Remediation of $\mathrm{Cr}(\mathrm{VI})$ using $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51$ (Fe) under sun light irradiation Güneș ışığı altında $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51$ (Fe) kullanılarak $\mathrm{Cr}(\mathrm{VI})$ 'nın giderimi Sevil AKÇAĞLAR ${ }^{.(\text {DD }}$
 ${ }^{1}$ Mechanical Engineering, Engineering Faculty, Dokuz Eylül University, Izmir, Turkey. sevil.akcaglar@deu.edu.tr

Received/Geliş Tarihi: 29.01.2019,
Accepted/Kabul Tarihi: 26.04.2019

Revision/Düzeltme Tarihi: 12.04.2019
doi: 10.5505/pajes. 2019.38468
Research Article/Araștırma Makalesi

Abstract

\bar{A} hybrid nanocomposite namely $C_{3} N_{4} / D E U-51(\mathrm{Fe})$ was developed to reduce the $\mathrm{Cr}(\mathrm{VI})$ from a textile industry wastewater. $C_{3} N_{4} / D E U-51(\mathrm{Fe})$ exhibited a good cristalinity. The photocatalytic reaction of the carboxyl groups of the composite is in center and it is associated with the C -H-vibration. The optimal doping content of $C_{3} N_{4} / D E U-51(F e)$ was determined to be $1.2 \mathrm{mg} / \mathrm{L}$ to treat $1.6 \mathrm{mg} / \mathrm{L}$ $\mathrm{Cr}(\mathrm{VI})$ with a maximum yield of 98% at a sun light power of $80 \mathrm{~mW} / \mathrm{m}^{2}$ after 15 min at $42^{\circ} \mathrm{C}$ in summer. After $5^{\text {th }}$ times sun light experiments, the $C_{3} N_{4} / D E U-51(F e)$ was reused with a yield of 97%. The $\mathrm{Cr}(\mathrm{VI})$ reduction was explained with the Langmuir-Hinshelwood (L-H) kinetic model.

Keywords: $\mathrm{Cr}(\mathrm{VI}), \quad \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$, Langmuir-Hinshelwood photo-degradation kinetic, Reuse, Sun light.

Abstract

Öz $\overline{C_{3} N_{4} / D E U-51(F e) ~ h i b r i t ~ n a n o k o m p o z i t i ~ b i r ~ t e k s t i l ~ e n d u ̈ s t r i s i ~ a t ı k ~}$ suyundaki Cr(VI)'yı azaltmak için geliştirilmiştir. $C_{3} N_{4} / D E U-51(F e)$ kristal özellikli olup bu kompozitin merkezindeki karboksil gruplarının fotoparçalanma reaksiyonu C-H bağlanmasıyla ilgilidir. $1.6 \mathrm{mg} / \mathrm{L}$ Cr(VI)'yı yaz ayında \%98'lik maksimum verimle gidermek için optimum koşullar; $1.2 \mathrm{mg} / \mathrm{L} \quad C_{3} N_{4} / D E U-51(\mathrm{Fe})$, 15 dk . temas süresi, $80 \mathrm{~mW} / \mathrm{m}^{2}$ güneş ışığı şiddeti ve $42^{\circ} \mathrm{C}$ sıcaklıktır. $C_{3} N_{4} / D E U-$ 51(Fe)nanopartikülü 5 kez kullanıldıktan sonra \%97 verimle geri kullanılmiştır. Cr(VI) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır. Cr(VI) giderimi Langmuir-Hinshelwood (L-H) kinetik modelle açıklanmıştır. Anahtar kelimeler: $\quad \mathrm{Cr}(\mathrm{VI}), \quad \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$, LangmuirHinshelwood foto parçalanma kinetiği, Geri kullanım, Güneș Ișığl.

1 Introduction

Heavy metal pollution is increasing significantly since the disposal of wastewater is an important environmental problem. Wastewaters from chemical, textile, glass and metal industries includes toxic heavy metals at high concentrations [1]-[3]. The environmental pollution caused by organic and inorganic pollutants increase the pollution problem because of rapid industrialization. Metals released to aquatic ecosystems as a result human activities, from soils and rocks concerning the discharge of metals from metal, chemical, petrochemical and metallurgical industries [4]. The big part of heavy metal pollutants are zinc, chromium, nickel and lead [5]. ($\mathrm{Cr}(\mathrm{VI})$) is a metal present in the receiving aquatic ecocystems released wastewaters like metal, petrochemical, textile, leather and metal finishing [6]-[9].
The utilization of photo catalysts under sunlights increase the photodegradation mechanism by elevating the removal of resistant compounds. With good absorption under crosssection areas under solar spectrum, increase the conversion efficiency of pollutant in different environments with low cost [7],[10]. Cost is very significant in the comparison of the efficiency of the nano-adsorbents. A nono adsorbent should be cost effective. Improved adsorption capacities should be attributed to the low cost of adsorbents [11],[12]. With photocatalytic applications metals oxides can be converted to the other metals under UV light. The adsorbents it is used successfully in the removals of expensive by the industries and cause to environmental pollution [13]. Therefore, it is important to generate some cheap new metal-free catalysts activated under sun light and exhibiting good photocatalytic
performance and they are friendly in environmental ecosystems [14]. For this reason, degradation of $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{III})$ can be usefull for the environment and ecosystem.
In this study, Fe -based carbon nitride $\mathrm{C}_{3} \mathrm{H}_{4}$ nanocomposite was developed under laboratory conditions and it was used to reduce $\mathrm{Cr}(\mathrm{VI})$. The different concentrations of $\mathrm{C}_{3} \mathrm{~N}_{4}(0.05 \mathrm{mg} / \mathrm{L}$, $0.1,0.3,0.7,1.0,1.5,2.3$ and $5 \mathrm{mg} / \mathrm{L})$ in $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$, the effects of increasing photooxidation times ($5 \mathrm{~min}, 15 \mathrm{~min}, 35$ $\min , 60 \mathrm{~min}$ and 90 min), the effects of increasing sun light powers ($25 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in winter, $80 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in summer, $55 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in spring and $35 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in autumn), effect of temperature $\left(10^{\circ} \mathrm{C}\right.$ in winter at $12: 00$; $23{ }^{\circ} \mathrm{C}$ in spring, at $12: 00 ; 42^{\circ} \mathrm{C}$ in summer at 12:00 and $26^{\circ} \mathrm{C}$ in autumn at 12:00), effect of $\mathrm{pH}(2,7$ and 10$)$ on the removals of $\mathrm{Cr}(\mathrm{VI})$ were researched. The reusability performance of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ and the $\mathrm{Cr}(\mathrm{VI})$ reduction by LangmuirHinshelwood kinetic model was researched.

2 Materials and methods

2.1 Production of DEU-51(Fe) under laboratory conditions

1,4-benzenedicarboxylate (1.4-BDC) (1.69 g) and $\mathrm{FeCl}_{3} 6 \mathrm{H}_{2} \mathrm{O}$ $(2.12 \mathrm{~g})$ were added into $50 \mathrm{~mL} \mathrm{~N}, \mathrm{~N}$-dimethylformamide (DMF) and was mixed in a magnetic stirrer homogeneously. Then they were transferred into a 100 mL Teflon cap and it was incubated at $150^{\circ} \mathrm{C}$ for 24 h . It was cooled in room temperature. The product was centrifugated, then it was rinsed with DMF and ethanol, respectively. The obtained sample dehydreted in an incubator at $150{ }^{\circ} \mathrm{C}$ for 24 h [15].

[^0]
2.2 Production of $\mathrm{C}_{3} \mathbf{N}_{4}$ under laboratory conditions

The $\mathrm{C}_{3} \mathrm{~N}_{4}$ was produced with calcination of melamine [16]. 1.3 g melamine was added into a ceramic cup containing a cover, and then the produced matter was boiled at $560^{\circ} \mathrm{C}$ in an incubator for 6 h . The product was utilized to produce the composite [15].

2.3 Production of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ - $\mathbf{5 1}(\mathrm{Fe})$ under laboratory conditions

$3 \mathrm{~g} \mathrm{C}_{3} \mathrm{~N}_{4}$ was put into10 mL DMF. This mixture ultrasonicated for 35 min .1 .76 g of $1.4-\mathrm{BDC}$ and $4.89 \mathrm{~g} \mathrm{FeCl} 3 \mathrm{H}_{2} \mathrm{O}$ were transferred to 56 mL DMF. They stirred until became homogenous. $\mathrm{C}_{3} \mathrm{~N}_{4}$ /DMF was successively settled in the mixture. It heated at an furnace of $150^{\circ} \mathrm{C}$ for 1 day. The products were CMFe-3 and CMFe-5. They identified based on C and N (3% and 5%) percentages [15].

2.4 Photocatalytic removal of $\mathrm{Cr}(\mathrm{VI})$

The photodegradation yield was measured by removing of $\mathrm{Cr}(\mathrm{VI})$ to $\operatorname{Cr}(\mathrm{III})$. Using different $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ (0.1 $\mathrm{mg} / \mathrm{L}, 0.3,0.8,1,1.2,1.6,1.8,2.5$ and $4 \mathrm{mg} / \mathrm{L})$ concentrations the reducing of $6 \mathrm{mg} / \mathrm{L}$ initial $\mathrm{Cr}(\mathrm{VI})$ solution were investigated

2.5 Solar reactor

The solar reactor was made from a resistant quartz material with a volume of 1.9 L (30 cm heigth and 4 cm diameter). The UV studies were performed under constant sun ligths at powers varying between $70.00-80.00 \mathrm{~mW} / \mathrm{m}^{2}$ at hours between 11:00 am and 16:00 pm when the sunligth powers were at maximum levels.

2.6 Power of sunlight

The intensities of sunlight photoreactor were $25 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in winter, $80 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in summer, $55 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in spring and $35 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in autumn. Sunlight powers were measured with a Philips light meter Model DL-2001 during months and days.

2.7 Measurements of $\mathbf{C r}(\mathrm{VI})$ and Cr (III) concentrations

$\mathrm{Cr}(\mathrm{VI})$ was detected in an chromatographic device containing a visible wavelength detector. The IC/PCR distinguish the Cr^{+6} as $\mathrm{CrO}^{4}=$ from other diphenyl reactions with carbazide. Reduction $\operatorname{Cr}(\mathrm{III})$ to $\mathrm{Cr}(\mathrm{VI})$ was performed according to the literature given by Gürkan et al. [17]. The pH was regulated to pH 10 by adding $15 \mathrm{~mL} 4 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{O}_{2}$. This sol was heated in an incubator at $80^{\circ} \mathrm{C}$ during 50 min . Then it was boiled in a heater for 15 min to treat the $\mathrm{H}_{2} \mathrm{O}_{2}$. $\mathrm{Cr}(\mathrm{VI})$ was calculated in a spectrophotometer at a wave length of $651 \mathrm{~nm} . \operatorname{Cr}(\mathrm{III})$ was measured by discarding $\mathrm{Cr}(\mathrm{VI})$ level from the total Cr .

$$
2.8 \begin{array}{llll}
\text { Characterization of } & \mathrm{C}_{3} \mathrm{~N}_{4}, \quad \text { DEU-51 }(\mathrm{Fe}) \quad \text { and } \\
\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})
\end{array}
$$

X-Ray Diffractometer (XRD) running at 40 mA and 40 kV (Cu-K) was used while a Fourier Transform Infrared (FTIR) spectroscopy on KBr was utilized in a Transmission FTIR Spectrometric Analyzer. Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) data were collected by using TEM JEM-200 CX with an electrical voltage of 100 kV. Brunauer, Emmet and Teller (BET) analysis were performed to determine the surrounding area, the pore volume and the pore size distribution of the adsorbent using nitrogen adsorption method.

3 Results and discussion

3.1 XRD patterns of $\mathrm{C}_{3} \mathrm{~N}_{4}$, DEU-51(Fe) and

 $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-\mathbf{5 1}(\mathrm{Fe})$ for $\mathbf{0 . 5} \mathbf{~ m g}, \mathbf{1 . 0}$ and $\mathbf{2 . 0} \mathbf{~ m g}$The crystal composition of DEU-51(Fe) was researched using XRD. The XRD pathways of DEU-51(Fe) exhibiting similar data with the study's results by Akple et al. and Wen et al. $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe}), \quad \mathrm{C}_{3} \mathrm{~N}_{4} \quad$ and $\quad \mathrm{DEU}-51(\mathrm{Fe}) \quad$ [18],[19] (Figure 1a). The strong diffraction hills of DEU-51(Fe) showing the crystalloid structure of this adsorbent. The raised peaks in XRD pathways exhibited similarities with the studies performed recently [20]. The small hills results from the breathing of some small molecular organics in the solvents used in the production of DEU-51(Fe) (Figure 1a). Some solvents, like DMF and BDC leads to production of important changes of the lattice in the hill peaks. The distinctions peaks of $\mathrm{C}_{3} \mathrm{~N}_{4}$ exhibited similar data with the results of Lewellyn et al. and Hu et al. (Figure 1b) [21],[22]. The interlayer-stacking hill (0019) at $29.8^{\circ} \mathrm{C}$ attributed to the interlayer distance of $\sim 0.38 \mathrm{~nm}$ in the structure of $\mathrm{C}_{3} \mathrm{~N}_{4}$. The XRD patterns of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ showed a crystal constitution of the DEU-51(Fe). It was not varied after the supplementation of $\mathrm{C}_{3} \mathrm{~N}_{4}$ as reported by Wang et al. and Hong et al. [23],[24]. Figure 1c, indicates the XRDpatterns of $0.5 \mathrm{mg}, 1.0$ and $2.0 \mathrm{mg} \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$. It was shown that the XRD pathways of the this composite exhibited similarities with the XRD patterns of DEU-51(Fe) and $\mathrm{C}_{3} \mathrm{~N}_{4}$. This showed that the crystal constitution of the DEU$51(\mathrm{Fe})$ is not varied after the supplementation of $\mathrm{C}_{3} \mathrm{~N}_{4}$. This result agree with the previous recent investigations [24],[25].

Figure 1a. XRD patterns of DEU-51(Fe).

Figure 1b. XRD patterns of $\mathrm{C}_{3} \mathrm{~N}_{4}$.

Figure 1c. XRD patterns of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$.

3.2 FTIR spectra of $\mathrm{C}_{3} \mathrm{~N}_{4}$, DEU-51 (Fe) and

 $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ - $\mathbf{5 1}(\mathrm{Fe})$The spectra of $\mathrm{C}_{3} \mathrm{~N}_{4}$ and the other constituents of nanocomposites are illustrated in Figure 2. This spectrum involved broad exceed bands at $3271 \mathrm{~cm}^{-1}, 3164 \mathrm{~cm}^{-1}$, and 3072 cm^{-1}. These bands are related with the stretching pulses of $\mathrm{N}-\mathrm{H}$ bonds. More specific bands were detected at $1636 \mathrm{~cm}^{-1}, 1569$ $\mathrm{cm}^{-1}, 1410 \mathrm{~cm}^{-1}, 1326 \mathrm{~cm}^{-1}, 1242 \mathrm{~cm}^{-1}$ and $806 \mathrm{~cm}^{-1}$ indicating the characteristic of $\mathrm{C}_{3} \mathrm{~N}_{4}$ [21],[22],[24]. Powerful bands around $1636 \mathrm{~cm}^{-1}$ and $1242 \mathrm{~cm}^{-1}$ such as $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}-\mathrm{N}$ illustrated different cyclic rings. The FTIR spectra of DEU-51(Fe) showed in Figure 2. This graph showed similar data based on vibration their structure. This contains trivalent metal cores and -COOH ligands. The absorption apicals of the DEU-51(Fe) were detected at around $1685 \mathrm{~cm}^{-1}, 1595,1396$, 1020 , and $750 \mathrm{~cm}^{-1}$. These hills were originated from the oscillation in the COOH groups compared to the recent literatures [26],[27]. The high intensity of (C-0) at around 1685 cm^{-1} indicates the availability of some free carboxylic groups [28]. The two strong peaks at around 1595 and $1396 \mathrm{~cm}^{-1}$ ($(\mathrm{C}-0)$ and ($\mathrm{C}-0)$) exhibited the derivatives of carboxyl groups. This indicates the availability of Fe containing nanocomposites for effective adsorption. The FTIR spectrum of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})-(0,5 \mathrm{mg} ; 1$ and 2 mg$)$ exhibits two bands at $1564 \mathrm{~cm}^{-1}$ and $1383 \mathrm{~cm}^{-1}$ (Figure 2). This is related with the absorption of the carboxyl groups on the center of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite. The strong band at $747 \mathrm{~cm}^{-1}$ is relevant to $\mathrm{C}-\mathrm{H}$-puls. Both samples showed the same frequency dependence in the construction of nanocomposite. This showed that the structure of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite was not changed effectively.

Figure 2. FTIR spectra of $\mathrm{C}_{3} \mathrm{~N}_{4}$, DEU-51(Fe) and $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$.
3.3 SEM images of DEU-51(Fe), $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-\mathbf{5 1}(\mathrm{Fe})$; and TEM micrographs of $\mathrm{C}_{3} \mathrm{~N}_{4}, \mathrm{DEU}-51(\mathrm{Fe})$
As shown in Figure 3a, SEM images of DEU-51(Fe) exhibited a multiple hedron structure. The SEM picture of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite reveals $\mathrm{C}_{3} \mathrm{~N}_{4}$ coated on the DEU-51(Fe) showed similarities with the surface of composite (Figure 3b). Figure 3c exhibited the TEM micrographs of $\mathrm{C}_{3} \mathrm{~N}_{4}$ and DEU-51(Fe). This showed that the $\mathrm{C}_{3} \mathrm{~N}_{4}$ was greatly localized to the superficies of the $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite.

3.4 EDS measurement of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$-51(Fe)

EDS analysis results showed that there are iron, carbon, oxygen and nitrogen elements in the structure of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite (Figure 4). The elements were distributed throughout $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite.

Figure 3(a). DEU-51(Fe).

Figure 3(b). $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$.

Figure 3(c). $\mathrm{C}_{3} \mathrm{~N}_{4}$ and DEU-51(Fe).
Figure 3. SEM images of DEU-51(Fe) (a) and $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ 51(Fe)(b); TEM images of $\mathrm{C}_{3} \mathrm{~N}_{4}$ and DEU-51(Fe)(c).

Figure 4. EDS measurement composite.

3.5 BET, pore volume and pore diameter analysis of

 $\mathrm{C}_{3} \mathrm{~N}_{4}$, DEU-51(Fe) and $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-\mathbf{5 1}(\mathrm{Fe})$The BET surface area of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ complete composite is $22.04 \mathrm{~m}^{2} \mathrm{~g}^{-1}$. It is over than pristine $\mathrm{C}_{3} \mathrm{~N}_{4}$ (13.5 $\mathrm{m}^{2} \mathrm{~g}^{-1}$) and DEU-51(Fe) ($12.8 \mathrm{~m}^{2} \mathrm{~g}^{-1}$) (Table 1). The mean pore radius of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite containing $\mathrm{Cr}(\mathrm{VI})$ is also bigger than that of pristine $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite before $\mathrm{Cr}(\mathrm{VI})$ treatment. This can be explained with the surface of composite which is not occupied by $\mathrm{C}_{3} \mathrm{~N}_{4}$.

The introduction of the $\mathrm{C}_{3} \mathrm{~N}_{4}$ to the $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ composite does not influence the generation of the pure composite crystals to a certain extend.
3.6 Effects of doping content of $\mathrm{C}_{3} \mathrm{~N}_{4}$ in the $1.6 \mathrm{mg} / \mathrm{L}$ $C_{3} N_{4} / D E U-51(F e)$ on the treatment of initial 6 $\mathrm{mg} / \mathrm{L} \mathrm{Cr}(\mathrm{VI})$ at a sun light power of $65 \mathrm{~mW} / \mathrm{m}^{2}$ after 14 min photoxidation

The effect of $\mathrm{C}_{3} \mathrm{~N}_{4}$ dose on the photocatalytic treatment of $\operatorname{Cr}(\mathrm{VI})$ was investigated for limits varying between $0.05-5.0 \mathrm{mg} / \mathrm{L}$. The efficiencies were compared with a sample without catalyst. This phenomenon was determined as photolysis. Furthermore, a control was utilized to research the adsorption and desorption of $\mathrm{Cr}(\mathrm{VI})$ on the $\mathrm{C}_{3} \mathrm{~N}_{4}$ surface under sun light. As the $\mathrm{C}_{3} \mathrm{~N}_{4}$ concentration was increased from $0.05 \mathrm{mg} / \mathrm{L}$ up to $0.7 \mathrm{mg} / \mathrm{L}$, the $\mathrm{Cr}(\mathrm{VI})$ concentrations reduced to $0.83 \mathrm{mg} / \mathrm{L}$ with a $\mathrm{Cr}(\mathrm{VI})$ yield of 93 \% (Table 2). Further increase of $\mathrm{C}_{3} \mathrm{~N}_{4}$ concentration up to 2.3 and $5.6 \mathrm{mg} / \mathrm{L}$ the $\mathrm{Cr}(\mathrm{VI})$ removals remained stable. The maximum $\mathrm{Cr}(\mathrm{VI})$ yields was obtained at $0.70 \mathrm{mg} / \mathrm{LC}_{3} \mathrm{~N}_{4}$ concentration. About 0,8-1,2 \% removal in the level of $\mathrm{Cr}(\mathrm{VI})$ was detected after 20 min of adsorption under dark circumtances. The level of $\mathrm{Cr}(\mathrm{VI})$ did not modify during 60 min (data not shown). For this reason, the Cr (VI) mixed with the $\mathrm{C}_{3} \mathrm{~N}_{4}$ during 10 min in order to reach the steady-state conditions for adsorption and desorption processes under dark conditions. It was not found a big removal in the Cr (VI) concentrations during photolysis. However addition of $0,7 \mathrm{mg} / \mathrm{L}$ of $\mathrm{C}_{3} \mathrm{~N}_{4}$ catalyst increase the photodegradation of pollutant. At a lower $\mathrm{C}_{3} \mathrm{~N}_{4}$ concentrations (0.05 and $0.1 \mathrm{mg} / \mathrm{L}$) the $\mathrm{Cr}(\mathrm{VI})$ removal yield was $45-55 \%$ after 15 min photocatalysis. When the $\mathrm{C}_{3} \mathrm{~N}_{4}$ level increased ($0.30 \mathrm{mg} / \mathrm{L}$ and $0.7 \mathrm{mg} / \mathrm{L}$); 65% and $93 \% \mathrm{Cr}(\mathrm{VI})$ treatment efficiencies was observed, respectively. The increasing of the $\mathrm{C}_{3} \mathrm{~N}_{4}$ catalyst ($1.00 \mathrm{mg} / \mathrm{L}, 1.50$ and $5 \mathrm{mg} / \mathrm{L}$) lowered the yield of $\mathrm{Cr}(\mathrm{VI})(92 \%)$. Therefore, $0.7 \mathrm{mg} / \mathrm{L}_{3} \mathrm{~N}_{4}$ was accepted as an optimum concentration for the studies performed during the experiments. At his $\mathrm{C}_{3} \mathrm{~N}_{4}$ levels the photocatalytic yield for Cr(VI) removal was detected via good electron transferring during effective sun light absorption. The optimum catalyst concentration was chosen when the reactive oxygen species are optimum to remove the $\mathrm{Cr}(\mathrm{VI})$. Optimum concentration can be
defined as the equilibrium between free radicals and shifting due to the presence of excess $\mathrm{C}_{3} \mathrm{~N}_{4}$. Similarly, Huang at al. also detected an optimum $g-C_{3} N_{4}$ concentration in the $g-C_{3} N_{4}$, MIL-53(Fe) showed better Cr(VI) yield, compared to MIL$53(\mathrm{Fe})$ [15]. It was declared that high electron migration yield exhibits an important way to rise the photocatalytic yield. This is very important since rich electron transfer can decrease the redox of electron-cavity pairs [15]. Wan et al. and Wang et al. investigated the impact of nanocomposite level on photodegradaion of $\mathrm{Cr}(\mathrm{VI})$ under visible light. They observed efficient $\operatorname{Cr}(\mathrm{VI})$ yield (85\%) under sunlight using $0.8 \mathrm{~g} / \mathrm{L}$ g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ /graphene under optimum conditions [29],[30].

3.7 Effects of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ concentrations on the

 treatment of $\mathrm{Cr}(\mathrm{VI})$ at $0,7 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4}$ concentration at initial $6 \mathrm{mg} / \mathrm{L} \mathrm{Cr}(\mathrm{VI})$ at a sun light power of $65 \mathrm{~mW} / \mathrm{m}^{2}$ after 14 min photooxidation$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ levels were raised from $0.1 \mathrm{mg} / \mathrm{L}$ up to $4 \mathrm{mg} / \mathrm{L}$. As the $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ level was enhanced from $0.1 \mathrm{mg} / \mathrm{L}$ up to $1.2 \mathrm{mg} / \mathrm{L}$ the $\mathrm{Cr}(\mathrm{VI})$ yields increased from 34% up to 93% (Table 3). Further increase of this nanocomposite did not affect the $\mathrm{Cr}(\mathrm{VI})$ removals. The effective $\mathrm{Cr}(\mathrm{VI})$ photooxidation was obtained at $1.2 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ levels. The lowest $\operatorname{Cr}(\mathrm{VI})$ photooxidation was obtained at $0.1 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51$ (Fe) levels as 34%. An increase of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ loading advices to elevate the activated regions, however, can be decrease the reduction of $\mathrm{Cr}(\mathrm{IV})$ by blocking sun irradiation.
Nguyen and Juang reported that the increase of catalyst increased the reduction efficiency of pollutant because catalyst exhibits a high capacity for promoting the intreaction between oh radicals and pollutants [31]. In this study, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ $51(\mathrm{Fe}) \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ exhibited a high $\mathrm{Cr}(\mathrm{VI})$ reduction, however when the $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ concentration increased from $1.6 \mathrm{mg} / \mathrm{L}$ up to $4.0 \mathrm{mg} / \mathrm{L}$, no significant improvement of $\mathrm{Cr}(\mathrm{VI})$ decrease was observed. When the catalyst concentration is higher than that an optimal value $\left[\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})\right.$ catalyts concentration $\left.(>1.2 \mathrm{mg} / \mathrm{L})\right]$; excess photocatalyst vould cause accumulation of nano composite which is independent and elevated the opacity.

Table 1. Surface Properties of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51$ (Fe).

Samples	$\mathrm{BET}\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)^{\mathrm{a}}$	$\mathrm{V}\left(\mathrm{ccg}^{-1}\right)^{\mathrm{b}}$	$\mathrm{D}(\mathrm{nm})^{\mathrm{c}}$
$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})(1.6 \mathrm{mg})$	22.04	0.093	1.92
$\mathrm{C}_{3} \mathrm{~N}_{4}(0.70 \mathrm{mg})$	13.50	0.021	1.42
$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})(0.5 \mathrm{mg})$	17.90	0,067	1.72
$\left.\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe}) 1 \mathrm{mg}\right)$	18.50	0,076	1.83
$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})(2 \mathrm{mg})$	19.90	0.081	1.79
DEU-51(Fe) $(0.90 \mathrm{mg})$	12.80	0.070	1.45

a: BET specific surface. b:Total pore volüme. c The pore diameter.
Table 2. Effects of doping content of $\mathrm{C}_{3} \mathrm{~N}_{4}$ in the $1.6 \mathrm{mg} / \mathrm{L}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ on the removals of $\mathrm{Cr}(\mathrm{VI})$.

$\mathrm{C}_{3} \mathrm{~N}_{4}$ Concen tration (mg/L)	Cr(VI) Concen tration (mg/L)	Cr(VI) removal efficiency (\%)	Cr(III) Concen tration (mg/L)after Photocatalysis	Remaining Cr(VI) Concen tration (mg/L)
0.05	6	45	1.60	3.30
0.10	6	55	1.80	2.70
0.30	6	65	2.20	2.10
0.70	6	93	5.59	0.42
1.00	6	92	5.52	0.48
1.50	6	92	5.52	0.48
2.30	6	92	5.52	0.48
5.00	6	92	5.52	0.48

Table 3. Effects of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ concentrations on the removal of $\mathrm{Cr}(\mathrm{VI})$.
$\left.\begin{array}{ccccc}\hline \begin{array}{c}\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe}) \\ \text { Concen } \\ \text { tration } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\mathrm{Cr}(\mathrm{VI}) \text { concen } \\ \text { tration } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\operatorname{Cr}(\mathrm{VI}) \text { removal efficiency } \\ (\%)\end{array} & \begin{array}{c}\operatorname{Cr}(\mathrm{III}) \text { concentration } \\ (\mathrm{mg} / \mathrm{L})\end{array} & \begin{array}{c}\text { Remaining Cr(VI) concen } \\ \text { tration (mg/L) }\end{array} \\ \hline 0.1 & & & \\ \text { after photocatalysis }\end{array}\right]$

However, this cause a reduction in sun ligth distibution in order to protect the effect of some solid particles [32]. At high nanocomposite levels in aquatic media asteric effect can be observed. Under these conditions the granule-granule interaction can musk the sun ligth diffusation and lowered the active reaction sites.
3.8 Effect of photooxidation times under sun light at $1.2 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ - $\mathbf{5 1}(\mathrm{Fe})$ concentrations on the removal of $\mathrm{Cr}(\mathrm{VI})$ at $0.7 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4}$ concentration at initial $6 \mathrm{mg} / \mathrm{L} \operatorname{Cr}(\mathrm{VI})$ at a sun light power of $65 \mathrm{~mW} / \mathrm{m}^{2}$ after increasing photodegradation times ($5 \mathrm{~min}, 15,35,60$ and 90 min)
As the photooxidation times were increased from 5 min up to 15 min the $\mathrm{Cr}(\mathrm{VI})$ yields increased from 45% up to 93% under sun light (Table 4). The maximum $\mathrm{Cr}(\mathrm{VI})$ reduction to $\mathrm{Cr}(\mathrm{III})$ was found after 15 min contacting with $65 \mathrm{~mW} / \mathrm{m}^{2}$ sun light. Further increase of time did not affect the $\mathrm{Cr}(\mathrm{VI})$ removals. Data obtained from this study showed that the $\mathrm{Cr}(\mathrm{VI})$ reduction to $\operatorname{Cr}($ III $)$ depletes with attenuation of photodegradation period. It can speculated that longer retention time, in an elevated ratio of contact and at long contact times; hydroxyl radicals were not achieved for $\mathrm{Cr}(\mathrm{VI})$ reduction. As a result, low conversion rates was observed [33]. At a shorter residence time, $\mathrm{Cr}(\mathrm{III})$ have a lower colloid forming capacity with the OH anions produced from the photooxidation of $\mathrm{Cr}(\mathrm{VI})$ [33]. The enhancement effect is reduced with decreasing residence time. Jing et al. observed that the photoremoval efficiency of MIL-68(Fe) on the treatment of $\mathrm{Cr}(\mathrm{VI})$ in different media under UV light depends on illumination time [34]. The optimum illumination time for maximum removal of $\operatorname{Cr}(\mathrm{VI})(87 \%)$ was obtained as 60 min . In our study, the optimum time and the maximum $\mathrm{Cr}(\mathrm{VI})$ yields were found to be higher than the study by Jing et al. [34].
3.9 Effects of increasing sun light powers on the removals of $\mathrm{Cr}(\mathrm{VI})$ photoremovals at $1.2 \mathrm{mg} / \mathrm{L}$ $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51$ (Fe) concentration at $0.7 \mathrm{mg} / \mathrm{L} \mathrm{C}_{3} \mathrm{~N}_{4}$ concentration at initial $6 \mathrm{mg} / \mathrm{LCr}(\mathrm{VI})$ at a sun light power of $65 \mathrm{~mW} / \mathrm{m}^{2}$ after 15 min photooxidation
As the sun light powers were increased from $25 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in winter to $80 \mathrm{~mW} / \mathrm{m}^{2}$ at 12:00 in summer; the $\operatorname{Cr}(\mathrm{VI})$ removals increased from 34% up to 97% (Table 5). The Cr(VI) yields increased from 34% to 45%, to 78% and to 97% as the sun light powers increased during season. The $\mathrm{Cr}(\mathrm{VI})$ removals were at medium levels (45% and 78%) at medium sun light powers (35 and $55 \mathrm{~mW} / \mathrm{m}^{2}$); since the sun was not so effective in the photooxidation. Sun light corresponds for the wavelength and gap energy of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ during contacting sun wavelength. The photon flux is important in the photocatalytic
processes. The UV has a major influence in the removal of $\mathrm{Cr}(\mathrm{VI})$ since its influence in the production of $\mathrm{OH} \bullet$ radicals at elevated amount. A rise in light strength cause to improve the photocatalytic rates. In this study contrarily to the studies performed by Asadi et al. at high sun light powers (55 and $80 \mathrm{~mW} / \mathrm{m}^{2}$ in spring and in summer) electron hole pairs did not separate and they did not compete with electronhole recombination [35]. Zou et al. also mentioned that treatment of $\mathrm{Cr}(\mathrm{VI})$ and total chromium by Fe -nanoparticles depend on sun light powers [36]. They found that the majority of $\operatorname{Cr}(\mathrm{VI})$ presented in wastewater was likely reduced to $\mathrm{Cr}(\mathrm{III})$ at high sun light powers such as $80-90 \mathrm{~mW} / \mathrm{m}^{2}$.

3.10 Effect of $\mathbf{p H}$ on the $\mathbf{C r}(\mathrm{VI})$ reductions

The studies were performed in the pH range $(2,5-8,5)$ for $6 \mathrm{mg} / \mathrm{LCr}(\mathrm{VI})$ dose and $1.2 \mathrm{mg} / \mathrm{Lof}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ dosage and a $\mathrm{C}_{3} \mathrm{~N}_{4}$ level of $0.7 \mathrm{mg} / \mathrm{L}$ at a temperature of $42{ }^{\circ} \mathrm{C}$. $\mathrm{Cr}(\mathrm{VI})$ yield is relevant with pH and the maximum $\mathrm{Cr}(\mathrm{VI})$ yield (99.8%) is obtained at pH 2.5 (Table 6). The pH in the beginning of the study has an important effect on the $\operatorname{Cr}(\mathrm{VI})$ in wastewater, and this affect the photoremoval of $\operatorname{Cr}(\mathrm{VI})$ [37][41].
At high pH levels the removals of $\mathrm{Cr}(\mathrm{VI})$ depleted since pH pzc of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ is around 4.2 [41]. At negative surface charges the production of $\mathrm{Cr}(\mathrm{VI})$ species decreased. HCrO_{4}^{-} accumulates under pH 4 and 5 and is sorbed on the nanocomposite superficial surface. At $\mathrm{pH}>3$, important quantity of $\mathrm{Cr}_{2} \mathrm{O}_{4}{ }^{2-}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ were found [42],[43]. $\mathrm{Cr}(\mathrm{VI})$ yields raised at low pH values [44]. At $\mathrm{pH} 2.5,99.8 \%$ of the $\mathrm{Cr}(\mathrm{VI})$ decreased after 15 min . At pH of 5.0, and 8.5, the yield after 15 min irradiation were 60%, and 30%, respectively (Table 7). $\mathrm{Cr}(\mathrm{VI})$ reduction rates were maximum at acidic pH than at neutral or basic pH conditions. This can be explained by the big removal ratio of $\mathrm{Cr}(\mathrm{VI}) / \mathrm{Cr}(\mathrm{III})$ at lower pH .
As the pH was decreased, the main thermodynamic power for $\mathrm{Cr}(\mathrm{VI})$ removal increases [45]. At high pH , the molecular oxygen levels is higher than for the $\mathrm{Cr}(\mathrm{VI})$ and O_{2}. This resultnng in with low $\operatorname{Cr}(\mathrm{VI})$ yields. The $\mathrm{Cr}(\mathrm{VI})$ yield elevated at low pH , and improve the rate by corrosion of $\mathrm{Fe} . \mathrm{pH}$ is one of the important since has an significant effect on photocatalysis [46]. At lower value of pH (5.0), the $\mathrm{Cr}(\mathrm{VI})$ yield was 60%. When the pH was $8.5,30 \%$ removal was obtained. The results indicated that low pH was favorable for the removal of chromium. Under acidic pH condition, the electrostatic attraction between $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ $51(\mathrm{Fe})$ the and Cr ion increases. Jing et al., also observed that the low $\operatorname{Cr}(\mathrm{VI})$ yields via photodegradation was strongly effected by the pH value of the medium[34]. The Cr (VI) photooxidation percentage increased to 98% when the pH increased to 3.0 [34],[47].

Table 4. Effects of photooxidation times on $\mathrm{Cr}(\mathrm{VI})$ removals at a sun light power of $65 \mathrm{~mW} / \mathrm{m}^{2}$.

$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ Concen tration $(\mathrm{mg} / \mathrm{L})$	Photo oxi dation time (min)	$\mathrm{Cr}(\mathrm{VI})$ concen tration $(\mathrm{mg} / \mathrm{L})$	$\mathrm{Cr}(\mathrm{VI})$ removal efficiency $(\%)$	Cr(III) concentration $(\mathrm{mg} / \mathrm{L})$ after photocatalysis	Remaining $\operatorname{Cr}(\mathrm{VI})$ concen tration $(\mathrm{mg} / \mathrm{L})$
1.2	5.0	6	45	1.9	3.30
1.2	15	6	93	5.58	0.42
1.2	35	6	93	5.58	0.42
1.2	60	6	93	5.58	0.42
1.2	90	6	93	5.58	0.42

Table 5. Effects of sun light powers on $\mathrm{Cr}(\mathrm{VI})$ removals.

$\begin{gathered} \hline \mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}- \\ 51(\mathrm{Fe}) \\ \text { Concen } \\ \text { tration } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Photooxi dation power $\left(\mathrm{mW} / \mathrm{m}^{2}\right)$	Photo oxidation time (min)	$\begin{gathered} \text { Cr(VI) } \\ \text { Concen } \\ \text { tration } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Cr(VI) removal efficen cy (\%)	$\begin{gathered} \text { Cr(III) } \\ \text { Concen } \\ \text { tration } \\ (\mathrm{mg} / \mathrm{L}) \\ \text { after } \\ \text { photoca } \\ \text { talysis } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Remai } \\ & \text { ning } \\ & \text { Cr(VI) } \\ & \text { Concen } \\ & \text { tration } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$
1.2	$25 \mathrm{~W} / \mathrm{m}^{2}$ in winter	15	6	34	2.02	3.96
1.2	$80 \mathrm{~W} / \mathrm{m}^{2}$ In Summer	15	6	90	4.10	0.60
1.2	$\begin{aligned} & 55 \mathrm{~W} / \mathrm{m}^{2} \\ & \text { in spring } \end{aligned}$	15	6	78	3.45	1.32
1.2	$\begin{aligned} & 35 \mathrm{~W} / \mathrm{m}^{2} \\ & \text { in autumn } \end{aligned}$	15	6	45	2.45	3.30

Table 6. Effects of pH on $\mathrm{Cr}(\mathrm{VI})$ removals.

$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ concen tration $(\mathrm{mg} / \mathrm{L})$	pH	$\mathrm{Cr}(\mathrm{VI})$ concen tration $(\mathrm{mg} / \mathrm{L})$	Cr(VI) removal efficiency (\%)	Cr(III) concentration $(\mathrm{mg} / \mathrm{L})$ after photocatalysis	Remaining Cr(VI) concentra tion $(\mathrm{mg} / \mathrm{L})$
1.2	2.5	6	99.8	0.012	
1.2	5.0	6	60.0	5.70	2.400
1.2	8.5	6	30.0	2.40	4.200

Table 7. Langmuir Hinshelwood kinetic for photocatalytic reduction of $\mathrm{Cr}(\mathrm{VI})$.

$\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ Concentration (mg/L)	k_{r} (unitless)	KLH $(\mathrm{mg} / \mathrm{L}-\mathrm{min})$	R^{2}
0.1	0.204	0.018	0.99
0.3	0.308	0.032	0.99
0.8	0.442	0.042	0.99
1.0	0.490	0.065	0.99
1.2	0.940	0.078	0.99
1.6	0.720	0.043	0.99

3.11 Photocatalytic removal mechanism of $\operatorname{Cr}(\mathrm{IV})$ by $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}$ - $\mathbf{5 1}$ (Fe)

During photocatalysis $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ is excited by sorption of electrons of sun light equivalent or bigger than the band gap Eg. This cause to exciting of a photon from the valence band to the conduction band. Eg of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ is around 2.4 eV , relevant to ca. 320 nm . For this reason, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ has to be affected with sun light. The photon-hollow redox reactions is a quick phenomenon (<80 split-second in a $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ [48],[49]). With chemical processes the photon conduction proceses occurred between $\mathrm{h}^{+} \nu_{\mathrm{B}}$ or e^{-}св and different matters on the around of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ [50], [51]. The photon receivers decreased by photons in conduction band and releasing matters can be oxidized by $\mathrm{h}^{+} \nu_{\mathrm{B}}$ [52]. The redox reactions occurred between conduction band and valance band. Hydroxyl radicals ($\mathrm{HO} \bullet$)
releasing by the redox reaction between valence band and conduction band adsorbed to the wastewater and to the surrounding of the hydroxyls are oxidizing compounds [51]. The reactive oxygen species such as $\left(\mathrm{HO}_{2} \bullet / \mathrm{O}_{2} \bullet\right.$ •), are also generated from $\mathrm{Cr}(\mathrm{III})$ by transformation of $\mathrm{Cr}(\mathrm{IV}) . \operatorname{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{IV})$ can be dissolved and it can be reacted with $\mathrm{Cr}(\mathrm{V})$ and $\mathrm{Cr}(\mathrm{IV}) . \mathrm{Cr}($ III) can be oxidized by valence band/hydroxyl radical couple [37],[53],[55]. $\mathrm{Cr}($ III) was obtained as the end product on the $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ surface [53],[54],[56]. This is possible because the accumulation of $\operatorname{Cr}($ III) cause to decrease the activation of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ and this prevents the transportation of the electrons by redox reactions [57],[58].
This provides very advantageous in the photocatalytic systems for $\mathrm{Cr}(\mathrm{VI})$ depletion from effluents. The mechanism responsible for the convertion of $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{III})$ can be explained as follows: $\mathrm{Cr}(\mathrm{VI})$ in excited state could be reduced by the electron
donor in the conduction band of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{DEU}-51(\mathrm{Fe})$ with the aid of H^{+}. The photoreduction of CrO_{4} mediated by the electron donor in oxygenated textile industry wastewaters. The possible mechanism of the photochemical reduction of $\operatorname{Cr}(\mathrm{VI})$ was proposed following Eqs. 1-4 [57],[58].

$$
\begin{equation*}
\mathrm{Cr}(\mathrm{VI})+\mathrm{ROH}+\mathrm{OH}^{-}+h v \rightarrow \mathrm{Cr}(\mathrm{VI})+\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{DEU}-51(\mathrm{Fe})+\mathrm{h} \nu \\
& \rightarrow \mathrm{~h}+\left[\mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{DEU}-51\left(\mathrm{Fe}^{+}\right)\right]+\mathrm{OH}^{-} \\
&+\mathrm{e}^{-}\left[\mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{DEU}-51(\mathrm{Fe})\right. \\
& \mathrm{e}^{-}\left[\mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{DEU}^{2}-51(\mathrm{Fe})\right]+\mathrm{OH}^{-} \\
& \rightarrow \mathrm{e}^{-}\left[\mathrm{C}_{3} \mathrm{H}_{4} / \mathrm{DEU}-51(\mathrm{Fe})\right] \\
& \mathrm{Cr}(\mathrm{VI})+\mathrm{OH}^{-}+\mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{III})+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

[2] Ross D, Ketterings Q. Recommended Methods for Determining Soil Cation Exchange Capacity. Publisher University of Delaware Newark DE, Northeastern United States, 1995.
[3] Mohammed AS, Kapri A, Goel R. "Heavy metal pollution: source, impact and remedies". Biomanagement of Metal-Contaminated Soils, 9(1), 1-28, 2011.
[4] Aremu MO, Atolaiye BO, Labaran L. "Environmental implication of metal concentrations in soil, plant foods and pond in area around the derelict udege mines of nasarawa state". Nigeria Chemical Society Ethiopia, 24(3), 351-360, 2010.
[5] Kieber RJ, Willey JD, Zvalaren SD. "Chromium speciation in rainwater: temporal variability and atmospheric deposition". Environmantal Science and Technology, 36, 5321-5327, 2002.
[6] Testa JJ, Grela MA, Litter MI."Heterogeneous photocatalytic reduction of chromium (VI) over TiO_{2} particles in the presence of oxalate: involvement of $\mathrm{Cr}(\mathrm{VI})$ species". Environmental Science and Technology, 38, 1589-1594, 2014.
[7] Qiu B, Xu CX, Sun DZ, Wei HG, Zhang X, Guo J, Wang Q, Rutman D, Guo ZH, Wei SY. "Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal". RSC Advances, 4, 29855-29865, 2014.
[8] Lv ZF, Liang CS, Cui JY, Zhang YA, Xu S. "A facile route for the synthesis of mesoporous melamine-formaldehyde resins for hexavalent chromium removal". RSC Advances, 5, 18213-18217, 2015.
[9] Cai L, Xiong X, Liang N, Long Q. " Highly effective and stable $\mathrm{Ag}_{3} \mathrm{PO}_{4}-\mathrm{WO}_{3} / \mathrm{MWCNTs}$ photocatalysts for simultaneous $\mathrm{Cr}(\mathrm{VI})$ reduction and orange II degradation under visible light irradiation". Applied Surface Science, 353, 939-948, 2015.
[10] Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M. "Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation". Pure and Applied Chemistry, 73(12), 1849-1860, 2001.
[11] Bailey SE, Olin TJ, Bricka RM, Adrian DD. "A review of pontentially low-cost sorbents for heavy metals". Water Research, 33(11), 2469-2479, 1999.
[12] Dresselhaus MS, Thomas IL. "Alternative energy technologies". Nature, 414, 332-337, 2014.
[13] Maeda K, Takata T, Ha M, Saito N, Domen KJ. "GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting". American Chemical Society, 127, 8286-8287, 2005.
[14] Niu S-f, Liu Y, Xu X-h, Lou Z-h. "Removal of hexavalent chromium from aqueous solution by iron nanopartlcles". Journal of Zhejiang University, 6B(10), 1022-1027, 2005.
[15] Huang W, Liua N, Zhanga X, Wub M, Tang L. "Metal organic framework $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{MIL}-53(\mathrm{Fe})$ heterojunctions with enhanced photocatalytic activity for $\operatorname{Cr}(\mathrm{VI})$ reduction under visible light". Applied Surface Science, 425, 107-116, 2017.
[16] Niu P, Zhang L, Liu G, Cheng H-M. "Graphene-like carbon nitride nanosheets for improved photocatalytic activities". Advanced Functional Materials, 22, 4763-4770, 2012.
[17] Gürkan R, Ulusoy HI, Akçay M. "Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry". Arabian Journal of Chemistry, 10, 450-460, 2017.
[18] Akple MS, Low J, Wageh S, Al-Ghamdi AA, Yu J, Zhang J. "Enhanced visible light photocatalytic H_{2}-production of g$\mathrm{C}_{3} \mathrm{~N}_{4}$ /WS2 composite heterostructures". Applied Surface Science, 358, 196-203,_2015.
[19] Wen J, Xie J, Yang Z, Shen R, Li H, Luo X, Li X. "Fabricating the robust $g-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H_{2} generation: an insight into the trifunctional roles of nanocarbons". ACS Sustain, Chemical Engineering, 5(3), 2224-2236, 2017.
[20] Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. "Highlywater-Selective hybrid membrane by incorporating $g-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets into polymer matrix". Journal of Membrane Science, 490, 72-83, 2015.
[21] Llewellyn PL, Horcajada P, Maurin G, Devic T, Rosenbach N, Bourrelly S, Serre C, Vincent D, Loera-Serna S. "Linear alkanes in the flexible metal-organic-framework MIL53(Fe)". Journal of the American Chemical Society, 131, 13002-13008, 2009.
[22] Hu SZ, Ma L, You JG, Li FY, Fan ZP, Wang F, Liu FD, Gui JZ. "A simple andefficient method to prepare a phosphorus modified g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$ visible light photocatalyst". RSC Advances, 4, 21657-21663, 2014.
[23] Wang H, Yuan XZ, Wu Y, Zeng GM, Chen XH, Leng LJ, Li H. "Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal". Applied Catalysis B, 174, 445-454, 2015.
[24] Hong J, Chen C, Bedoya FE, Kelsall GH, O'Hare D, Petit C. "Carbon nitridenanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities". Catalysis Science \& Technology, 6, 5042-5051, 2016.
[25] Du JJ, Yuan YP, Sun JX, Peng FM, Jiang X, Qiu LG, Xie AJ, Shen YH, Zhu JF. "New photocatalysts based on MLL-53 metal-organic frameworks for the decolorization of methylene blue dye". Journal of Hazardous Materials, 190, 945-951, 2011.
[26] He F, Chen G, Zhou Y, Yu Y, Zheng YS. "The facile synthesis of mesoporous $g-\mathrm{C}_{3} \mathrm{~N}_{4}$ with highly enhanced photocatalytic H_{2} evolution performance". Chemical Communications, 51(90), 16244-16246, 2015.
[27] Zhu Z, Murugananthan M, Gu J, Zhang Y. "Fabrication of a Z-scheme g-C3 $\mathrm{N}_{4} / \mathrm{Fe}-\mathrm{TiO}_{2}$ photocatalytic composite with enhanced photocatalytic activity under visible light". Irradiation Catalysts, 8(3), 112-120, 2018.
[28] Zheng Y, Jiao Y, Chen J, Liu J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ. "Nanoporous Graphitic- $\mathrm{C}_{3} \mathrm{~N}_{4} @$ Carbon Metal-free electrocatalysts for highly efficient oxygen reduction". Journal of the American Chemical Society, 133(50), 20116-20119, 2011.
[29] Wan SL, He F, Wu JY, Wan WB, Gu YW, Gao B, Hazard J. "Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nano composites". Journal of Hazardous Materials, 314, 32-40, 2016.
[30] Wang X, Liang Y, An W, Hu J, Zhu Y, Cui W. "Removal of chromium (VI) by a self-regenerating and metal free g$\mathrm{C}_{3} \mathrm{~N}_{4}$ /graphene hydrogel system via the synergy of adsorption and photo-catalysis under visible light". Applied Catalysis B: Environmental, 219, 53-62,_2017.
[31] Nguyen AT, Juang RS. "Photocatalytic degradation of pchlorophenol by hybrid $\mathrm{H}_{2} \mathrm{O}_{2}$ and TiO_{2} in aqueous suspensions under UV irradiation". Journal of Environmental Management, 147, 271-277, 2015.
[32] Zeghioud H, Khellaf N, Djelal H, Amrane A, Bouhelassa M. "Photocatalytic reactors dedicated to the degradation of hazardous organic pollutants: kinetics, mechanistic aspects and design". Chemical Engineering Communications, 203, 1415-1431, 2016.
[33] Zuo Y, Zhan, J, Wu T. "Effects of Monochromatic UV-Visible Light and Sunlight on Fe(III)-Catalyzed Oxidation of Dissolved Sulfur Dioxide". Journal of Atmospheric Chemistry, 50, 195-210, 2005.
[34] Jing F, Liang R, Xiong J, Chen R, Zhang S, Li Y. "MIL-68 (Fe) as an efficient visible-light-driven photocatalyst for the treatment of a simulated waste-water contain $\mathrm{Cr}(\mathrm{VI})$ and Malachite Green". Applied Catalysis B: Environmental, 206, 9-15, 2017.
[35] Assadi AA, Palau J, Bouzaza A, Wolbert D. "Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway". Chemical Engineering Research and Design, 91(7), 1307-1316, 2013.
[36] Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. "Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions". Environmental Science and Technology, 50(14), 7290-7304, 2016.
[37] Testa JJ, Grela MA, Litter MI. "Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium (VI) over TiO_{2} ". Langmuir, 17, 3515-3517, 2001.
[38] Das DP, Parida K, De BR. "Photocatalytic reduction of hexavalent chromium in aqueous solution over titania pillared zirconium phosphate and titanium phosphate under solar radiation". Journal of Molecular Catalysis A: Chemical, 245, 217-224, 2006.
[39] Wang L, Wang N, Zhu L, Yu H, Tang H. "Photocatalytic reduction of $\mathrm{Cr}(\mathrm{VI})$ over different TiO_{2} photocatalysts and the effects of dissolved organic species". Journal of Hazardous Materials, 152(1), 93-99, 2008.
[40] Guo D, Wen R, Liu M, Guo H, Chen J, Weng W. "Facile fabrication of $g-\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{MIL}-53(\mathrm{Al})$ composite with enhanced photocatalytic activities under visible-light irradiation". Applied Organometallic Chemistry, 29, 690-697, 2015.
[41] Oladipo AA. "MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI)". Process Safety and Environmental Protection, 116, 413-423, 2018.
[42] Jiang F, Zheng Z, Xu Z, Zheng S, Guo Z, Chen L. "Aqueous $\mathrm{Cr}(\mathrm{VI})$ photoreduction catalyzed by TiO_{2} and sulfated TiO_{2} ". Journal of Hazardous Materials, 134(1-3), 94-103, 2006.
[43] Chakrabarti S, Chaudhuri B, Bhattacharjee S, Ray AK, Dutta BK. "Photoreduction of hexavalent chromium in aqueous solution in the presence of zincoxide as semiconductor catalyst". Chemical Engineering Journal, 153(1-3), 86-93, 2009.
[44] Kabra K, Chaudhary R. "Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis". Industrial \& Engineering Chemistry Research, 43(24), 7683-7696, 2004.
[45] Cappelletti G, Bianchi CL, Ardizzone S. "Nano-titania assisted photoreduction of $\mathrm{Cr}(\mathrm{VI})$: The role of the different TiO_{2} polymorphs". Applied Catalysis B: Environmental, 78(3-4), 193-201, 2008.
[46] Zhou M, Yu J, Cheng B. "Effects of Fe-doping on the photocatalytic activity of mesoporous TiO_{2} powders prepared by an ultrasonic method". Journal of Hazardous Materials, 137 (3), 1838-1847, 2006.
[47] Ku Y, Jung IL. "Photocatalytic reduction of $\mathrm{Cr}(\mathrm{VI})$ in aqueous solutions by UV irradiation with the presence of titanium dioxide". Water Research, 35, 135-142, 2001.
[48] Hoffmann MR, Martin ST, Choi W, Bahnemann D. "Environmental applications of semiconductor photocatalysis". Chemical Reviews, 95, 69-96, 1995.
[49] Grela MA, Loeb B, Restrepo GM, Lagorio MG. Román ES. Los Mecanismos De Destrucción. Ed. Miguel Blesa, Capítulo 5 en: Eliminación de Contaminantes por Fotocatálisis Heterogénea, $8^{\text {th }}$ ed. 125-162, La Plata, Buenos Aires, Argentina, 2004.
[50] Grela MA, Colussi AJ. "Kinetics of stochastic charge transfer and recombination events in semiconductor colloids, relevance to photocatalysis efficiency". The Journal of Physical Chemistry, 100, 18214-18221, 1996.
[51] Kamat PV. "Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design". The Journal of Physical Chemistry Letters, 3, 663-671, 2012.
[52] Martin ST, Herrmann H, Hoffmann MR. "Time-resolved microwave conductivity. Part 2.-Quantum-sized TiO_{2}, and the effect of adsorbates and light intensity on charge-carrier dynamics". Journal of the Chemical Society, Faraday Transactions, 90, 3323-3330, 1994.
[53] Meichtry JM, Brusa M, Mailhot G, Grela MA, Litter MI. "Heterogeneous photocatalysis of $\mathrm{Cr}(\mathrm{VI})$ in the presence of citric acid over TiO_{2} particles: relevance of $\mathrm{Cr}(\mathrm{V})$ citrate complexes". Applied Catalysis B, 71, 101-107, 2007.
[54] Meichtry JM, Colbeau-Justin C, Custo G, Litter MI. " TiO_{2} photocatalytic transformation of $\mathrm{Cr}(\mathrm{VI})$ in the presence of EDTA: comparison of different commercial photocatalysts and studies by time resolved microwave conductivity". Applied Catalysis B, 144, 189-195, 2014.
[55] Montesinos VN, Salou C, Meichtry JM, Colbeau-Justin C. "Litter MI Role of $\operatorname{Cr}($ III) deposition during the photocatalytic transformation of hexavalent chromium and citric acid over commercial TiO_{2} samples". Photochemical \& Photobiological Sciences, 15, 228-234, 2016.
[56] Ananpattarachai J, Kumket P, Tung TV, Kajitvichyanukul P. "Chromium (VI) removal using nano- TiO_{2} /chitosan film in photocatalytic System". International Journal of Environment and Waste Management, 16, 55-70, 2015.
[57] Wang N, Xu Y, Zhu L, Shen X, Tang H. "Reconsideration to the deactivation of TiO_{2} catalyst during simultaneous photocatalytic reduction of $\operatorname{Cr}(\mathrm{VI})$ and oxidation of salicylic acid". Journal of Photochemistry, 201(2-3), 121-127, 2009.
[58] Meichtry JM, Dillert R, Bahnemann D, Litter MI. "Application of the stopped flow technique to the $\mathrm{TiO}_{2}{ }^{-}$ heterogeneous photocatalysis of hexavalent chromium in aqueous suspensions: comparison with O_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$ as electron acceptors". Langmuir, 31, 6229-6236, 2015.

[^0]: *Corresponding author/Yazışılan Yazar

