

Preparation of Salicylic Nitrile through Direct Catalytic Dehydration of Salicylamide with Immobilized Phosphoric Acid as Catalyst

SHU-FENG YAO^{1,2}, ZHAO-SHENG CAI^{1,*}, XU-JUAN HUANG¹ and LAN-XUAN SONG¹

¹School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu Province, P.R. China ²Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, Jiangsu Province, P.R. China

*Corresponding author: E-mail: jsyc_czs@163.com

Received: 24 November 2019;	Accepted: 26 December 2019;	Published online: 29 April 2020;	AJC-19838
-----------------------------	-----------------------------	----------------------------------	-----------

Salicylic nitrile was prepared through direct catalytic dehydration of salicylamide under high temperature using immobilized phosphoric acid as catalyst. The catalytic performances of different catalysts were evaluated according to the analytic results of GC-MS, and the feasibility about the preparation of salicylic nitrile by direct catalytic dehydration of salicylamide was investigated according to the composition of product determinated by GC analysis (area nomalization). Experimental results indicated the comprehensive property of silica gel supported phosphoric acid was the best one among all of the catalysts utilized in this study. When the temperature of catalyst bed was $480 \pm 10^{\circ}$ and silica gel supported phosphoric acid was utilized as catalyst, the conversion ratio of salicylamide was 88.79%, the selectivity to salicylic nitrile was 97.97% and the yields of salicylic nitrile could up to 86.99%. Meanwhile, the experimental results showed the increase of temperature of catalyst bed could result in the increase of the conversation of salicylamide, but much more by-product could be formed when the temperature of catalyst bed was too high.

Keywords: Salicylamide, Salicylic nitrile, Catalytic dehydration, Immobilized phosphoric acid, Selectivity.

INTRODUCTION

The importance of salicylic nitrile as pharmaceutical and agricultural intermediates has been well established. For example, salicylic nitrile could be utilized for the synthesis of bunitrolol, one of β -recepter bolockers for the treatment of arrhythmia, angina and hypertension [1]. Salicylic nitrile could also be utilized for the preparation of azoxystrobin, one of the efficient agricultural fungicides with broad-spectrum and ability of intaking absorption [2]. Meanwhile, salicylic nitrile has obtained important application in the production of some perfumes and liquid crystal materials, *etc.* [3].

There are several methods applied for preparing salicylic nitrile, such as dehydration of salicylaldoxime in the presence of dehydrant [4-8], selective oxidation of benzonitrile [9], isomerization of 1,2-benzisoxazole [10], catalytic ammoxidation of *o*-cresol [11,12], dehydration of salicylamide in the presence of dehydrant [13-16], cyanylation of methyl salicylate [17] and hydroxylation of halogenated benzonitrile [18], *etc.* But, all of the above methods have disadvantage in some extent, for

example, the dehydrants for conversing salicylaldoxime or salicylamide to salicylic nitrile usually related with toxic compounds including phosgene or *bis*(trichloromethyl)carbonate, the yields for preparing salicylic nitrile through catalytic ammoxidation of *o*-cresol is usually at a lower level, and the hydroxylation of halogenated benzonitrile needs to be carried out with harsh condition.

In order to avoid these disadvantages in present method for preparing salicylic nitrile, herein, a method for the synthesis of salicylic nitrile from salicylamide through direct catalytic dehydration with immobilized phosphoric acid as catalyst is reported.

EXPERIMENTAL

All reagents were of analytical reagents and used without further purification. Salicylamide (99%, industrial product), phosphoric acid, absolute ethanol, artificial zeolite (chemically pure), silica gel (GF₂₅₄, TLC), aluminium oxide), molecular sieve (3Å), silicon dioxide and zirconium dioxide (CP) were procured from Sigma-Aldrich, USA.

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Fourier transform infrared (FT-IR) spectra were recorded with KBr pellets on a Nicolet Nexux 670 spectrometer. Sixteen scans at a resolution of 4 cm⁻¹ were averaged over wavenumbers range of 4000~400 cm⁻¹ and referenced against air. The analysis of GC-MS was carried out with gas chromatography-mass spectrometer (TRACE1310 ISQ, Thermo Fisher Scientific Co.) and analytical conditions were as follows: chromatographic column was SPV-5 type (30 m × 0.25 mm), temperature of vaporization room was 260 °C, temperature of detector was 290 °C, column temperature program that started from an initial temperature of 60 °C (hold for 2 min), ramped at the rate of 10 °C min⁻¹ upto 260 °C (hold for 15 min).

Preparation of catalyst: About 200 g of molecular sieve was added into 500 g of 30% aqueous solution of phosphoric acid with continuous stirring for 4 h at room temperature, then the mixture was settled down for 24 h before filtration. The filter residue was dried at 110 °C for 12 h and the molecular sieve supported phosphoric acid, one of catalysts utilized for the catalytic dehydration of salicylamide in this study was obtained. The other catalysts of immobilized supported phosphoric acid could be prepared according to the above procedure.

Catalytic dehydration of salicylamide: Salicylamide (68.60 g) was added into a three-necked flask and the necks of flask were erected with thermometer, stirrer and Claisen distilling head. The Claisen distilling head was linked with fixed-bed reactor that pillowed with the immobilized supported phosphoric acid and heated with twisted electric heating wire. The fixed-bed reactor was connected with collecting bottle, which was soaked into ice brine and a vacuum device. The salicylamide was transformed into steam by heating the flask and the steam was passed through the fixed-bed reactor with the assistance of vacuum take-off. The steam of salicylamide was dehydrated at specific temperature with the catalyzing of supported phosphoric acid (**Scheme-I**).

RESULTS AND DISCUSSION

Main components in the typical product of dehydration: According to the experimental results completed by our team, the dehydrated product of salicylamide catalyzed by zirconium dioxide supported phosphoric acid was the most complex one among all of the products that catalyzed by immobilized supported phosphoric acid. The dehydrated product of salicylamide catalyzed by ZrO_2 supported phosphoric acid at 480 ± 10 °C was analyzed by GC-MS (Fig. 1). Meanwhile, the MS spectra of component at different retaining time (RT) are shown in Figs. 2-7.

The ascription of MS spectra concerned with the dehydrated product of salicylamide catalyzed by ZrO₂ supported immobilized phosphoric acid is shown in Table-1.

m/zFig. 6. MS spectrum of component at RT = 9.47 min

200

250

300

350

different immobilized phosphoric acid at 480 ± 10 °C was

analyzed by GC-MS using the adjusted condition as reported

150

100

50

Fig. 8. FT-IR spectra of salicylamide and its catalytic dehydration product

earlier [19], and area nomalization method was used to evaluate their content in the dehydrated product. The results are listed in Table-2.

According to Table-2, a conversion ratio of salicylamide using different catalyst and the selectivity to salicylic nitrile could be obtained and the results are listed in Table-3. From Tables 2 and 3, it could be seen that there existed obvious difference concerned with the catalytic property of different immobilized phosphoric acid. The dehydrating reaction catalyzed by silica gel supported phosphoric acid could behave the best conversion ratio of salicylamide, while that catalyzed by artificial zeolite supported phosphoric acid could behave the best selectivity of salicylic nitrile among all of reactions catalyzed by different immobilized phosphoric acid. Among all of the catalysts utilized in present investigations, silica gel supported phosphoric acid was the best one that could provide optimal integrated performance. If silica gel supported phosphoric acid was utilized as the catalyst for dehydrating reaction of salicylamide at 480 ± 10 °C, the yields of salicylic nitrile could up to 86.99%.

Influence of bed temperature on dehydrating reaction of salicylamide: In order to investigate the influence of bed temperature on the dehydrating reaction of salicylamide, silica gel supported phosphoric acid was utilized at different bed temperature, and the main components and their content in the dehydrated product were studied. The experimental results are showed in Table-4. It could be seen that an increase of bed temperature could result in the increase of the conversion ratio of salicylamide and yields of salicylic nitrile, while the content of by-product in the dehydrated product also increased with the increase of bed temperature in some content.

Conclusion

The preparation of salicylic nitrile through direct catalytic dehydration of salicylamide under high temperature with immobilized phosphoric acid as catalyst was investigated. The type of catalyst and the temperature had significant influence on the dehydrating reaction of salicylamide and the silica gel supported phosphoric acid was the best one among all of catalysts utilized in this study. When the bed temperature was 480 ± 10 °C and silica gel supported phosphoric acid was utilized as the catalyst for the dehydration of salicylamide, the yields of salicylic nitrile could up to 86.99%.

ACKNOWLEDGEMENTS

The authors gratefully acknowledged the support of Foundation of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (JH201828) and the Jiangsu Province Key Laboratory of Fine Petrochemical Engineering (KF1704). The support of Key and Open Laboratory on Forest Chemical Engineering, SFA and Yancheng Teachers University in analysis is also acknowledged.

TABLE-2 MAIN COMPONENTS OF PRODUCT OBTAINED FROM DIFFERENT CATALYST AND THEIR CONTENT						
Catalyst	Phenol (%)	Salicylic nitrile (%)	Salicylamide (%)	Phenyl (2- phenoxy)benzoate (%)	Phenyl salicylate (%)	
H ₃ PO ₄ -molecular sieve	0	19.10	80.56	0.23	0.12	
H ₃ PO ₄ -artificial zeolite	0	11.74	88.26	0	0	
H ₃ PO ₄ -aluminium oxide	24.12	50.78	24.94	0.16	0	
H ₃ PO ₄ -silica gel	0	86.99	11.21	1.56	0.24	
H ₃ PO ₄ -SiO ₂	1.02	33.63	65.01	0	0.34	
H_3PO_4 - ZrO_2	3.0	56.64	39.58	0.12	0.66	

TABLE-3 CONVERSION RATIO OF SALICYLAMIDE USING DIFFERENT CATALYST AND THE SELECTIVITY TO SALICYLIC NITRILE						
Catalyst	H ₃ PO ₄ - molecular sieve	H ₃ PO ₄ -artificial zeolite	H ₃ PO ₄ - aluminium oxide	H ₃ PO ₄ - silica gel	H ₃ PO ₄ -SiO ₂	H ₃ PO ₄ -ZrO ₂
Conversion ratio of salicylamide (%)	19.44	11.74	75.06	88.79	34.99	60.42
Selectivity to salicylic nitrile (%)	98.25	100	67.65	97.97	96.11	93.74

TABLE-4 MAIN COMPONENTS OF PRODUCT OBTAINED FROM DIFFERENT TEMPERATURE AND THEIR CONTENT							
Bed temperature (°C)	280 ± 10	320 ± 10	360 ± 10	400 ± 10	440 ± 10	480 ± 10	520 ± 10
Salicylic nitrile (%)	3.27	10.16	31.90	53.11	72.16	86.99	88.13
Salicylamide (%)	96.23	89.50	67.51	45.91	26.35	11.21	7.11
Phenyl (2-phenoxy)benzoate	0	0.28	0.47	0.81	1.29	1.56	3.09
Phenyl salicylate	0	0.06	0.12	0.17	0.20	0.24	1.67

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- 1. Z. Huang, Pharm. Ind., 18, 339 (1987).
- 2. D. Jie, D. Liao, J. Lou and H. Pi, Fine Chem. Intermed., 37, 25 (2007).
- 3. Z. Yong, H. Wei, Y. Zang, W. Yu, C. Ming and W. Yan, *Fine Chem. Intermed.*, **45**, 9 (2015).
- 4. C. Qiang, W. Liao and Z. Liu, Modern Agrochem., 6, 21 (2007).
- 5. J.-H. Noh and J. Kim, *J. Org. Chem.*, **80**, 11624 (2015); https://doi.org/10.1021/acs.joc.5b02333
- S. Laulhé, S.S. Gori and M.H. Nantz, J. Org. Chem., 77, 9334 (2012); https://doi.org/10.1021/jo301133y
- E. Whiting, M.E. Lanning, J.A. Scheenstra and S. Fletcher, J. Org. Chem., 80, 1229 (2015);

https://doi.org/10.1021/jo502396u

- P. Tamilselvan, Y. Basavaraju, E. Sampathkumar and R. Murugesan, *Catal. Commun.*, **10**, 716 (2009); https://doi.org/10.1016/j.catcom.2008.11.025
- H. Ehrich, W. Schwieger and K. Jähnisch, *Appl. Catal. A Gen.*, 272, 311 (2004);

https://doi.org/10.1016/j.apcata.2004.06.003

- S. Ouyang, H. Zhang, D. Li, T. Yu, J. Ye and Z. Zou, J. Phys. Chem. B, 110, 11677 (2006);
- https://doi.org/10.1021/jp055924t 11. M.V. Landau, M.L. Kaliya and M. Herskowitz, *Appl. Catal. A Gen.*, **208**, 21 (2001);
- https://doi.org/10.1016/S0926-860X(00)00700-6
- W. Kleemiss. Process for the Preparation of Hydroybenzonitrile, US 6248917B1 (2001).
- 13. J.-J. Deng, T. Lu and S. Huang, Shanghai Chem. Ind., 29, 24 (2009).
- 14. W. He, J. Guo and Y. Zhou, Shanghai Chem. Ind., 37, 10 (2012).
- R. Möller, M. Gómez, K. Einmayr, J. Hildbrand, H.-G. Eeben and H.-P. Krimmer, Method for Producing Amino- or Hydroxybenzonitriles, US Patent 7629486B2 (2009)
- X. Guo, C. Liu, X. Xu, X. Huang and H. Li, *Fine Chem. Intermed.*, 49, 16 (2019).
- 17. E. Chen, L. Wei, X. Zhang, X. Liu, W. Feng, H. Yan and E. Yan-peng, *Agrochemicals*, **57**, 870 (2018).
- Z. Shi, N. Wang, D.-X. Hou and J.-D. Huang, *Dyestuffs and Coloration*, 56, 23 (2019).
- L. Wang, Z. Song, G. Wang, D. Xu and B. Hua, *Zhejiang Chem. Ind.*, 43, 33 (2012).
- 20. Y. Ye, E. Wu, C. Yu, F. Yu and Y. Xue, Agrochemicals, 50, 730 (2011).