
revista de ingeniería 147

 Gabriela Montoya and Jesús N. Ravelo
e-mail: gmontoya,jravelo@ldc.usb.ve

Departamento de Computación y Tecnología de la Información
Universidad Simón Bolívar

Caracas, Venezuela

Fecha de Recepción: 31 de Marzo de 2011
Fecha de Aceptación: 03 de Junio de 2011

ABSTRACT

In object-oriented programming languages, the
relationship that should hold between the specifications
of a class and its superclass is called behavioural
subtyping. In this paper we analyse the conditions that
a behavioural subtype should meet during runtime
assertion checking, that is, during dynamic verification.
Our exploration relates such conditions for runtime
assertion checking to the conditions that should be
met in static verification of correctness under the
principles of modular reasoning. As a result, we state
and prove a theorem that connects dynamic and
static verification of method calls in the presence of
inheritance. The novelty of this theorem lies on the
fact that the connection is an equivalence, where the
implication from static to dynamic verification has been
explored before but not the opposite one. This new
exploration then poses that a hypothetical exhaustive
testing through runtime assertion checking would be
equivalent to the corresponding static verification of
definite correctness, which adds solidity to runtime
assertion checking. None but one of the runtime
assertion checking tools that we know of can effectively
detect all possible problems in class inheritance; the one
exception is the tool used for Spec#, but their strategy
relies on both specification inheritance and a rather
substantial restriction on preconditions, requirements we
could dispose of when taking our the-oretical results to
a practical implementation.

A Formal Bridge
between
Runtime
Assertion
Checking
and Static
Verification of
Inheritance

Gabriela Montoya and Jesús N. Ravelo

tekhné 14148

Key words. inheritance, data refinement, data
abstraction, dynamic verification, method calls.

Un puente formal
entre el chequeo
de aserciones en
tiempo de ejecución y
verificación estática
de la herencia

RESUMEN

En lenguajes de programación orientados por obje-
tos, la correcta relación que debe ser satisfecha entre
las especificaciones de una clase y su superclase es
llamada de “subtipo por comportamiento” (del término
en inglés “behavioural sub-typing”). En este artículo se
analizan las condiciones que un subtipo por comporta-
miento debe cumplir durante el proceso de verificación
de aserciones durante ejecución (del inglés “runtime as-
sertion checking ”), conocido también como verificación
dinámica a secas. Nuestra exploración relaciona tales
condiciones de verificación dinámica a las condicio-
nes que deben ser satisfechas durante el proceso de
verificación estática de correctitud bajo principios de
razonamiento modular. Como resultado, se presenta
y se demuestra un teorema que conecta la verificación
dinámica y la estática de llamadas a métodos en pres-
encia de herencia. Lo novedoso de este teorema es
que la conexión planteada es una equivalencia, de la
cual ha sido explorada con anterioridad la implicación
desde la verificación estática hacia la dinámica pero no
la implicación contraria. Esta nueva exploración plantea
entonces que un proceso hipotético de prueba (“test-
ing”) exhaustiva a través de verificacion dinámica de
aserciones sería equivalente a la correspondiente veri-
ficación estática de correctitud definitiva. Con una sola
excepción, ninguna de las herramientas de verificación
dinámica de aserciones conocidas por los autores es
capaz de detectar todos los posibles problemas que
pueden presentarse con la herencia entre clases; la ex-
cepción corresponde a la herramienta usada para el
lenguaje Spec#, pero la estrategia de esta se apoya tanto
en el uso de herencia de especificaciones como en una
considerable restricción que debe ser impuesta a las
precondiciones, requerimientos ambos que pueden ser

eliminados al llevar los resultados teóricos del presente
trabajo a una implementación práctica.

Palabras Claves: herencia, refinamiento de datos,
abstracción de datos, verificación dinámica, llamadas
a métodos.

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 149

1. INTRODUCTION

In this article, we analyse how the correctness
of object-oriented method calls in the presence of
inheritance should be dealt with through runtime
assertion checking. More importantly, we explore this in
connection with the corresponding static verification of
such calls. We thus build a formal bridge linking dynamic
and static verification through a theorem that states
an equivalence between them. One direction of this
bridge, the fact that static correctness through modular
reasoning guarantees that runtime assertion checking
of dynamically-bound method calls will succeed, has
already been explored and proved [1, 2]. The other
direction of the bridge is, to the best of our knowledge,
a novel result. It amounts to stating that a hypothetical
exhaustive testing through runtime assertion checking
would be equivalent to the corresponding static
verification, which gives a more solid foundation to such a
dynamic verification. Without the guarantee provided by
the novel implication of our theorem, one might suspect
that testing via runtime assertion checking could succeed
indefinitely without ever detecting present flaws. This is
the added value which we argue our theorem provides to
runtime assertion checking: if there is an error, that is,
static correctness does not hold, testing can “eventually”
detect it. Therefore, modulo the wellknown shortcomings
of testing, particularly the fact that exhaustive testing is
usually unattainable, runtime assertion checking backed
by our result is more dependable.

We present this exploration using a small simplified
object-oriented language extended with behavioural
specifications such as class invariants and method
pre/postconditions, in the spirit of Eiffel [3], Java
Modeling Language (JML) [4,5] and Spec# [6]. With the
reassurance of the aforementioned theorem, we put
forward detailed conditions to be verified through runtime
assertion checking. Such conditions can be simplified in
the presence of specification inheritance [7], as used
in JML and Spec#. Finally, as the practical counterpart of
our theoretical exploration, we also present Java [8] code
to do dynamic verification of method calls, both using the
fully detailed conditions and their simplified version, in an
extended version of this paper [9]. We also show that all
but one of the existing runtime assertion checking tools
do not capture appropriately all the verification required
by inheritance and behavioural subtyping. The one
exception is the runtime assertion checker of Spec#,
but it relies on the fact that specification inheritance

guarantees behavioural subtyping and also relies on
imposing a substantial restriction on preconditions;
an implementation based on our results would require
neither of these conditions, although we could optionally
use the first.

Inheritance or specialisation is a hierarchical
relationship between classes under which subclasses
offer the same methods as their superclasses, possibly
refining the behaviour of some of them and possibly
offering additional methods. It is imperative that all
subclasses preserve the behaviour of the superclass,
and thus be able to fulfill what is expected of the
latter. This is known as the substitution principle [10],
and subclasses that meet this property are known as
behavioural subtypes. This notion was first presented
by Liskov and Wing in [11] and various other authors,
some of them working over different formal foundations,
have insisted on the importance of this behavioural
property. Among these authors, we have Back,
Mikhajlova, von Wright, Mikhajlov and Sekerinski, who
use the refinement calculus to formalise the notion
of a subtype being a refinement of its supertype. They
thus ensure that the substitution principle is met [12–14].
Also, Leavens and Dhara [7] have put forward a notion
of weak behavioural subtypes, which impose fewer
restrictions than those given by Liskov and Wing, but
its use is limited to programs in which there is no aliasing
between variables of different types. Leavens and Dhara
also introduce strong behavioural subtypes as a modified
version of the notion of behavioural subtyping initially
proposed by Liskov and Wing. In both cases, weak and
strong, their subtypes meet the substitution principle.

We will use the functional language Haskell [15,
16] to present the structure of the simplified object-
oriented language of our formalisation. Also, we will
use Haskell as the vehicle to formalise the conditions
to be used in runtime assertion checking, and the
theorem that connects this dynamic checking to the
corresponding static verification conditions. We decided
to use Haskell mainly for two reasons: (i) it is a language
that facilitates the expression of all this information in
a clear and precise way through its type system and
function definition mechanisms; and (ii) formalisations of
theorems expressed in Haskell have been proven both
manually and semi-automatically in simple successful
ways [17].

The rest of this article is organised as follows. Section
2 presents our simplified object-oriented language
extended with behavioural specifications of classes
and methods. Also, several auxiliary functions over

Gabriela Montoya and Jesús N. Ravelo

tekhné 14150

the structure of the language are defined for later use.
Section 3 then presents, first, the rules that must be met
by behavioural subtypes, with which we then proceed
to present the conditions to be used during runtime
assertion checking for method calls in the presence
of inheritance. Such dynamic conditions are deduced
from the corresponding conditions for static verification.
It is then in Section 4 where we put forward the above
mentioned theorem that relates the conditions for
runtime assertion checking with the conditions for static
verification of correctness. Section 5 reviews related
work, specially existing runtime assertion checking tools
for object-oriented languages, analysing these tools
under the light of our exploration. Section 6 closes with
some conclusions and possible ways to extend the work
presented in this paper.

2. A SIMPLIFIED EXTENDED
OBJECT-ORIENTED LANGUAGE

We consider the following extension of a simplified
object-oriented language: every class has a name,
possibly a superclass, an invariant, and a list of
methods; each method has a name, a precondition, a
postcondition, and its body. We only consider methods
without parameters and that are not functional, that
is, that do not return results. This allows us to simplify
the presentation without losing generality, as these
restrictions will not affect the validity of the results we
will present.

data Class = Class Id (Maybe Class)

 Invariant Method]

data Method = Meth Id Precondition

 Postcondition Instruction

type Invariant = BoolExpr

type Precondition = BoolExpr

type Postcondition = BoolExpr

Fig. 1. The structure of the extended object-
oriented language.

To represent the structures that make up our
simplified object-oriented language, we use the type
definitions written in Haskell shown in Fig. 1. A class has
a name of type Id, possibly a superclass, an invariant
and a list of methods. A method has a name of type Id,
a precondition, a postcondition, and an instruction that
corresponds to its body. Type Id is the restriction
of the String type to valid names. All three types
Invariant, Precondition and Postcondition

are just synonyms of the type BoolExpr. The type
BoolExpr corresponds to boolean expressions, which
may contain variables, constants, operators, et cetera;
we will have more to say about this type later. The type
Instruction should include representations for typical
instructions of an imperative object-oriented language;
however, we will not make use of internal structural
details of this type.

2.1 Extraction Functions and Others

This subsection presents Haskell functions that
extract relevant information from the structures of
the simplified extended object-oriented language just
defined.

super :: Class -> Maybe Class
super (Class _ sc _ _) = sc
inv :: Class -> BoolExpr inv
(Class _ _ i _) = i
methods :: Class -> [Method]
methods (Class _ _ _ ms) = ms
annotPre :: Method -> BoolExpr
annotPre (Meth _ p _ _) = p
annotPost :: Method -> BoolExpr
annotPost (Meth _ _ q _) = q

Fig. 2 Basic extraction functions.

Figure 2 shows the five most basic extraction
functions. The first three functions simply extract the
main components of a class, respectively, its potential
superclass, its invariant and its list of methods. Since
function super only extracts the potential superclass
of a class, of type Maybe Class , if one is confident
that some class c has an actual superclass and wants
to extract it, Haskell function fromJust can be used to
get it with the expression fromJust (super c) ,
of type Class. The other two functions in Fig. 2, in turn,
extract information from methods: the precondition and
the postcondition, respectively, with which a method
is locally annotated in its declaration.

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 151

localMethod :: Id -> Class -> Maybe Method

localMethod nm c

= find (\(Meth n _ _ _) -> n == nm)

 (methods c)

method :: Id -> Class -> Method method nm c

| isNothing local = method nm (super c)

| isJust local = fromJust local
where

 local = localMethod nm c

declare :: Class -> Method -> Bool

declare c (Meth n _ _ _)

 = isJust

(localMethod n c)

pre :: Method -> Class -> BoolExpr
pre (Meth nm _ _ _) c = annotPre (method
nm c)

post :: Method -> Class -> BoolExpr
post (Meth nm _ _ _) c = annotPost (method
nm c)

Fig. 3 Other extraction functions.

As we have to deal with inherited, not redefined,
methods, we will have to define functions that deal
with extracting a method from a class, whether it
is directly declared in the class or it is inherited.
These functions are presented in Fig. 3. Function
localMethod extracts he local method with a given
name from a given class, if it exists, which is why its
return type is Maybe Method. Function method is
its counterpart both for locally declared methods and
inherited ones. Note that function method requires that
the soughtafter method will eventually be found along
the inheritance chain. The third function, declare,
determines whether a class locally declares a method
with a certain name. Armed with the first three functions
of Fig. 3, the other two functions can deal with the general
case of pre/postconditions with which any method can
be offered by a class. A method is offered by a class if
it is locally declared in the class or if it is inherited from
its superclass. Functions pre and post obtain he
precondition and the postcondition, respectively, that a
method has in a certain class. Note that function method
deals with the analysis of whether the annotations are
local or inherited.

There is one last function to be presented in this
section, but its nature is different to the nature of the
previous ones: it is actually an “expression constructor”
instead of an “evaluating function”. The discussion on
this function will also bring up other issues related to

the type BoolExpr, which we use to represent boolean
expressions.

old :: BoolExpr -> BoolExpr

Fig. 4 A BoolExpr constructor.

Function old in Fig. 4 is meant to construct an ex-
pression that denotes the “initial value” of its expression
argument, that is, the value of its expression argument
before the execution of a method, but used in a post-
condition, the value of which is meant to be analysed
after the execution of the method at issue.

We do not provide a definition body for this function,
as it must be considered as a unary constructor of the
type BoolExpr.

Likewise, BoolExpr should have constructors that
correspond to all the typical boolean operators: binary
constructors for conjunction, disjunction and so on; a
unary constructor for negation; et cetera.

To avoid an unnecessary proliferation of names, we
will use regular boolean operators as constructors for our
type BoolExpr. Actually, the only other constructors
we need for BoolExpr in what follows are conjunction,
implication, equivalence and the constant true: we
will use Haskell notation && for the first, ==> for the
second, and Haskell notation == and True for the third
and the fourth. Our subtle use of the same syntax for
both boolean operators and BoolExpr constructors
thus corresponds to the following: for Haskell boolean
ex pressions a and b, expression a && b evaluates
to the conjunction of them; for expressions c and d
of type BoolExpr, expression c && d is used to
construct a new expression of type BoolExpr that
denotes the conjunction of them. The same goes for
==> and == as binary constructors for BoolExpr, for
True as a constant (0-ary) constructor for BoolExpr,
and also for old as a unary constructor for BoolExpr.

All the functions presented in this section will be used
in the rest of the paper to formalise rules, conditions,
lemmas and theorems.

 3. RUNTIME ASSERTION CHECKING

In this section, we explore what conditions should
be runtime assertion checked around a method call in
the presence of inheritance. Given that inheritance
should correspond to behavioural subtyping, as men-

Gabriela Montoya and Jesús N. Ravelo

tekhné 14152

tioned in the introduction, we first re call in Subsect. 3.1
the conditions that behavioural subtypes must meet.
Then, in Subsect. 3.2, modular reasoning is used to
analyse the correctness conditions of a method call in
the presence of inheritance, that is, the corresponding
static verification conditions, and deduce from them the
conditions that should be used during runtime asser-
tion checking, that is, the dynamic verification conditions
for the method call. Finally, subsection 3.3 presents
stronger conditions to be used for runtime assertion
checking that result from combining the conditions
deduced in Subsect. 3.2 with the rules for behavioural
subtyping of Subsect. 3.1.

3.1 Rules of Behavioural Subtyping

For a class to be a behavioural subtype of another
class, it must satisfy a num ber of conditions that we
enumerate below. In this subsection, we follow Dijkstra
and Scholten [18] in the use of square brackets [...] to
state that a logical formula is a theorem, and we start
using the functions defined in Sect. 2.

Let c0 and c1 be two classes. According to Leav-
ens and Naumann [1], c0 is a behavioural subtype of
c1 if the following conditions hold:

(i). Invariants rule:

[inv c0 ==> inv c1] .

(ii). Preconditions rule: for every method m

defined in both types,

[pre m c1 ==> pre m c0] .

(iii). Postconditions rule: for every method m

defined in both types,

[post m c0 && old (pre m c1)

==> post m c1] .

Rules (ii) and (iii) correspond to standard method
refinement [19, Laws 5.1 and 1.2], and this is an improve-
ment over the behavioural subtyping rules presented
by Liskov and Wing in [11], where a less general form
of method refinement is used [19, Laws 1.1 and 1.2].
However, rules (ii) and (iii) above omit explicit mention
of invariants and, as said in [11], the invariant of a
type can be included in the antecedent of any of these
rules, because such invariants can always be assumed.
Rewriting the rules with explicit mention of the invari-
ants, we get:

(ii). [pre m c1 && inv c0 ==> pre m c0] .

(iii). [post m c0 && inv c0

&& old (pre m c1) && old (inv c0)

==> post m c1] .

Only the invariant of c0 is included since, by
rule (i), if the invariant of c0 is met then so is also the
invariant of c1.

3.2 Modular Reasoning, Static Verification, and
Runtime Assertion Checking

Let us analyse the conditions that should be stati-
cally verified in a method call according to modular rea-
soning. From the point of view of the caller, before
execution of the method call the precondition must
be checked as an assertion, and after execution of the
call the postcondition can be assumed. Now, from the
point of view of the callee, before execution of the body
of the method it can be assumed that the precondition
is satisfied, and at the end it must be verified as
an assertion that the postcondition is met. Note that
we are using the assertion/assumption terminology of
JML [5] (which is assertion/coercion in the jargon of the
refinement calculus of Morgan [19]). In the presence
of inheritance, due to the dynamic method binding
philosophy of object-orientation, these assumptions
and assertions should be verified in accordance with
the types involved in the binding variable-object of the
method call: from the point of view of the caller, the
static type of the variable (or, more generally, expres-
sion) used in the call should be used, and from the
point of view of the callee, the body of the method
to be executed depends on the dynamic type of the
object bound to the variable/expression of the call.

The previous analysis corresponds to (modular)
static verification of method calls and method bodies.
However, we are interested in (modular) dynamic veri-
fication, that is, runtime assertion checking, in which
case both assumptions and assertions are dealt with
in the same way: checking if the predicate holds
at that point of the execution of the program, as done
in JML [5, 20].

Let us now summarise which are the conditions to
be dynamically checked, that is, used in runtime as-
sertion checking, in a method call according to the
binding (static)variable-(dynamic)ob ject of the call, and
remembering that both assumptions and assertions
become assertions in dynamic verification:

– Before the call, check the precondition and
invariant according to the static type of
the variable, because this corresponds to
what is expected statically in relation to the
correctness of the call.

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 153

– Before executing the method body, check
the precondition and invariant accord-
ing to the dynamic type of the object, as
this corresponds to the correctness of the
method body that must be used according
to the dynamic method binding semantics
of object- oriented languages.

– Execute the method body according to the
dynamic type.

– At the end of the execution of the body of the
method, check the postcondition and invari-
ant according to the dynamic type, as this
corresponds to the correctness of the method
that was actually executed in accordance
with the dynamic method binding semantics.

– When the call returns, check the postcondi-
tion and invariant depending on the static
type, as this is what is statically expected
in relation to the correctness of the call.

3.3 Stronger Conditions for Runtime Assertion
Checking

Combining the rules of behavioural subtyping
presented in section 3.1 with the conditions deduced
in the previous subsection 3.2 for runtime asser-
tion checking, we can obtain stronger conditions for
runtime assertion checking. These new conditions are
equivalent to the previous ones provided behavioural
subtyping holds, but without this assumption they are
formally stronger. The fact that these new condi-
tions are stronger, when behavioural subtyping is not
guaranteed, makes it possible to detect dynamically a
greater number of failures, both in relation to the condi-
tions related to the inheritance chain and in relation to
the conditions that must locally be met by a method
when it is called.

We will present the new stronger conditions, first,
for a simple hierarchy of just two classes, and then we
will generalise this to an arbitrary hierarchy (of simple
inheritance, as we do not consider multiple inheritance).

Let c0 be a subclass of c1, and let both classes
declare a method m. Let us see the conditions that must
be checked in a call to m, according to the possible
combinations of static/dynamic type that can be in-
volved in the binding variable-object of the call:

– Both static and dynamic type c1: from the
point of view of the caller and from the point of

view of the callee the same conditions should
be checked:

{ inv c1 && pre m c1 }

and { post m c1 && inv c1 } .

– Both static and dynamic type c0, from the
point of view of the caller and from the point
of view of the callee, again, the same condi-
tions should be checked:

{ inv c0 && pre m c0 }

and { post m c0 && inv c0 } ,

but, using rules (i) and (iii) of behavioural
subtyping, these conditions can be strength-
ened to:

{ inv c0 && inv c1 && pre m c0 } and

{ post m c0

&& (old (pre m c1) ==> post m c1)

&& inv c0 && inv c1 } .

– Static type c1 and dynamic type c0: both
the point of view of the caller and the point
of view of the callee should be checked:
{ inv c1 && inv c0 && pre m c1

&& pre m c0 } and

{ post m c0 && post m c1 && inv m c0

&& inv c1 } .

This analysis of the possible situations in a two-
classes hierarchy can be generalised to an arbitrary
hierarchy (without multiple inheritance) as follows:

– Before executing the method body:
•	 check the invariant of all the types in the

hierarchy between the dynamic type and
the root type of the whole hierarchy, both
included, as the invariant of the dynamic
type should hold, and rule (i) of behavioural
subtyping implies that the invariants of all the
other classes higher up in the hierarchy
should also hold; and

•	 check the precondition of all the types in
the hierarchy between the static type and
the dynamic type, both included, as the
one in the static type should be checked from
the point of view of the caller, and rule (ii) of
behavioural subtyping implies that all the
preconditions in classes lower in the hierarchy
all the way down to the dynamic type should
then also hold.

Gabriela Montoya and Jesús N. Ravelo

tekhné 14154

– After executing the method body:
•	 as before, check the invariant of all the types

in the hierarchy between the dynamic type
and the root type, both included, as the one
of the dynamic type should hold, and rule
(i) of behavioural subtyping implies that the
invariants of all the classes higher up in the
hierarchy should hold too;

•	 check the postconditions in all the types in
the hierarchy between the dynamic type and
the static type, both included, as the one
in the dynamic type should be checked from
the point of view of the callee, and rule (iii) of
behavioural subtyping then implies that all
postconditions higher in the hierarchy up
to the static type should also be checked,
noting that the precondition before execut-
ing the method body and the invariant both
before and after executing the method body
hold in all this section of the hierarchy; and,
finally,

•	 check the implication between the precondi-
tion at the beginning of the method body and
the postcondition at the end, in all the classes
higher in the hierarchy between the static
type, not included, and all the way up to the
root type, which is again a consequence of
rule (iii) of behavioural subtyping, except
that in this section of the hierarchy the pre-
conditions did not necessarily hold at the
beginning of the method body.

As stated before, these stronger conditions would
facilitate the dynamic detection of more failures in pre/
postconditions of method calls and also of failures in
the conditions related to behavioural subtyp ing. We will
call the stronger condition associated with invariants the
augmented invariant, the stronger condition associated
with preconditions the augmented precondition, and
the stronger condition associated with postconditions
the augmented postcondition. All of these augmented
conditions will be formalised in a precise way using
Haskell in the following section.

4. THE BRIDGE BETWEEN
DYNAMIC AND STATIC

VERIFICATION

In this section, we first formalise the augmented
conditions that were put forward for runtime asser-
tion checking in the previ ous section. Then, we state a
theorem that formally links such a dynamic verification
of all methods of a class to the corresponding static
verification of correctness of all those methods. As
said in the introduction, this formal bridge amounts to
proving that a hypothetical exhaustive testing through
runtime assertion checking would be equivalent to the
corresponding static verification, and we believe that this
gives a more solid foundation to dynamic verification
through runtime assertion checking. Function dvt, for
dynamic verification triple, gives the Hoare triple to
be dy namically checked for dynamic type dt, in a call
from an object-variable or object- expression with static
type st, for method m in class dt.

data HoareTriple = HT Precondition

Instruction

Postcondition

Fig. 5 A type for Hoare triples.

First and foremost, we introduce a new type that
represents Hoare triples, which will be our building
blocks to formalise what is verified both dynamically
and statically. The definition is in Fig. 5 and it states
that a Hoare triple has a precondition, an instruction
and a postcondition.

The three basic types used are as already defined
in Sect. 2.

dvt :: Class -> Class -> Method
-> HoareTriple

dvt dt st m
= HT (augmPre dt st m && augmInv dt)
(instruction m)
(augmPost dt st m && augmInv dt)

Fig. 6 A Hoare triple for dynamic verification.

In the previous section, we proposed conditions
for the runtime assertion checking of a method call
for any given combination of static/dynamic types with
which such a method can be called. Those conditions
correspond to a Hoare triple with the augmented
invariant and augmented precondition of the method
as precondition, and the augmented invariant and

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 155

augmented postcondition of the method as postcondi-
tion. The construction of such a triple, completed with
the method body associated with the dynamic type,
is formalised in Fig. 6.

Function dvt, for dymamic verification triple, gives the
Hoare triple to be dynamically checked for dynamic type
dt, in a call from an object-variable or object-expression
with static type st, for method m in class dt.

The augmented conditions are then formalised
in Fig. 7.

augmInv :: Class -> BoolExpr
augmInv c
| isNothing (super c) = inv c
| isJust (super c)
= inv c && augmInv (fromJust (super c))

augmPre :: Class -> Class -> Method
-> BoolExpr augmPre dt st m

| dt == st = pre m st
| dt /= st
= augmPre (fromJust (super dt)) st m
&& pre m dt

augmPost :: Class -> Class -> Method
-> BoolExpr augmPost dt st m
| dt == st && isNothing (super st)
= post m st
| dt == st && isJust (super st)
= post m st
&& augmPost’ (fromJust (super st)) m
| dt /= st
= post m dt
&& augmPost (fromJust (super dt)) st m

Fig. 7 Augmented invariant, precondition and
postcondition.

Function augmInv gives the augmented invariant for
a certain dynamic type, moving through the hierarchy
all the way up to the root class. Function augmPre gives
the augmented precondition for a given combination
of dynamic and static type for a method call. To obtain
the augmented condition, the hierarchy is examined
from the static type all the way down to the dynamic
type (although the recursion travels in the opposite
direction). Function augmPost gives the augmented
postcondition for, again, a given combination of dy-
namic and static type for a method call. To obtain
the augmented condition, the hierarchy is examined
from the dynamic type all the way up to the static
type, and, above the static type, the rest of the hierarchy
must be considered using function augmPost’. Func-
tion augmPost’, in Fig. 8, obtains the conditions that
correspond to each of the classes where the method is
declared; for each of them, the implication between the

precondition before execution of the method body and
the postcondition afterwards must be satisfied.

augmPost’ :: Class -> Method -> BoolExpr augm-
Post’ c m
| isNothing (super c) && declare c m
= (old (pre m c) ==> post m c)
| isNothing (super c)
&& not (declare c m) = True
| isJust (super c) && declare c m
= (old (pre m c) ==> post m c)
&& augmPost’ (fromJust (super c)) m
| isJust (super c) && not (declare c m)
= augmPost’ (fromJust (super c)) m

Fig. 8 Extra augmentation for postconditions.

Note that, unlike augmPre and augmPost, function
augmPost’ needs to ask explicitly about local declara-
tions of the method at issue. In the case of augmPre
and augmPost, all classes in the inspected hierarchy
must have a declaration of the sought-after method,
whether local or inherited, which renders it unnecessary
to ask about such declarations.

Inherited methods might make the same pre/
post-condition to appear more than one in the final
augmented pre/postcondition, which is harmless due to
idempotence of conjunction. In the case of augmPost’,
the inspected hierarchy above the static type all the
way up to the root might not necessarily have declara-
tions of the method at issue, which is why declarations
must be inquired about. All auxiliary functions of function
dvt have already been defined. It has thus been fully
formalised how to obtain, through dvt, the Hoare
triple that corresponds to the dynamic verification of a
method call for any combination of dynamic/static type
with which such a call can be made. We now need to
define a function that, given any class, generates all the
Hoare triples of all the methods of the class, considering
all possible static types from which calls can be made
with the given class as dynamic type. Such a function
is presented in Fig. 9 under the name dvts. Auxiliary
recursive function dvts’ considers all possible static
types for a fixed dynamic type; these potential static
types are just all the types higher up in the hierarchy
between the given dynamic type and the root.

Gabriela Montoya and Jesús N. Ravelo

tekhné 14156

dvts :: Class -> [HoareTriple]
dvts c = dvts’ c c
dvts’ :: Class -> Class -> [HoareTriple]
dvts’ c0 c1
| isNothing (super c1) = dvt’
| isJust (super c1)
= dvt’
++ dvts’ c0 (fromJust (super c1))
where
dvt’ = map (dvt c0 c1) (declaredMethods
c0 c1)

Fig. 9 All the Hoare triples of a class for dynamic
verification.

In function dvts’, to obtain all the Hoare triples
through function dvt, we use the list of methods that
are offered in both the dynamic type and the static type,
and apply dvt to each of them using Haskell function
map. Functions for this methods extraction purpose are
defined in Fig. 10. Function declaredMethods obtains
the list of methods that are offered both in class c
and class sc. It uses function methods’, which, given
a class c, returns all the methods that c offers: either
locally declared or inherited from its superclass without
redefinition. Function offers determines if a class offers
a certain method, either directly or indirectly.

declaredMethods :: Class -> Class
-> [Method]
declaredMethods c sc = filter (offers
sc) (methods’ c)

methods’ :: Class -> [Method]
methods’ c
| isNothing (super c) = methods c
| isJust (super c)
= methods c
++ filter (\m -> not (declare c m)) (methods’
(fromJust (super c)))

offers :: Class -> Method -> Bool offers c
(Meth n _ _ _)
= isJust
(find (\(Meth n’ _ _ _) -> n’ == n) (meth-
ods’ c))

Fig. 10 Methods extraction.

Now that methods indirectly offered by a class came
up, meaning methods inherited by a class without
redefinition, an important subtlety about them must
be mentioned. Methods inherited by a class c must
meet their specifications from the standpoint of c, even
though they are not defined in c. Thus, they must es-
tablish the local invariant of c as part of their postcon-

dition, but this cannot be foreseen by the designers/
implementors of the superclass of c if such an invariant
is allowed to be arbitrary. This problem can be avoided
methodologically by restricting invariants so that they
refer only to local attributes, that is, declared in the same
class and not inherited. Otherwise, inherited methods
without redefinition should be re-verified in relation to
the invariant of c, but this is inconvenient both practically
and methodologically. In practice, the source code of the
superclass of c might not be available to the designers/
implementors of c, and, from a methodological point of
view, such a re-verification would go against principles
of object-oriented design and modular reasoning. In-
depth explorations of this problem, that is, the problem
of verifying invariants locally through modular reasoning,
have been made in the context of the so-called Boogie
methodology for object invariants [21, 22]. The Boogie
methodology proposes much more elaborate solutions
to this problem than the simple one we just mentioned.

So far we have already formalised the Hoare triples
that correspond to dynamic verification of a class. We
still need to formalise the Hoare triples that correspond
to the static verification of a class, which we do with
the functions in Fig. 11.

svt :: Class -> Method -> HoareTriple svt c
m = HT (pre m c && inv c)
(instruction m) (post m c && inv c)

svts :: Class -> [HoareTriple]
svts c = map (svt c) (methods’ c)

Fig. 11 All the Hoare triples of a class for static
verification.

Function svt, for static verification triple, gives
the Hoare triple that corresponds to the static
verification of a method m in a class c that offers it.
This triple has as precondition the conjunction of
the precondition and the invariant in class c, as in-
struction the method body, and as postcondition the
conjunction of the postcondition and the invariant in class
c. Function svts gives all the Hoare triples of a class,
one for each method offered by the class.

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 157

behaviouralSubtype :: Class -> Bool behav-
iouralSubtype c
| isNothing (super c) = True
| isJust (super c)
= directBSubtype c (fromJust (super c))
&&
behaviouralSubtype
(fromJust (super c))

directBSubtype :: Class -> Class -> Bool di-
rectBSubtype c0 c1
= isTheorem (inv c0 ==> inv c1)
&&
and (map (directBSubtypeM c0 c1) (declared-
Methods c0 c1))

directBSubtypeM :: Class -> Class -> Method
-> Bool directBSubtypeM c0 c1 m
= isTheorem (pre m c1 && inv c0
==> pre m c0)
&&
isTheorem (post m c0 && inv c0
&& old (pre m c1)
&& old (inv c0)
==> post m c1)

Fig. 12 Behavioural subtyping conditions.

Having formalised the Hoare triples of both dynamic
and static verification, the only thing we have left to
formalise is the notion of behavioural subtyping, which
is done with the functions in Fig. 12. Function behav-
iouralSubtype determines if a given class c is a
proper behavioural subtype, inspecting the whole hi-
erarchy between c and the root class, and verifying that
each of these classes satisfies the rules of be havioural
subtyping in relation to its direct superclass. Behav-
ioural subtyping is transitive and, hence, it suffices
to check only direct superclasses. Auxiliary function
directBSubtype does the job for two given classes
c0 and c1, determining if c0 meets the criteria for
being a direct behavioural subtype of c1; that is,
rule (i) of behavioural subtyping is satisfied, and each
method offered in both classes satisfies rules (ii) and
(iii) of behavioural subtyping.

Auxiliary function isTheorem is meant to determine
whether a given boolean expression is a theorem. We
do not provide a body for it, as its inner workings
would not be an important concern to us. It would,
instead, be implemented by a theorem prover. We will
only use it for reasoning at a higher level, with the
signature shown in Fig. 13.

isTheorem :: BoolExpr -> Bool

Fig. 13 A function for reasoning.

This function corresponds to the square brackets
[...] of Dijkstra et al. [18] that we used previously in
Subsect. 3.1.

Finally, we are ready to state our main theorem,
that establishes the promised formal bridge between
the Hoare triples used for runtime assertion checking,
or dynamic verification, and the Hoare triples that cor-
respond to static verification:

Theorem 4.1 (The Formal Bridge).

bridge :: Class -> Bool

bridge c = behaviouralSubtype c

==> (allValid (dvts c)

==

allValid (svts c))

The theorem states that, for every class that is a
proper behavioural subtype, the Hoare triples proposed
for dynamic verification of the class are all valid if and
only if the Hoare triples that correspond to its static
verification are allvalid. Auxiliary function allValid,
presented in Fig. 14, determines whether a list of Hoare
triples are all valid.

allValid :: [HoareTriple] -> Bool all-
Valid
hts = and (map valid hts)
valid :: HoareTriple -> Bool

Fig. 14 Validity of Hoare triples.

This function has a similar purpose to isTheorem
above, but we do define it in terms of a more basic
one, valid, which could again be implemented by
a theorem prover and we will use for reasoning at a
higher level.

4.1 Simplifying the Main Theorem

Now that we have stated our main theorem, it so
happens that it can be simplified due to hypothesis be-
haviouralSubtype c. Specifically, the Hoare triples
for dynamic verification can be simplified, as both their
precondition and postcondition are equivalent to simpler
expressions under the hypothesis of behavioural sub-
typing. The formalisation of these simplified dynamic
verification Hoare triples, in the form of a new version of
function dvt, defined in Fig.15.

The precondition in these new Hoare triples is
just the conjunction of the precondition at the static
type and the invariant at the dynamic type, and the post-

Gabriela Montoya and Jesús N. Ravelo

tekhné 14158

condition is just the conjunction of the postcondition
and the invariant at the dynamic type.

dvt :: Class -> Class -> Method

-> HoareTriple

dvt dt st m = HT (pre m st && inv dt)

(instruction m)

(post m dt && inv dt)

Fig. 15 A simplified Hoare triple for dynamic verification.

In languages as JML [4, 5] and Spec# [6], where
every subclass is always a behavioural subtype due
to the use of specification inheritance [7], this simpli-
fied version of the triples can and should be used
for dynamic verification, that is, for runtime assertion
checking. On the other hand, in languages where behav-
ioural subtyping is not guaranteed, the original version of
the triples should be used. Their pre/post-conditions
are formally stronger and, thus, they fail in more cases
during runtime assertion checking and facilitate the
detection of more errors.

To prove our main theorem, it is of course bet-
ter to use the simpler version of it, but for that we
would need to show that our two versions of dynamic
verification triples are indeed equivalent. It suffices to
prove the following:

Lemmas 4.2.

(i). isTheorem (augmInv dt == inv dt)

(ii). isTheorem (augmPre dt st m &&

augmInv dt == pre m st && inv dt)

(iii). isTheorem (augmPost dt st m &&

augmInv dt == post m dt && inv dt)

Provided dt is a behavioural subtype and st is
a superclass of dt, and (iii) also requires assumption

old (augmPre dt st m && augmInv dt),

that is, that augmPre dt st m && augmInv
dt is satisfied in the pre-state.

Note that the first hypothesis corresponds directly
to the hypothesis of the main theorem, and the second
hypothesis is a consequence of the way Hoare triples
are built within dvts. The third hypothesis has to do
with the way Hoare triples are reasoned about: when
reasoning about the postcondition, it is valid to assume

that the precondition held in the pre-state, and this
third hypothesis is precisely the precondition of our first
version of the dvt-triples.

A proof for all Lemmas 4.2 and for Theorem 4.1 can
be found in the appendix of [9].

 5. RELATED WORK

The static-to-dynamic implication of our main theo-
rem is related to the exploration of Leavens and Nau-
mann of supertype abstraction [1, 2]. However, their
semantic characterisation of the relevant concepts is
much more detailed and, also, their results are much
richer than just our staticto-dynamic implication. As
mentioned in the introduction, it is our dynamic-
tostatic implication what we believe to be a novel explo-
ration. In any case, the connection between our work
and these results of Leavens and Naumann regards
only a purely theoretical view of our result. Most of the
work that we relate to ours has to do with the practi-
cal consequences of our theorem in the construction of
runtime assertion checking tools. The rest of this section
reviews such tools.

For Contract Java [23, 24], its designers propose
a scheme for runtime assertion checking very simi-
lar to the verifying code we can derive from our
main theorem (presented in the extended ver sion of
the present article [9] that includes the practi-
cal counterpart of our theoretical exploration). Their
checks aim at verifying that every subclass is actually
a behavioural subtype and, if not, properly inform the
user of where the problem is. For this, they take the
rules of Liskov and Wing [11] for pre/postconditions
and evaluate, after checking the local pre/post-condition,
that the hierarchy satisfies Liskov and Wing’s rules.
A subtle difference with our code is that their design of
checks produces several unnecessary re-evaluation
of conditions, even at points where the outcome is ir-
relevant. For example, when the static type matches
the dynamic type, and the precondition has already
been checked to be true, it is irrelevant to check the
inheritance-precondition rule and, yet, they do it. Other
differences with our approach include the absence of
invariants in their proposal and the use of the older
and stronger inheritancepostcondition rule that does
not take into account that the superclass-precondition
is satisfied before the method execution (recall that

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 159

our postcondition rule (iii) of behavioural subtyping in
subsection 3.1, as presented in [1] and which also
corresponds to [25, 19], is a weaker extension of the
original one of Liskov and Wing [11]). Additionally, in the
case where the static type does not match the dynamic
type and the postcondition fails, the error they report
to the user is imprecise and different from ours. They
report that the postcondition is not met; however, given
that the executed code is the one of the dynamic
type and the postcondition checked is the one of the
static type, this message is imprecise for the user: the
fault may lie with the implementation of the dynamic
type that does not ensure its postcondition, or with
the hierarchy between the dynamic type and the static
type that has a class that is not a behavioural subtype.
To get as much detail as possible regarding the failure
of postconditions, in our verifying code we first check
the postcondition of the dynamic type and later
proceed with the rest of the postconditions higher in
the inheritance hierarchy; if any of the postconditions
fails, we can precisely report to the user whether the
method code in the dynamic type does not meet its
postcondition, or whether some other postcondition
higher in the hierarchy fails, which makes the class im-
mediately below (whose postcondition did succeed)
an incorrect behavioural subtype.

Regarding iContract [26], our proposal differs a lot
from the conditions they verify. For each method defined
in both classes of a two-classes hierarchy, iContract
checks as precondition the disjunction of the precondi-
tions annotated in the class and in the superclass, as
postcondition the conjunction of the postconditions
annotated in the class and the superclass, and as invari-
ant the conjunction of the invariants of the class and the
superclass. These conditions do not correspond to
the contracts that were written by the program-
mer. With these conditions, a method could even
be executed starting in a state that does not meet its
own precondition, if its superclass-precondition holds
but its own does not.

jContractor [27] verifies the same conditions as
iContract. Therefore, it suffers from the same problems
just pointed out.

Jass [28] gives programmers the possibility to decide
whether a subclass should be verified as a behav-
ioural subtype or not. This is a possibility offered by
Jass that we do not consider, as we believe that
semantic cleanness must be a part of a good object-
oriented programming language. The rules they check
on behavioural subtyping correspond to those of Liskov

and Wing [11], with the modification of Leavens and
Naumann [1]. However, they do not take into account
the static types associated with method calls and,
therefore, their verification is not consistent with
the static verification of the call from the point of view
of the client.

JML [4, 20, 5] includes specification inheritance [7] for
all subclasses and, therefore, every subtype is always a
behavioural subtype. As mentioned towards the end of
Sect. 4 when we presented the simplified version of our
theorem, a runtime assertion checking tool based on our
results could use the simpler weaker conditions when
behavioural subtype is guaranteed, or otherwise use the
stronger conditions so that it is possible to detect de-
sign problems in the class hierarchy at runtime. Our
proposal can thus be seen as giving more freedom to
the specifiers of subtypes, both allowing that every sub-
class is ensured to be a behavioural subtype, through
specification inheritance or any other mechanism, and
also allowing that such a guarantee is not given.

Our proposal also differs from the conditions verified
in JML when the binding variable-object corresponds
statically to a class and dynamically to one of its
subclasses. We explain this in detail with a small
example. Take a hierarchy of two classes, with su-
perclass A and subclass B; they both define method
m, with specifications given by the user [preA, postA]
and [preB, postB] , respectively. Due to specification
inheritance, the real specification in the subclass ends up
being [preA || preB, (old preA ==> postA)
&& (old preB ==> postB)].

The runtime assertion checker of JML verifies,
in the case that the object is dynamically from
the subclass, the real specification in the subtype
without taking into account the static type associated
with the call. However, for the dynamic verification to
match the static verification, this is not what should
be checked. The dynamic verification should check
[preA, postA && (old preB ==> postB)].
Statically, it is only known the static type associated
with the call, and so the specification of A should be
met. This corresponds to the object of the subclass
satisfying the contract of the superclass: it must abort
the program if preA is not met at the beginning and
ensure that postA is satisfied at the end. Note that,
provided preA holds at the beginning, the postcondi-
tions checked by JML and by us are equivalent but,
when preA does not hold and preB does, JML does
not announce the error (the caller did not guarantee
the required static precondition) but our proposed
verification does.

Gabriela Montoya and Jesús N. Ravelo

tekhné 14160

Modern Jass [29] includes specification inheritance
and verifies precisely the same conditions as JML [4].
Therefore, it also differs from our proposal on the
verification performed on the precondition when the
call is done with a dynamic type that does not match
the static type.

Spec# [6] restricts subtypes in a way that they are
behavioural subtypes, offering, as well as JML,
specification inheritance. However, it is more restrictive
with respect to the preconditions that can present in
a subtype: preconditions must remain the same. Al-
though it is more restrictive with respect to the potential
subtypes, the checks are appropriate in any situation.
Comparing this to our proposal, note that, with the
precondition restriction of Spec#, the expression preA
|| preB of our JML example, ends up being just
preA and, thus, the proposal of Spec# ends up being
equivalent to ours. However, we consider the possibility
of not forcing specification inheritance, and even in the
case that it is forced, we do not force the precondition in
the subclass to be the same of the superclass. It suffices
to take into account the static type in the conditions
to be verified.

6. CONCLUSIONS

We have established a formal theoretical connec-
tion between runtime assertion checking of method
calls in the presence of inheritance and the correspond-
ing correctness static verification of such calls. This
was formalised through Theorem 4.1, a proof of which
is presented in the appendix of [9]. We believe this
formal connection to be important, as it provides a more
solid foundation to runtime assertion checking, and we
have not found in the literature of this subject any such
formal relationship to have been established previously.

Also, our theoretical result allowed us to determine
precise conditions to be used in runtime assertion
checking, making it possible to dynamically detect
all kinds of failures in an inheritance relationship (we
present code in the extended version of this article [9]).
Our proposed conditions also allow programmers to
design classes without restricting the specifications
of redefined methods in subclasses, that is, without
forcing specification inheritance; testing and dynamic
verification of specifications would then be used to find

errors or to obtain a high degree of certainty about the
correctness of the design of a subclass as a behavioural
subtype.

7. FUTURE WORK

Other aspects related to this work that might be
studied in more depth in the future are the following:

– Strengthening our main theorem so that it does
not depend on the behavioural subtyping hypothesis;
that is, establishing a relationship between the dynamic
conditions and all the static conditions including be-
havioural subtyping. Recall our main theorem:

behaviouralSubtype c

==> (allValid (dvts c)

==

allValid (svts c)) .

Considering the satisfaction of behavioural
subtyping as one more static condition, a stronger
theorem would be:

allValid (dvts c)

==

behaviouralSubtype c

&&

allValid (svts c) ,

with conjunction binding stronger than equivalence.
This new proposition would really show dynamic verifi-
cation to be equivalent to all the corresponding static
verification. However, with our formalisation, this
proposition is not a theorem. Nevertheless, we believe
that under a more detailed formalisation this proposi-
tion can be proved to be a theorem. An extra detail
we believe to be missing is the explicit formalisation of
execution states as done by, for example, Leavens and
Naumann in [1].

– Stating and proving a theorem that combines
inheritance and data refinement.

A Formal Bridge between Runtime Assertion Checking and Static Verification of nheritance

revista de ingeniería 161

8. REFERENCES

[1] G. T. Leavens and D. A. Naumann, “Behavioral
subtyping, specification inheritance, and modu-
lar reasoning,” Tech. Rep. 06-20b, Department
of Computer Science, Iowa State University,
Sept. 2006.

[2] G. T. Leavens and D. A. Naumann, “Behavioral
subtyping is equivalent to modular reasoning for
object-oriented programs,” Tech. Rep. 06-36,
Department of Computer Science, Iowa State
University, Dec. 2006.

[3] B. Meyer, Object-Oriented Software Construc-
tion. Prentice Hall, 1988.

[4] G. T. Leavens and Y. Cheon, “Design by contract
with JML.” Available from www.jmlspecs.org
(The Java Modeling Language (JML) home
page), 2005.

[5] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon,
C. Ruby, D. Cok, P. Mu¨ller, J. Kiniry, and
P. Chalin, JML Reference Manual, Nov. 2007.

[6] M. Barnett, K. R. M. Leino, and W. Schulte,
“The Spec# programming system:
An overview,” in Construction and Analysis
of Safe, Secure, and Interoperable Smart
Devices, CASSIS 2004, vol. 3362 of Lec-
ture Notes in Computer Science, pp. 49–69,
Springer, 2004.

[7] K. K. Dhara and G. T. Leavens, “Forcing
behavioral subtyping through specification
inheritance,” in Proceedings of the 18th Inter-
national Conference on Software Engineering,
Berlin, Germany, pp. 258–267, IEEE Computer
Society Press, 1996.

[8] K. Arnold, J. Gosling, and D. Holmes, The Java
Programming Language. Addison Wesley Pro-
fessional, fourth ed., 2005.

[9] G. Montoya and J. Ravelo, “A formal bridge
between runtime assertion checking and
static verification of object-oriented programs
in the presence of inheritance –theory and
practice–,” tech. rep., Departamento de Com-
putacion y Tecnolog ı́a de la Informacion,
Universidad Simon Bol ı́var, Caracas, Venezuela,
October 2009.

[10] B. Liskov and J. Guttag, Program Develop-
ment in Java: Abstraction, Specification and
ObjectOriented Design. Addison-Wesley, 2001.

[11] B. H. Liskov and J. M. Wing, “A behavioral
notion of subtyping,” ACM Transactions on
Programming Languages and Systems, vol.
16, pp. 1811–1841, Nov. 1994.

[12] A. Mikhajlova and E. Sekerinski, “Class
refinement and interface refinement in object-
oriented programs,” in FME’97: Industrial
Applications and Strengthened Foundations
of Formal Methods (Proc. 4th Intl. Symposium
of Formal Methods Europe, Graz, Austria,
September 1997) (J. Fitzgerald, C. B. Jones,
and P. Lucas, eds.), vol. 1313, pp. 82–101,
Springer-Verlag, 1997.

[13] R.-J. Back, A. Mikhajlova, and J. von Wright,
“Class refinement as semantics of correct object
substitutability,” Formal Aspects of Computing,
vol. 12, pp. 18–40, Oct. 2000.

[14] R.-J. Back, L. Mikhajlov, and J. von Wright,
“Formal semantics of inheritance and object
substitutability,” Tech. Rep. TUCS-TR-337,
Turku Centre for Computer Science, 27, 2000.

[15] S. Thompson, Haskell: The Craft of Functional
Programming. Addison Wesley, Mar. 1999.

[16] R. Bird, Introduction to Functional Programming
using Haskell. Prentice Hall, second ed., 1998.
[17] G. Hutton and J. Wright, “Compiling
excep tions correctly,” in Proceedings of the
7th International Conference on Mathematics
of Program Construction, pp. 211–227, Springer,
2004.

[18] E. Dijkstra and C. Scholten, Predicate Calcu-
lus and Program Semantics. Texts and Mono-
graphs in Computer Science, Springer-Verlag,
1990.

[19] C. Morgan, Programming from Specifications. In
ternational Series in Computer Science, Prentice
Hall, 2nd ed., 1994.

[20] Y. Cheon, “A runtime assertion checker for the
Java Modeling Language,” Tech. Rep. 03-09,
Department of Computer Science, Iowa State
University, Apr. 2003.

[21] M. Barnett, R. DeLine, M. Fahndrich, K. R. M.
Leino, and W. Schulte, “Verification of object-
oriented programs with invariants,” Journal of
Object Technology, vol. 3, no. 6, pp. 27–56,
2004. [22] K. R. M. Leino and P. Mu¨ller,
“Object invariants in dynamic contexts,” in
ECOOP 2004 – Object-Oriented Programming,

Gabriela Montoya and Jesús N. Ravelo

tekhné 14162

vol. 3086 of Lec ture Notes in Computer Sci-
ence, pp. 491–515, Springer, 2004.

[23] R. B. Findler, M. Latendresse, and M. Felleisen,
“Behavioral contracts and behavioral subtyp-
ing,” SIGSOFT Software Engineering Notes,
vol. 26, no. 5, pp. 229–236, 2001.

[24] R. B. Findler and M. Felleisen, “Contract sound-
ness for object-oriented languages,” in ACM
Conference on Object Oriented Program-
ming, Systems, Languages and Applications
(OOP-SLA’01), pp. 1–15, 2001.

[25] C. Morgan and K. Robinson, “Specifica-
tion statements and refinement,” IBM Journal of
Research and Development, vol. 31, no. 5, pp.
546–555, 1987.

[26] R. Kramer, “iContract - the Java design by
contract tool,” in Proceedings of Technology of
Object-Oriented Languages, pp. 295–307, 1998.

[27] M. Karaorman, U. Hölzle, and J. Bruno, “jCon-
tractor: A reflective Java library to support
design by contract,” Tech. Rep. TRCS98-31,
University of California at Santa Barbara, 1998.

[28] D. Bartetzko, C. Fischer, M. Moller, and
H. Wehrheim, “Jass – Java with assertions,” in
Runtime Verification (K. Havelund and G. Ro¸su,
eds.), vol. 55 of Electronic Notes in Theoretical
Computer Science, Elsevier, July 2001.

[29] J. Rieken, “Design by contract for Java
revised,” Master’s thesis, Carl von Ossietzky
Universität Oldenburg, Apr. 2007.

