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ZOOLOGICAL RESEARCH

Diversity scaling of human vaginal microbial
communities

DEAR EDITOR,

The composition and diversity of the human vaginal microbial
community have been investigated intensively due to the
diversity-stability relationship (DSR) -based hypothesis for
bacterial vaginosis (BV) etiology, which was first proposed in
the 1990s and has received renewed interest in recent years.
Nevertheless, diversity changes (scaling) across individuals in
a cohort or population have not yet been addressed, which is
significant both theoretically and practically. Theoretically,
biodiversity scaling is the core of biogeography, and
practically, inter-subject heterogeneity is critical for
understanding the etiology and epidemiology of human
microbiome-associated diseases such as BV. Here we applied
the diversity-area relationship (DAR), a recent extension to
the classic species-area relationship (SAR), to study diversity
scaling of the vaginal microbiome by reanalyzing reported
data collected from 1 107 postpartum women. The model
used here characterized the power-law (or its extension)
relationships between accrued diversity and areas (numbers
of individuals), upon which four biogeographic profiles were
thus defined. Specifically, we established the DAR profile
(relationship between diversity scaling parameter and so-
termed diversity order (q)), similarly pair-wise diversity overlap
(PDO) profile, maximal accrual diversity (MAD) profile, and
ratio of individual-level to population-level diversity (RIP)
profile. These four profiles offer valuable tools to assess and
predict diversity scaling (changes) in the human vaginal
microbiome across individuals, as well as to understand the
dynamics of vaginal microbiomes in healthy women.

The human vaginal microbiome is a complex ecosystem
that plays critical roles in maintaining host health. As the first
defense of the reproductive tract, the vaginal microbiome is
critical for the prevention of opportunistic pathogen
colonization and viral infection. For example, endogenous,

healthy vaginal microbiota can help protect against HIV
infection by activating local and systemic inflammation;
however, microbiota associated with BV can also increase
susceptibility to HIV infection (Buvé et al., 2014; Petrova et al.,
2013). For pregnant women, the vaginal microbiota is not only
associated with maternal health but also that of neonates, with
the composition of the newly colonized microbiome playing a
key role in newborn immunity and metabolic development
(Cox et al., 2014; Dominguez-Bello et al., 2010; Olszak et al.,
2012; Rutayisire et al., 2016). Furthermore, babies delivered
by cesarean section can have a higher risk of metabolic and
immune diseases than those delivered vaginally (Dominguez-
Bello et al., 2010; Sevelsted et al., 2015; Younes et al., 2018),
although Chu et al. (2017) noted that delivery mode does not
influence microbiome composition in newborns. Moreover, in
pregnancy, vaginal dysbiosis is hypothesized to be a
contributor to spontaneous preterm birth (Freitas et al., 2018;
Romero et al., 2014a; Stout et al., 2017) and miscarriage
(Ralph et al., 1999).

In many healthy women, the vaginal microbiota is
dominated by Lactobacillus spp. (Macklaim et al., 2013; Ravel
et al., 2011). Several studies (Brotman et al., 2014; Gajer et
al., 2012; Ma & Li, 2017; Ravel et al., 2011) have confirmed
the five major community state types of the vaginal
microbiome in adult women, as first identified by Ravel et al.
(2011). Four types are dominated by Lactobacillus spp.,
including L. iners, L. crispatus, L. gasseri, and L. jensenii.
However, 20%–30% of asymptomatic, otherwise healthy
individuals lack lactic acid bacteria in their vaginal
microbiome, which instead consists of obligate anaerobic
bacteria (Ravel et al., 2011, 2013). In addition, the frequency
of microbiome type varies in different ethnic groups, with
those microbiome not dominated by Lactobacillus spp. more
commonly found in healthy Hispanic and black women than in
Asian or white women (Ma et al., 2012; Ravel et al., 2011).
Furthermore, the composition of the vaginal microbiome is
dynamic during life and associated with menopause stage
(Muhleisen & Herbst-Karlovetz, 2016). Recent research
demonstrated the vaginal microbiome of perimenarcheal
adolescents to be dominated by Lactobacillus spp., including
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L. crispatus, L. iners, L. gasseri, and L. jensenii, similar to that
found in reproductive-age women (Hickey et al., 2015). In
premenopausal women, the vaginal microbiota is still
dominated by L. crispatus and L. iners, but Lactobacillus spp.
are often replaced by Streptococcus and Prevotella in the
perimenopausal and postmenopausal stages (Brotman et al.,
2014). Shifts in vaginal microbiome have also been observed
during and after pregnancy. For example, diversity and
richness of the vaginal microbiome is lower in pregnant
women than in non-pregnant women (Freitas et al., 2017).
Furthermore, Romero et al. (2014b) showed that the vaginal
microbiome of pregnant women contains a higher abundance
of L. vaginalis, L. crispatus, L. gasseri, and L. jensenii, and a
lower probability of switching to a Lactobacillus-deficient
community. In addition, radical changes in Lactobacillus-poor
vaginal communities have been found at delivery, which can
persist for up to a year (DiGuilio et al., 2015).

Despite extensive studies on the human vaginal
microbiome, what constitutes normal or healthy vaginal
microbiota remains unresolved. For example, Doyle et al.
(2018) sampled and sequenced the vaginal microbiome of
1 107 rural Malawi women after pregnancy, and found that
75.7% (752/994) of the population were dominated by
Gardnerella vaginalis rather than by Lactobacillus spp., and
although L. iners increased with time after delivery, G.
vaginalis still dominated for an extended period. In Doyle’s
study, both the pregnancy delivery mode and ethnicity also
appeared to influence the composition of vaginal microbiome,
though all hosts were healthy.

Previous research has revealed that the biodiversity of
vaginal microbial communities varies with health status and
lifestyle of the host. Nevertheless, existing studies have not
addressed diversity scaling (changes) across individuals in a
cohort or population. Theoretically, microbiome diversity
distribution across individual subjects (i. e., space) is
traditionally a focus of microbial biogeography. Practically
speaking, understanding the biogeography of the human
microbiome can reveal critical information on its
characteristics in a cohort setting, which can, in turn,
significantly influence studies on the etiology and
epidemiology of human microbiome-associated diseases such
as inflammatory bowel disease, obesity, and BV. To effectively
assess the spatial scaling of human vaginal microbial
diversity, we applied the DAR model, which is a recent
extension of the classic SAR in biogeography and
conservation biology (Bell et al., 2005; Horner-Devin et al.,
2004; MacArthur & Wilson, 1967; Noguez et al., 2005; Peay et
al., 2007; Triantis et al., 2012; Várbíró et al., 2017; Whittaker
& Triantis, 2012). SAR is one of the oldest described
ecological laws or patterns, whereby species richness
increases with increasing sampling area, and can be traced
back to the 19th century (Watson, 1835). It is still considered
one of the most important principles in conservation biology
and biogeography. The extensions from SAR to DAR
introduced a several important advances including:
(1) Expanding species richness (number of species) to
general diversity measures in Hill numbers (Chao et al., 2012,

2014; Hill, 1973), thus making it possible to not only assess
the scaling of species richness (numbers), but also scaling of
general diversity (e. g., change in community evenness or
dominance). Therefore, the classic SAR is a special case of
the more general DAR; (2) The DAR, PDO, MAD, and local
regional/global diversity (LRD/LGD) profiles are effective tools
for the biogeographic mapping of biodiversity over space (Ma,
2018a, 2018c, 2019).

In this study, we applied DAR modeling and associated
biogeographic profiles to investigate the spatial diversity
scaling of postpartum vaginal microbial communities across
individuals by reanalyzing the large vaginal microbiome
dataset originally reported by Doyle et al. (2018). The spatial
diversity scaling of the vaginal microbiome revealed
heterogeneity among individuals, which could provide an
ecological basis for personalized and precise diagnosis and
treatment of microbiome-associated diseases, including BV.
The biogeographic profiles of the vaginal microbiome also
provide tools for explaining the DSR hypothesis for BV
etiology from multiple dimensions (Ma & Ellison, 2018, 2019).

The vaginal microbial dataset (Doyle et al., 2018)
reanalyzed in this study consisted of 1 158 vaginal microbiome
samples collected from 1 107 rural Malawi women post-
delivery. Most samples were collected within the first 20 d of
delivery, though some were sampled 5–583 d post-delivery.
The V5–V7 hypervariable regions of the 16S rRNA genes
were amplified and sequenced under the MiSeq Illumina
platform. After quality control, the sequences were clustered
into 14 354 operational taxonomic units (OTUs) using QIIME
2.8.6. Samples with less than 2 000 reads were removed, as
were OTUs with less than 1 000 reads. After prescreening,
1 076 samples and 466 OTUs remained for DAR analysis. In
DAR analysis, the number of each OTU read is equivalent to
the population abundance of a species in macro-ecology, or
OTU abundance in diversity analysis. More detailed
information on the dataset can be found in Doyle et al. (2018).

The Hill numbers (Hill, 1973) were reintroduced to ecology
by Jost (2007) and Chao et al. (2012, 2014), and possess
certain critical advantages over traditional diversity indexes.
The Hill numbers for measuring alpha diversity are as follows:

q
D = (∑

i = 1

S

pq
i )

1/(1–q )

(1)

When q=1, the Hill number is undefined, but its limit exists in
the following form:

1
D = lim

q→ 1

q
D = exp (–∑

i = 1

S

pilog(p1) ) (2)

where, D is the diversity in Hill numbers, q (=0, 1, 2,…) is the
order number of diversity, S is the number of species (or
OTUs), and pi is the relative abundance of species i. The
diversity order (q) sets the sensitivity of the Hill numbers to the
relative frequencies of species abundances. When q=0, 0D is
equal to the number of species or species richness (S). When
q=1, 1D is the number of typical or common species in the
community and is equal to the exponential of Shannon
entropy. When q=2, 2D is more sensitive to species with high
abundance, and is equal to the inverse of the Simpson index.
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Generally, qD is the diversity of a community with x=qD equally
abundant species.

Beta-diversity can be defined with the multiplicative
partitioning of Hill numbers (Chao et al., 2012, 2014; Ellison,
2010; Gotelli & Chao, 2013; Jost, 2007), as follows:

q
Dβ =

q
Dγ /

q
Dα (3)

where, qDα and qDγ are the alpha and gamma diversities in
terms of Hill numbers, respectively. As qDγ is equivalent to the
alpha diversity of the meta-community, it has the same
definition as alpha-diversity (Eqn. (1)). Chao et al. (2012,
2014) defined a series of Hill numbers corresponding to
different diversity orders (q) as the diversity profile. In this
study, the diversity or Hill numbers were computed until the
third order, q=3.

According to Ma (2018a), we used the power law (PL) DAR
model and power-law with exponential cutoff (PLEC) model as
the DAR models for the human vaginal microbiome. The PL
model is:

q
D = cAz (4)

where, qD is diversity measured in Hill numbers of the q-th
order, A is the area (number of individuals), and c & z are the
PL parameters.

The PLEC model is:
q
D = cAzexp(dA ), (5)

where, d is a third parameter that is usually less than zero in
DAR modeling, and exp(dA) is then the exponential decay
item that eventually overwhelms the power law behavior when
A is sufficiently large.

To simplify parameter estimation, we transformed non-linear
Equations (4) and (5) into log-linear regression equations:

ln(D ) = ln(c ) + zln( A ) (6)
ln(D ) = ln(c ) + zln( A ) + dA (7)

In Eqn. (6), z is the slope of the log-linear transformed PL
model, which is equivalent to its interpretation in the traditional
SAR—ratio of diversity accrual rate to area increase rate.
Parameter c of the PL model can be viewed as the number of
species equivalent to diversity in the first unit of area to
accrue. Thus, the accrual order of area unit may influence
parameter c. To deal with this technical issue, the units
(individuals/samples) to be accumulated were randomly
permutated each time the DAR model was built. For each
dataset, we repeatedly applied DAR modeling 100 times by
randomly re-ordering all samples in the dataset. For the
detailed computational procedure, please refer to Ma (2018a).

Similar to the diversity profile concept of Chao et al. (2012,
2014), which is a series of Hill numbers corresponding to
different diversity orders (q), Ma (2018a) and Ma & Li (2018)
proposed four DAR-based profiles, including the DAR, PDO,
MAD, and LRD/LGD profiles. These four profiles can be
quantitatively characterized by parameters from the PL/PLEC
DAR models and can be used to sketch out biogeography
maps of the human microbiome or other ecological
communities.

The DAR profile was defined as a series of z-values
(scaling parameter) of the PL-DAR model (Eqns. 4 & 6), i.e., a
series of z-values corresponding to different diversity orders
(q) or z-q trends.

The PDO profile was defined as:
g = 2–2z (8)

where, z is the scaling parameter of the PL-DAR model, i.e.,
the PDO profile is a series of g (q) values corresponding to
different diversity orders (q), computed with Eqn. (8).

The MAD profile was defined as a series of MAD or qDmax

values, corresponding to different diversity orders (q):

q
Dmax = c (– z

d )
z

exp(–z ) = cAz
maxexp(–z ) (9)

where, Amax = –z/d is the number of individuals (samples)
needed to reach the MAD, and c and z are parameters of the
PLEC-DAR model (Eqns. (5) & (7)).

The RIP profile was defined as a series of RIP values
corresponding to different diversity orders (q), as specified by
the following equation:

q
RIP =

q
c/

q
D (10)

where, c is a parameter of the PL-DAR model and D is the
diversity in Hill numbers estimated with the PLEC-DAR model
(Eqns. (5) & (7)). Based on the above RIP definition, a RIP
profile can be defined for a population (cohort) of any size. In
practice, using qDmax for qD is more convenient, i.e.:

q
RIP =

q
c/

q
Dmax . (11)

The RIP parameter assesses the average level of an
individual to represent a population (or cohort) from which the
individual is a member. The RIP profile is also known as the
LRD (local-to-regional diversity) or LGD (local-to-global
diversity) profile in other ecological systems beyond the
human microbiome (Ma & Li, 2018; Ma, 2019).

We built two DAR models for the vaginal microbiome,
including the PL and PLEC models for alpha-diversity and
beta-diversity scaling, respectively. The results are listed in
Tables 1 and 2, including the diversity order (q) of Hill
numbers, mean model parameters (z, ln(c), d, g, Dmax) and
their standard errors, and measures (correlation coefficient R
& P-value) for goodness-of-fitting. N represented the number
of successful fittings out of 100 p re-samplings, as explained
previously. Re-sampling was performed to deal with the
possible influence of the order of diversity accrual (i.e., order
in which the samples were accrued for building the DAR
model) on model parameter c. Except for two cases of alpha-
DAR modeling at diversity order q=3, the fittings to the DAR
models were successful in all 100 re-samplings. Even in the
two exceptions, the success rates were 97% and 99%,
respectively. Therefore, the DAR models were considered
suitable for vaginal microbiome assessment, as also evident
by the R (linear correlation coefficient) and associated p
values, which indicated the goodness-of-fit of the DAR models.

Based on Table 1, we found the following in regard to alpha-
DAR scaling:

(1) As one of the most important parameters from the PL-
DAR model, the scaling parameter (z) at different diversity
orders (q) was z(q) = (0.807(0), 0.171(1), 0.110(2), 0.095(3)),
where z(q) represents the DAR profile according to previous
definition. The DAR profile characterizes the diversity scaling
across individuals (over space) comprehensively. Results also
showed that the scaling level differed at different orders. For
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example, scaling at diversity order q=0, which is equivalent to
the classic SAR law, was faster than that at q=1, 2, or 3, as

indicated by the monotonically decreasing z-value (see Figure
1A for alpha-DAR profile).

(2) The PDO profile was g(q)=(0.250(0), 0.874(1), 0.920(2),
0.931(3)). The PDO profile, which characterizes the overlap or
similarity between pair-wise individuals, showed the opposite
trend as the DAR profile, i.e., a monotonically increasing trend
(see Figure 1A for alpha-PDO profile).

(3) The MAD profile characterizes the theoretically maximal

accumulation of diversity across individuals. Here, regarding
the MAD profile, the PLEC model failed to produce Dmax at
diversity order q=0 because d>0, for which a maximum does
not exist. For the diversity orders q=1, 2, 3, the PLEC model
for alpha-diversity successfully generated Dmax, i. e., Dmax(q) =
(86.8(1), 34.4(2), 24.5(3)).

Table 1 Alpha-DAR models computed with 100 re-samplings for the vaginal microbiome

Diversity order
and statistics

q=0

q=1

q=2

q=3

Mean

SE

Min

Max

Mean

SE

Min

Max

Mean

SE

Min

Max

Mean

SE

Min

Max

Power law (PL)

z

0.807

0.031

0.738

0.880

0.171

0.039

0.085

0.276

0.110

0.047

0.013

0.246

0.095

0.054

–0.002

0.250

ln(c)

3.902

0.200

3.474

4.356

3.345

0.257

2.669

3.951

2.808

0.312

1.901

3.457

2.565

0.362

1.508

3.269

R

0.998

0.001

0.995

1.000

0.860

0.073

0.582

0.963

0.681

0.173

0.155

0.933

0.589

0.231

0.013

0.932

P-value

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.013

0.084

0.000

0.667

g

0.250

0.038

0.160

0.332

0.874

0.031

0.789

0.940

0.920

0.035

0.814

0.991

0.931

0.040

0.811

1.001

N

100

100

100

97

PL with exponential cutoff (PLEC)

z

0.778

0.062

0.642

0.948

0.291

0.074

0.083

0.488

0.229

0.080

0.023

0.448

0.209

0.088

–0.004

0.431

d

0.0001

0.0001

–0.0002

0.0004

–0.0004

0.0002

–0.0008

0.0001

–0.0004

0.0002

–0.0008

0.0002

–0.0004

0.0002

–0.0009

0.0003

ln(c)

4.019

0.313

3.201

4.683

2.861

0.374

1.820

3.831

2.328

0.411

1.162

3.225

2.109

0.447

0.890

3.112

R

0.999

0.001

0.995

1.000

0.930

0.044

0.782

0.990

0.829

0.107

0.443

0.974

0.770

0.157

0.061

0.971

P-value

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.001

0.014

0.000

0.138

N

100

100

100

99

Amax

N/A

667

530

507

Dmax

N/A

86.8

34.4

24.5

z, c & d: The parameters of PL- and/or PLEC-DAR models, in which z of PL-DAR model is the scaling parameter, and c can be viewed as the

number of species equivalent to diversity in the first unit of area to accrue. g: The pair-wise diversity overlap. R: The correlation coefficient to judge

the goodness-of-fitting of PL or PLEC models. P-value: The parameter to judge the success or failure of the fitting of PL or PLEC models (P≤0.05

indicates successful model fitting). N: The number of successful fittings out of 100 re-samplings. Amax: The number of accrued individuals

corresponding to the maximal accrual diversity. Dmax: The maximal accrual diversity. SE: Standard error. Min: Minimum. Max: Maximum. N/A: Not

available.

Figure 1 DAR profile (z-q) and PDO profile (g-q) of the vaginal microbiome

A: Alpha-diversity scaling; B: Beta-diversity scaling.
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From Table 2, we found the following in regard to beta-DAR
scaling:

(1) As one of the most important parameters of the PL-DAR
model, the beta-diversity scaling parameter (z) at different
diversity orders (q) was z(q) = (0.805(0), 0.176(1), 0.146(2),
0.166(3)), where z(q) represents the DAR profile according to
previous definition and characterizes diversity scaling across
individuals (over space) comprehensively (see Figure 1B for
beta-DAR profile). Comparison between the beta-DAR and
alpha-DAR profiles revealed an interesting phenomenon: i.e.,
the alpha-DAR profile monotonically decreased with q,
whereas the beta-DAR profile was valley-shaped. This
suggests that, at a lower diversity order (q), the alpha-DAR
and beta-DAR scaling parameters (z) were rather close to
each other, but the difference was enlarged at higher diversity
orders (q).

(2) The beta-PDO profile was g(q) = (0.253(0), 0.870(1),
0.893(2), 0.877(3)) for beta-diversity scaling. Here, the PDO
profile, which characterizes the overlap or similarity between
pair-wise individuals, showed the opposite trend to the DAR
profile, i.e., a bell-shaped trend (see Figure 1B for beta-PDO
profile).

(3) The MAD profile characterizes the theoretical maximal
accumulation of diversity across individuals. Here, regarding
the beta-MAD profile, the PLEC model failed to produce Dmax

at diversity order q=0 because d>0, for which a maximum

does not exist. For diversity orders q=1, 2, 3, the PLEC model
for beta-diversity successfully generated Dmax, i. e., Dmax(q) =
(15.5(1), 17.3(2), 21.3(3)).

Table 3 shows the RIP values for both alpha-DAR and beta-
DAR of the vaginal microbiome. At diversity order q=0, the
estimation of 0Dmax failed, and RIP for q=0 could not be
estimated. For q=1, 2, 3, RIP was successfully estimated for
alpha- and beta-diversity, respectively. Here, RIP
characterized the relationship between individual- and
population-level diversity. For example, at diversity order q=1,
alpha-RIP=0.327 and beta-RIP=0.316, indicating that an
average individual represented approximately 33% and 32%
of population alpha- and beta-diversity, respectively.

In the current study, we investigated the diversity (including
alpha- and beta-diversity) scaling of the human vaginal
microbiome across individuals by re-analyzing a big dataset

Table 3 Ratio of individual-level to population-level diversity

(RIP) of the vaginal microbiome

Diversity order

q=0

q=1

q=2

q=3

RIP for alpha-DAR

N/A

0.327

0.482

0.530

RIP for beta-DAR

N/A

0.316

0.383

0.335

N/A: Not available.

Table 2 Beta-DAR models computed with 100 re-samplings for the vaginal microbiome

Diversity order
and statistics

q=0

q=1

q=2

q=3

Mean

SE

Min

Max

Mean

SE

Min

Max

Mean

SE

Min

Max

Mean

SE

Min

Max

Power law (PL)

z

0.805

0.010

0.782

0.826

0.176

0.031

0.104

0.255

0.146

0.050

0.017

0.274

0.166

0.062

0.021

0.339

ln(c)

–0.070

0.065

–0.217

0.070

1.591

0.208

1.047

2.093

1.890

0.333

1.026

2.730

1.963

0.421

0.798

2.917

R

1.000

0.000

0.999

1.000

0.884

0.059

0.686

0.974

0.734

0.178

0.106

0.978

0.711

0.200

0.108

0.972

P-value

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.001

0.000

0.000

0.000

0.000

g

0.253

0.012

0.228

0.280

0.870

0.024

0.807

0.925

0.893

0.038

0.791

0.988

0.877

0.049

0.735

0.986

N

100

100

100

100

PL with exponential cutoff (PLEC)

z

0.770

0.016

0.722

0.812

0.298

0.041

0.215

0.435

0.291

0.076

0.102

0.525

0.330

0.103

0.069

0.591

d

0.00012

0.00004

–0.00002

0.00022

–0.00043

0.00011

–0.00076

–0.00022

–0.00052

0.00024

–0.00124

–0.00002

–0.00058

0.00035

–0.00149

0.00016

ln(c)

0.070

0.078

–0.131

0.313

1.092

0.219

0.449

1.570

1.295

0.368

0.227

2.356

1.293

0.468

0.115

2.663

R

1.000

0.000

1.000

1.000

0.952

0.034

0.829

0.994

0.867

0.111

0.335

0.987

0.850

0.129

0.203

0.980

P-value

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

N

100

100

100

100

Amax

N/A

687

563

566

Dmax

N/A

15.5

17.3

21.3

z, c & d: The parameters of PL- and/or PLEC-DAR models, in which z of PL-DAR model is the scaling parameter, and c can be viewed as the

number of species equivalent to diversity in the first unit of area to accrue. g: The pair-wise diversity overlap. R: The correlation coefficient to judge

the goodness-of-fitting of PL or PLEC models. P-value: The parameter to judge the success or failure of the fitting of PL or PLEC models (P≤0.05

indicates successful model fitting). N: The number of successful fittings out of 100 re-samplings. Amax: The number of accrued individuals

corresponding to the maximal accrual diversity. Dmax: The maximal accrual diversity. SE: Standard error. Min: Minimum. Max: Maximum. N/A: Not

available.
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originally published by Doyle et al. (2018). Compared with the
microbial SAR range reported in existing literature for other
microbes, such as Green & Bohannan’s (2006) range
between 0.019–0.470, the scaling parameter (z) estimated in
our study, i.e., alpha-z=0.807, beta-z=0.805, appears to be out
of the known range, at nearly twice that reported for SAR
values for other microbes. Three possibilities exist for the
significant difference: (1) The use of revolutionary
metagenomic sequencing technology, which allows for
detection of more microbial species and consequently large
scaling parameter; (2) The human vaginal microbiome has
higher heterogeneity across individuals, which could be
validated by future biomedical studies; and (3) The
postpartum nature of the vaginal microbiome samples
analyzed in this study. We could not exclude these
possibilities at present due to insufficient available data for
comparative research. Indeed, previous studies have
classified human vaginal microbiomes into five main
community-state types (CSTs), in which CST I, II, III, and V
are dominated by Lactobacillus spp., and CST IV is composed
of facultative or strictly anaerobic bacteria (Gajer et al., 2012;
Ravel et al., 2011), many of which are BV-related. The vaginal
microbial communities of postpartum women in rural Malawi
studied by Doyle et al. (2018) and reanalyzed here were
mostly Lactobacillus-deficient microbiomes, which could be
grouped as CST IV, although all these women were healthy.
Therefore, the classification of CSTs may be more complex
than initially conceived. Consequently, our DAR analysis
based on Doyle et al. (2018) may be limited by the datasets of
postpartum women, and the DAR parameters of the vaginal
microbiomes of other CST women are likely different from the
results reported here. Further studies should be performed to
clarify this important issue.

The major findings in this study can be summarized using
four profiles: i. e., DAR profile, characterizing the change
(scaling) in diversity heterogeneity across individuals; PDO
profile, characterizing the pair-wise similarity (overlap)
between individuals; MAD profile, characterizing the maximal
accrual diversity in a population; and RIP profile,
characterizing the ratio of individual-level diversity to
population-level diversity. Theoretically, the four profiles can
together summarize the essential characteristics of the spatial
distribution of vaginal microbial diversity and offer effective
tools to sketch out the biogeographic maps of the human
vaginal microbiome. Practically, they are essentially
quantitative metrics of diversity heterogeneity across
individuals from different dimensions (diversity scaling, pair-
wise similarity in diversity, maximal accrual diversity, ratio of
individual to population diversity). These multidimensional
metrics could provide more comprehensive tools for
understanding the implications of vaginal microbial diversity to
women’s health, including the DSR hypothesis for BV etiology
(Ma et al., 2012, Ma & Ellison 2018, 2019 Sobel, 1999). In
addition, the quantitative models of the four profiles obtained
here could be harnessed to assess and predict microbiome
diversity changes at the population scale and are of potential
significance for evaluating women’s health associated with

vaginal microbiomes.
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