, 𝑤3, 𝑤4 > 0 

and 𝑤1 + 𝑤2 +  𝑤3 +  𝑤4 = 1. The four objective parameters 

are calculated based on the equations used in FFA+CSO [10]. 

The FGFA selects the CH based on the higher fitness values 

and solves the Pareto-optimal problem caused by the multiple 

objectives. The energy and link quality metrics are given 

higher priority since they affect the efficiency and fault 

tolerance of the routing protocol. FGFA follows the general 

rules of FA and adjusts the residents of fractional fireflies’ 

society. The fractional principle with the Gaussian utility is 

mapped to the regular FA. The fractional function is given by 

 𝑛𝑥
𝑦(𝑙 + 1) = 𝛾𝑛𝑥

𝑦(𝑙) +
1

2
𝛾𝑛𝑥

𝑦(𝑙 − 1) + 𝑐𝑖(𝑙 + 1)              (2) 

Where c is the fractional input coefficient, 𝛾 is the 

attractiveness coefficient (𝛾 ∈ [0,1]), 𝑛𝑥
𝑦(𝑙 + 1), 𝑛𝑥

𝑦(𝑙) and 

𝑛𝑥
𝑦(𝑙 − 1) are the node locations of x with respect to y at 𝑙 +

1, 𝑙 and 𝑙 − 1, respectively. Integrating this function, the 

FGFA resembles fractional optimization. Using the fitness 

function from Eq. (1), the fractional fireflies are categorised in 

descending order. 

The fractional desirability (𝐹𝛽) and fractional light strength 

(FI) is specified as: 

𝐹𝛽 =
1

𝐹𝑇𝛼 𝛽0 exp(−𝛾𝑟𝑚+𝐹𝛼)                                               (3) 

𝐹𝐼 = 𝐷𝛼(𝑟). 𝐼0exp (−𝑆𝛼𝛾𝑟2)                                              (4) 

Here 𝐹𝑇𝛼 is a fractional interval, 𝐹𝛼 is the fractional 

repetitions in accumulation to m iterations, 𝐷𝛼(𝑟) is the 

smallest distance of fireflies, 𝛼 is the step regulatory 

constraint, 𝑆𝛼 is the aggregate strength index, 𝑟 is the distance 

assessed amongst any two fireflies (nodes) and 𝛽0 is the 

power variation at r=0. 

The position of fractional fireflies is updated based on 

𝐹𝑥𝑖(𝑚 + 1) = 𝑥𝑖(𝑚) +
1

2
𝛼𝐹𝛽0𝑒−𝛾𝑟𝑖,𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖         (5) 

Here 𝜖 is the Gaussian distribution trajectory, 𝛼𝐹 is the 

fractional constraint to regulate the phase size of the fireflies, 

𝑥𝑖(𝑚) point of node i and 𝑟𝑖,𝑗
2  is the square of the distance 

between two nodes (i, j). 

The firefly movement is dependent on the value of r which 

means the smaller r value makes the firefly move in the small 

distance and vice versa. This will have a greater impact on the 

computation period and also makes the agents move in a fixed 

distance to match the firefly. But it might make the firefly 

lose the contact of agents and roams in the local search space 

providing only looped local optimum solutions. Thus a 

random step length is used for firefly movement where the 

firefly initially searches the feature space comprehensively 

and provided an effective global solution that is adaptive to all 

phase periods to overcome the local optimum problem. The 

weight of consecutive arbitrary step length 𝛼 is evaluated by 

the following equation. Its value must always be closer to 

unity and is bounded by the values of maximum iteration 

𝑚𝑚𝑎𝑥 and current iteration m. 

𝑊𝑚 = 𝐴 +
(𝑚𝑚𝑎𝑥−𝑚)𝑔

(𝑚𝑚𝑎𝑥)𝑔 + (𝐴 − 𝐵)                                       (6) 

where A=0 & B=1 as 𝛼 ∈  [0,1], 𝑊𝑚 is the weight amongst A 

& B and its value decreases by the time. g would be a linear 

or non-linear co-efficient and it is influenced by the capacity 

of every monitoring individual. If the capacity is big, the 

assessment of g is small which means the algorithm can 

converge more accurate. Its value is determined by 

𝑔 = 10(−𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)                                                             (7) 

If 𝛼 adapts Gaussian distribution, then the random walk 

movement becomes the Brownian motion. After each m, the 

standard Gaussian distribution is presented in directive to 

transfer all of the fireflies to overall best and is revealed in the 

following equation. 

𝑝 = 𝑓(𝑒|𝜇, 𝜎2) =
1

√2𝜋𝜎2
𝑒

(
−|𝑥−𝜇|2

2𝜎2 )
                                     (8) 

Where μ and 𝜎2 are its mean, variance and e is the variation 

between the obtained fitness value and best solution of firefly 

i. 
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𝑒 = 𝑓(𝑏𝑒𝑠𝑡) − 𝑓(𝑒𝑖)                                                         (9) 

Because of the use of the standard normal distribution, μ=0 

and 𝜎2 = 1. Then from this Gaussian distribution, a random 

number is chosen which is related to the swarm of each agent 

probability (p). The behaviour of the agent is then presented 

to the FGFA by modifying equation (5) as given below 

𝐹𝑥𝑖(𝑚 + 1) = 𝑥𝑖(𝑚) +
1

2
𝛼𝐹𝛽0𝑒−𝛾𝑟𝑖,𝑗

2

(𝑥𝑗 − 𝑥𝑖) + 𝛼 × (1 −

𝑝) × 𝑈(𝑥, 𝑧)                                                                      (10) 

Where 𝑈(𝑥, 𝑧) ∈ [0,1] is an arbitrary integer to increase the 

likelihood. If the evaluated new solution cost 𝐹𝑥𝑖(𝑚 + 1) 

better than the current position 𝑥𝑖(𝑚), then the firefly will 

move towards that new position. The apprising procedure is 

performed at the end of each search operation. The 

assessment of the fitness function, attractiveness and the 

location changing of firefly towards the best firefly is 

obtained based on a calculation by Eq. (1), (3) and (10) 

respectively. Thereby the procedure of firefly updating is 

iterated until the result is satisfied. The best firefly returned is 

the CH node with higher fitness valuation. Algorithm 1 shows 

the CH assortment procedure using the above established 

FGFA. 

Begin 

Initialize N fraction firefly population as n nodes 

m=1; 

Choose two nodes i and j as first set fractional fireflies 

Map the locations of nodes to the cache table 

While (𝑚 < 𝑚𝑚𝑎𝑥) 

             If (Lifetime of i-th firefly < Lifetime of a j-th firefly) 

             Allocate the firefly in new location stochastically   

             Appraise the firefly solution list 

             End if 

Estimate the point of i, j from the cache table 

Assessment of the cost-utility for fireflies 

For i=1 to n (all n fireflies) 

            For j=1 to n (all n fireflies) 

            Evaluate fractional function based generation 

            Compute the multiple objective parameters 

            Evaluate fitness using Eq. (1) 

            If (𝐹𝑗 > 𝐹𝑖) 

                       Move i towards j; 

            Else 

                       Retain i and remove j; 

                       Elect i+1 node; 

            End if 

            Arrange the fractional fireflies 

            Apprise the node’s positions (fractional firefly update) 

            through Eq. (10) 

            Control unrestrained node activities using 𝐹𝛽 (Eq. (3)) 

            Appraise the solutions list 

            End for j 

End for i 

Re-Rank the fireflies and define the present best  

End while 

m= m+1; 

Return CH 

End 

Algorithm 1: FGFA Based CH Selection 

When all the nearest available CHs run out of energy or 

removed due to malfunctions, the cluster must select a new 

CH to function properly. In some cases, the CH might be 

moved away from the cluster range for network redesigning, 

there is a chance that there is no appropriate CHs to cover the 

entire cluster. To tackle such scenarios, a backup process is 

predetermined, i.e. the outgoing CH has all access to the latest 

information about the position of the destination. Using this 

information, the CH has maintained an updated list of best 

CH candidates and when leaving the cluster, the outgoing CH 

broadcasts a message to all its neighbours. Then the cluster is 

fragmented to form cluster fragments. Each similar neighbour 

nodes of the cluster are placed in the same cluster fragment 

while other nodes are transferred to nearby cluster fragments. 

Then the new CHs are selected based on the list as per the 

initial CH selection using FGFA. 

3.3. Darwinian Chicken Swarm Optimization (DCSO) for 

Selecting Optimal Paths 

DCSO is developed based on the implementation of Darwin’s 

survival theory of living organisms into the standard CSO 

algorithm. This integration is modelled into an optimization 

problem similar to the Darwinian Particle Swarm 

optimization [30] and solved using the CSO metrics. 

Darwin’s theory states that the fittest organism survives the 

adverse conditions of this planet. Although this theory is 

partially disowned by scientists, it has a significant impact on 

the selected survival environments. Using this theory to Cso 
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forms the hierarchical survival strategy and enhances the 

solution searching capability.  

First, the DCSO initializes the chicken population with RX, 

HX, CX and MX as rooster, hen, chick and mother hens. 

These hens are assigned with the routing paths. The best fault-

tolerant paths are the results of this DCSO algorithm. They 

are obtained based on the fitness model that comprises 

energy, inter-cluster and intra-cluster delay, link quality, hop 

count and lifetime parameters. Similar to the CH selection 

fitness function, the weight values are assigned and the fitness 

𝐹𝑝(𝑥) is given as 

𝐹𝑝(𝑥) = 𝑤1 × 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝑤2 × 𝑃𝑑 + 𝑤3 × 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 + 𝑤4 ×

𝐿𝑖𝑛𝑘 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 + 𝑤5 × 𝐻𝑜𝑝                                               (11) 

Here 𝑤1, 𝑤2, 𝑤3, 𝑤4 and 𝑤5 are the weight values assigned to 

objective parameters computed for each available routes. 𝑃𝑑 is 

the path delay computed as the sum of intra-cluster delay and 

inter-cluster delay. 

Based on this fitness function, the chickens (paths) are 

evaluated. The chicken with the highest fitness value is 

chosen as the leader (rooster). The co-leaders (hens) and 

elders (mother hens) are cumulatively ordered while the 

members (chicks) are usually the lowest fitness routes. The 

chicken swarm is reordered hierarchically based on the fitness 

values and the positions are modified during operation. The 

movement and the position of the leaders can be updated as 

𝑋𝑖,𝑗
𝑇+1 = 𝑋𝑖,𝑗

𝑇 × (1 + 𝑟𝑎𝑛𝑑(0, 𝜎2)                                     (12) 

Where 𝑟𝑎𝑛𝑑(0, 𝜎2) is a Gaussian distribution with zero mean 

and standard deviation 𝜎2, 𝑋𝑖,𝑗
𝑇  and 𝑋𝑖,𝑗

𝑇+1 are the points of 

present best and next best chicken, respectively. 

The movement and position of the co-leaders and elders is 

updated as 

𝑋𝑖,𝑗
𝑇+1 = 𝑋𝑖,𝑗

𝑇 + 𝑆1 × 𝑟𝑎𝑛𝑑 × (𝑋𝑟1,𝑗
𝑇 − 𝑋𝑖,𝑗

𝑇 ) + 𝑆2 × 𝑟𝑎𝑛𝑑 ×

(𝑋𝑟2,𝑗
𝑇 − 𝑋𝑖,𝑗

𝑇 )                                                                     (13) 

Where 𝑟𝑎𝑛𝑑 ∈ [0,1] is a constant arbitrary integer, 𝑆1, 𝑆2 are 

the community graded coefficient of chickens and 𝑟1, 𝑟2 ∈
[1, … , 𝑁] are the index values of the chicken flock and 𝑟1 ≠
𝑟2. 𝑆1 and 𝑆2 are premeditated as in the regular CSO.  

The movement and position of the members is updated as 

𝑋𝑖,𝑗
𝑇+1 = 𝑋𝑖,𝑗

𝑇 + 𝑓𝑙 × (𝑋𝑚,𝑗
𝑇 − 𝑋𝑖,𝑗

𝑇 )                                     (14) 

Here 𝑋𝑚,𝑗
𝑇  is the location of the j-th chick’s mother hen and 

𝑓𝑙 ∈ [0,2] is the flocking constraint. 

The survival theory of Darwin has been implemented after 

this update stage. In this process, the swarms and new chicks 

are created by evolution and their fitness is evaluated. The 

labelled Main Program Loop and the Evolve Swarm processes 

are performed as activation at each step of the routing 

algorithm. The flock is allowed to perform the creation of new 

flock swarm with constant likelihood and a minimum number 

of individuals. Once the new flocks are created, the flocks 

with increasing fitness are selected while those with 

decreasing fitness are eliminated. The fitness estimation leads 

to the evolution of new individuals in the flock to choose the 

best optimal solutions. Then based on the best fitness, the 

location of the individuals is updated. The new individuals are 

created continually only when the swarm records the best 

fitness. If not, the current individual with the lowest fitness is 

eliminated in m iterations. The creation and elimination of the 

flock and the individuals are performed by the following 

steps.  

3.3.1. Forming New Flocks and Individuals  

A new flock can be created only when it has null eliminated 

individuals (i.e. 𝑁𝑘𝑖𝑙𝑙  =  0) and the number of flocks is not 

maximum. In this manner, new flocks can be created with the 

least number of individuals until maximum flocks are 

reached. After the maximum flocks are formed, new flocks 

cannot be formed openly. It can be formed only through the 

elimination of existing flocks and forming new flock to 

replace them i.e. it must satisfy 𝑁𝑘𝑖𝑙𝑙  =  0 to form new flocks.  

The newly formed flocks will have the likelihood of 𝑝(𝑓/𝑁𝑠) 

with the constant arbitrary integer 𝑓 ∈ [0,1] and quantity of 

flocks 𝑁𝑠. (1/𝑁𝑠) in this likelihood function has been 

employed to limit the flock formation process when it reaches 

around the maximum number. The newly created flock 

imitates the characteristics of two-parent flocks selected to 

mutate them, resulting in the new flock. But the parent flocks 

retain their characteristics even after the formation of a new 

flock. The ratio of the characteristic of the two parents is 

equally captured by the new flock, yet they might choose the 

speciality of one parent flock to apply the DCSO design 

enhancement. The new flock formation is halted until the 

recently formed flock achieves global best fitness. 

3.3.2. Discarding Flocks 

There is a pre-defined lower threshold for the population of 

individuals in a flock so that it achieves at least reasonable 

fitness. If a flock eliminates individuals and reaches below 

this threshold, then the flock can be discarded in favour of a 

new flock. i.e. A flock population X must lie between 𝑋𝑚𝑖𝑛 ≤
 𝑋 ≤  𝑋𝑚𝑎𝑥. When  𝑋 < 𝑋𝑚𝑖𝑛, the flock faces elimination 

from the search space. 

3.3.3. Discarding Individuals 

Similar to the flock elimination, the individuals in the flock 

are also discarded when they achieve continually worst 

fitness. A search counter (𝑆𝐶) is set for monitoring this 

continual fitness drop. During the formation of a flock, this 

𝑆𝐶 is set as zero. With increasing iterations without an 
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improvement in the fitness of an individual in the flock, the 

𝑆𝐶 value gets incremented by 1. The maximum value is set as 

the threshold 𝑆𝐶𝑐
𝑚𝑎𝑥, on reaching this value, the 

corresponding individual is discarded from the flock. Once 

elimination occurs, the counter is readjusted to a lesser value 

near the threshold. The reason for not resetting the value of 

𝑆𝐶 to zero is that it will only degrade the delay tolerance. 

Hence the readjustment is made and the next individual is 

monitored. The readjustment value of 𝑆𝐶 is not random and it 

is computed using the 𝑁𝑘𝑖𝑙𝑙  value. 

𝑆𝐶𝑐(𝑁𝑘𝑖𝑙𝑙) =  𝑆𝐶𝑐
𝑚𝑎𝑥 [1 −

1

𝑁𝑘𝑖𝑙𝑙+1
]                                   (15) 

Using these 𝑆𝐶 values, the flocks are formed and discarded to 

achieve optimal routing path solutions. The efficient selection 

of best routing paths is obtained in the order of leader, co-

leaders, elders and member individuals. The entire procedure 

of DCSO is précised in Algorithm 2. 

Begin 

Route discovery through RREQ packet broadcasting 

Set initial X individuals  

Assign required metrics for each individual 

Map the objective routing paths over the individuals 

Set m=0; 𝑆𝐶 = 0; 

For all individuals 

      Assess the fitness through Eq. (11) 

      While (𝑚 < 𝑚𝑚𝑎𝑥) 

       If (m% G == 0) 

           Dispense the flock into numerous sets of solution paths 

          Perform fitness comparisons 

          Move individuals towards global best 

          Arrange individuals in descending fitness values 

          Establish hierarchical order besides relations 

          Equate the routes i, i+1; 

           Re-rank the routes as numerous leaders and co-leaders 

          Until finish 

     End if 

     For i = 1 : N 

          If i == leader, then  

                 Update location via Eq. (12) 

          End if 

          If i == co-leader or elder, then 

                 Update location via Eq. (13)  

          End if 

          If i == member, then  

                 Update location via Eq. (14) 

          End if 

         Appraise the new best routes; 

         If the 𝑛𝑒𝑤 𝑟𝑜𝑢𝑡𝑒 >  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑟𝑜𝑢𝑡𝑒 

                  If 𝑁𝑘𝑖𝑙𝑙 = 0 and 𝑁𝑠 < 𝑁𝑠
𝑚𝑎𝑥 then 

                 Construct new swarm from parents 

                 Create a minimum chicken population 

          Else  

                 Update search counter by one; 

           If 𝑆𝐶 = 𝑆𝐶𝑐
𝑚𝑎𝑥 then 

                  Delete the chicken 

                   Increment 𝑁𝑘𝑖𝑙𝑙 by one 

           End if 

           End if 

       End if 

   End for 

End while 

End for 

Return multiple-path list 

Allocate each leader/co-leader for multi-path transmission 

End 

Algorithm 2: DCSO Based Route Selection 

4. RESULTS AND DISCUSSIONS 

Simulations and performance evaluations of the suggested 

FGFA+DCSO protocol is achieved using the NS-2 simulator 

based on the settings given in Table 1. 

Simulator NS-2.34 

No. of Nodes 100 

Area Size 1000 X 1000 m 

Channel type Wireless Channel 

Propagation model Two Ray Ground 

Link Layer LL 

Antenna model Omni Antenna 
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Traffic type CBR 

Mobility model Random Waypoint 

MAC 802.11 

Initial energy 100 Joules 

Radio Range 250m 

Simulation Time 300 seconds 

Number of packets 1000 

Packet rate 8 packets/sec 

Data payload 512 bytes/packet 

Table 1 Simulation Environment 

The evaluated performance of FGFA+DCSO protocol is 

compared with existing routing models that used optimization 

algorithms for CH selection and route optimization. 

FABC+EACO [27], FGSA+FGWO [28], standard FA+CSO 

and FFA+CSO [10] are evaluated for performance 

comparison. Before the complete routing comparison, the CH 

selection process of each of these methods is compared in 

terms of time as shown in Table 2. 

CH Selection Algorithms Time (ms) 

FABC 0.2833 

FGSA 0.2621 

FA 0.1785 

FFA 0.1540 

FGFA 0.1487 

Table 2 CH Selection Time Comparison 

Table 2 shows that the CH selection time taken by the 

proposed FFA is very less than the other compared 

algorithms. This reduced time for CH selection is due to the 

integration of fractional Gaussian theory to the standard FA. 

 

Figure 2 End-to-End Delay Comparisons 

Figure 2 validates the delay comparison of FABC+EACO, 

FGSA+FGWO, FA+CSO, and the suggested FGFA+DCSO 

routing conventions. The proposed FGFA+DCSO have 

outperformed other models with better delay reduction due to 

the faster convergence rate and reduced retransmissions 

because of node failures. FGFA+DCSO has a delay of 0.89 

milliseconds for 100 nodes, which is 6.3%, 28.8%, 38% and 

50.2% smaller than that of FFA+CSO, FA+CSO, 

FGSA+FGWO and FABC+EACO, respectively. 

 

Figure 3 Throughput Comparisons 

Figure 3 shows the throughput comparison of the proposed 

FGFA+DCSO and existing routing models. The proposed 

FGFA+DCSO have outperformed other models with 

improved throughput which is because of the reduced failures 

and packet loss. FGFA+DCSO has significant improvement 

due to the fast convergent route selection which resulted in 

190dB throughput for 100 nodes, which is 6%, 25.8%, 47% 

and 75.9% higher throughput than that of FFA+CSO, 

FA+CSO, FGSA+FGWO and FABC+EACO protocols, 

respectively. 

 

Figure 4 Energy Consumption Comparisons 
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Figure 4 shows the energy comparison of the proposed 

FGFA+DCSO and existing routing models. It is displayed 

that the proposed FGFA+DCSO has outperformed other 

models because of the increased fractional theory efficiency 

and global solution selection in both FGFA and DCSO. 

FGFA+DCSO has consumed 14J energy for 100 nodes, which 

is 26.7%, 40.4%, 52.7% and 54.8% lesser energy than 

FFA+CSO, FA+CSO, FGSA+FGWO and FABC+EACO 

protocols, respectively. 

 

Figure 5 Network Lifetime 

Figure 5 shows the comparison of the lifetime between the 

proposed FGFA+DCSO and the existing routing models. It is 

observed that the proposed FGFA+DCSO has increased 

lifetime because of the less energy wastage in CH selection 

and node failures. FGFA+DCSO has 1040 seconds lifetime, 

which is 11%, 35.6%, 60.1% and 107% higher than compared 

FFA+CSO, FA+CSO, FGSA+FGWO and FABC+EACO 

protocols, respectively. 

 

Figure 6 PSNR Comparisons 

Figure 6 displays the PSNR comparison of the proposed 

FGFA+DCSO and the existing routing models. FGFA+DCSO 

have outperformed other models, which is mainly due to the 

high convergence rate and global best solution with minimum 

delay. FGFA+DCSO has PSNR of 72dB, which is 20%, 44%, 

84.6% and 140% higher PSNR than FFA+CSO, FA+CSO, 

FGSA+FGWO and FABC+EACO protocols, respectively. 

 

Figure 7 Hop Count Comparisons 

Figure 7 indicates the hop count comparison of the proposed 

FFA+CSO against the existing routing models. FGFA+DCSO 

have outperformed other models with fewer hops. It is 

because of the selection of best routes which is optimal in 

terms of multiple constraints. For 100 nodes, FGFA+DCSO 

has taken only 4 hops while FFA+CSO has 5, FA+CSO has 8, 

FGSA+FGWO has 10 and FABC+EACO has 12 hops. Thus, 

the proposed FGFA+DCSO model has taken less number of 

hops and has also minimized the overhead considerably. 

The superiority of the FGFA+DCSO routing model is 

attributed to the improved convergence rate and efficient 

global solution determination through the fractional and 

Gaussian function in CH selection and Darwinian theory in 

route optimization. These integrations have improved the 

global search abilities of the optimization algorithms and 

enhanced the overall routing performance in IoT networks. 

5. CONCLUSION 

Energy efficiency and fault tolerance are vital factors in any 

routing protocol. This paper has studied the energy-efficient 

routing algorithms and suggested the development of 

FGFA+DCSO algorithms for cumulative allotment of CH and 

optimal routing paths in WSN based IoT networks. 

FGFA+DCSO routing protocol was designed by enhancing 

the standard FA and CSO algorithms through efficient 

strategies to improve their global search proficiency. The 

efficiency of the FGFA+DCSO model has been evaluated and 

it showed that it has outperformed other similar routing 

models with 6.3% reduced delay, 6% improved throughput, 

26.7% minimized energy, 11% increased lifetime, 20% higher 
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PSNR, and hop count reduced by 1. In future, the possibility 

of including other fitness parameters such as packet delivery 

ratio, degree of load imbalance, etc. will be inspected. 

Likewise, the efficiency of utilizing the strategies like node 

sleep scheduling, error correction schemes for security 

improvement will also be investigated. More importantly, 

with the recent advancements in nature-inspired optimization 

algorithms, the possibility of developing hybrid optimization 

algorithms for efficient routing models in IoT networks will 

also be explored. 
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