
Zoological Research 40(5): 349-357, 2019Science Press

ZOOLOGICAL RESEARCH

Stem cell therapy for Parkinson’s disease using non-
human primate models

Zhen-Zhen Chen1,2, Yu-Yu Niu2,*

1 Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming Yunnan 650500, China
2 Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming Yunnan 650500, China

ABSTRACT

Stem cell therapy (SCT) for Parkinson's disease
(PD) has received considerable attention in recent
years. Non-human primate (NHP) models of PD
have played an instrumental role in the safety and
efficacy of emerging PD therapies and facilitated the
translation of initiatives for human patients. NHP
models of PD include primates with 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) -induced
parkinsonism, who are responsive to dopamine
replacement therapies, similar to human PD
patients. Extensive research in SCT has been
conducted to better treat the progressive
dopaminergic neurodegeneration that underlies PD.
For effective application of SCT in PD, however, a
number of basic parameters still need to be tested
and optimized in NHP models, including preparation
and storage of cells for engraftment, methods of
transplantation, choice of target sites, and timelines
for recovery. In this review, we discuss the current
status of NHP models of PD in stem cell research.
We also analyze the advances and remaining
challenges for successful clinical translation of SCT
for this persistent disease.
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INTRODUCTION

Parkinson's disease (PD) is a common neurodegenerative
disorder that results from progressive loss of dopaminergic
(DA) neurons in the substantia nigra of the midbrain. This loss
is associated with characteristic motor dysfunction, including
bradykinesia, rigidity, and rest tremor. The molecular hallmark
of PD is the presence of Lewy bodies (LBs) composed of the
alpha-synuclein (α-syn) protein in the substantia nigra and
cortical regions of the brain (Dauer & Przedborski, 2003).
Treatment with the dopamine precursor levodopa can improve
symptoms, but does not prevent DA neuron destruction (Kim
et al., 2002). Although no cure is currently available, cell-
based therapy (CBT) (in which cellular material, usually intact,
living cells such as T cells capable of fighting cancer via cell-
mediated immunity, is injected into the patient during
immunotherapy) is considered one of the most promising
methods for eradicating PD (Sonntag et al., 2018). Currently,
stem cells are among the best cell sources for CBT.

Pioneering studies on the application of CBT in rodent
models provided invaluable information on neuronal survival,
migration, and post-grafting integration (Kim et al., 2013).
Nevertheless, clinical translation of CBT for PD requires
further investigation and evaluation in different species.
Experiments in NHP models are ideally suited for such
exceptional and invasive brain therapy (Didier et al., 2016).

Stem cells have the capacity to proliferate and differentiate
into multiple cellular lineages, offering an enormous pool of
resources for therapeutic applications such as autologous
stem cell transplants (Drouin-Ouellet, 2014). Using stem cells
to treat neurodegenerative diseases has become an area of
intense interest. Current clinical applications of stem cells
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have targeted Alzheimer's disease (Kwak et al., 2018), PD
(Parmar, 2018), amyotrophic lateral sclerosis (Robinson,
2018), and multiple sclerosis (Shirani & Stuve, 2018), and are
predicted to increase in coming years. Furthermore, SCT has
been proposed to counteract the characteristic massive loss
in DA neurons observed in PD (Chiu & Hall, 2006).

Since the first clinical trials in the late 1980s using fetal
midbrain tissue to replace lost DA neurons, hundreds of
patients worldwide have been subjected to neural fetal tissue
grafting, with many showing long-term graft survival, good
clinical outcomes, and physiological release of dopamine over
decades (Barker et al., 2017). Furthermore, the derivation of
human embryonic stem cells (hESCs) (Thomson et al., 1998)
provided a new scalable cell source for stem cell therapy
(SCT), which may potentially replace fetal tissue. However,
the road to clinical application of these cells has proven to be
long, involving a number of key steps such as gaining control
over cell subtype differentiation, producing safe and
efficacious cells, adhering to good manufacturing regulations,
scaling-up production processes, and obtaining regulatory
approval of the final cell products.

Although CBT is the most promising treatment for a variety
of neurodegenerative diseases, animal experiments remain
limited. NHPs exhibit great similarity to humans in regard to
genetics, brain/cognitive function and development, organs,
metabolism, and drug susceptibility (Zhang et al., 2014).
Therefore, experimental results from NHP-based studies are
critical and convincing.

Since the early 1980s, scientists have relied on NHP
models to assess the potential benefits of CBT for PD
(Cowen, 1986). Compared to rodents, PD-relevant behavioral
outcomes, such as fine motor skills, can be easily tested in
NHPs (Camus et al., 2015). Clinically relevant behavioral
parameters are critical for evaluating the efficacy of
therapeutic strategies, such as the choice of intracerebral
grafting targets (Bentlage et al., 1999; Kauhausen et al., 2015;
Thompson et al., 2010). NHPs and humans show similar
organization of the neo-striatum, with the caudate nucleus and
putamen clearly delineated by white matter tracts of the
internal capsule (Howson et al., 2019). In contrast, in rodents,
the transecting white matter tracts of the internal capsule are
broken into bundles (pencils of Willis) that perforate the entire
striatum without presenting a distinct physical barrier for cell
distribution (Coizet et al., 2017). Thus, NHP models have
facilitated CBT progress toward clinical application.

Humans and NHPs possess similar behavioral elements,
physiology, anatomy, biochemistry, organ mechanisms, and
immune functions (Vierboom et al., 2012). Therefore, NHP
models enable the translation of therapy-focused research
from small animals to humans. In particular, NHP models of
human disease provide exceptional opportunities to advance
SCT by addressing pertinent translational concerns
associated with this research, including the application of
autologous/allogeneic-induced pluripotent stem cell (iPSC)-
derived cellular products, immune responsivity, clinical
delivery techniques, and evaluation of candidate cell line
profiles following transplantation (Wang et al., 2017; Wei et

al., 2016). Furthermore, NHP models offer unique possibilities
to evaluate the complexity of the biochemical, physiological,
behavioral, and imaging end points relevant to current human
conditions (Koprich et al., 2017).

Given the ethical concerns, expense of specialized
equipment, and necessity of highly trained staff, the value of
using NHPs must be carefully assessed. Well-designed and
less resource-demanding studies in small animal models,
such as rodents, are essential for ultimately translating NHP
model research into human patient therapy. Each disease-
specific research community should focus on developing
relevant NHP models that advance the translation of stem cell
research and therapy.

In this review, we discuss the role of NHP models in
developing SCT for PD, stem cell types that can be used for
transplantation, and value of NHP studies in translating these
therapies for clinical application.

NHP MODELS OF PD FOR SCT RESEARCH

Neurotoxin-induced models
The most commonly used neurotoxins for generating models
of PD are 6-hydroxydopamine (6-OHDA) and 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP).

6-OHDA models
As a neurotoxic compound, 6-OHDA induces cell death via
oxidative stress after uptake by the catecholamine transport
system (Zhou & Cheng, 2019). 6-OHDA is commonly used in
rodents as they are much less sensitive to MPTP compared
with humans and NHPs. Although many researchers have
reported that 6-OHDA can cause cell death in vivo (Bernstein
et al., 2011; Tobón-Velasco et al., 2013), several studies have
found no markers of cell death upon treatment with this
compound (Kostrzewa, 2000), suggesting possible phenotype
loss. In the application of 6-OHDA for PD model development,
the severity of the resulting disease depends on the number,
size, and location (e. g., striatum, substantia nigra, or medial
forebrain bundle) of 6-OHDA injections (Emborg, 2004).
Eslamboli et al. (2003) applied nine striatal injections of 6-
OHDA to model PD in common marmoset monkeys; however,
due to the spontaneous recovery of symptoms 10 weeks after
surgery, Eslamboli et al. (2005) developed a new model using
18 unilateral intrastriatal injections.

One drawback of the above model is the numerous
intracerebral needle passages necessary for appropriate 6-
OHDA distribution to decrease the extent of spontaneous
recovery (Santana et al., 2015). As with other stereotaxic
procedures, this model requires surgical settings and trained
personnel to perform brain surgery and provide recovery care.

MPTP models
Administration of MPTP is a classic method for generating PD
due to the selective toxicity of this chemical toward DA
neurons (Jiang & Dickson, 2018; Lei et al., 2016; Li et al.,
2015a; Su et al., 2015). It is historically important in animal
models of PD and provides utility to test certain CBT
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parameters. After crossing the blood-brain barrier, MPTP is
transformed by monoamine oxidase B into its active
metabolite, 1-methyl-4-phenylpyridinium ion (MPP+), which is
then carried by dopamine transporters into DA neurons of the
substantia nigra pars compacta (SNpc), where the compound
blocks mitochondrial complex I activity (Huang et al., 2018).
Although it has limitations, MPTP treatment is the current
standard in NHPs. The discovery of this mechanism of action
in the 1990s paved the way for subsequent studies exploring
mitochondrial function in PD and provided a prominent animal
model of the disease (Emborg, 2017).

Pesticide/herbicide-induced modelsParaquat models
Paraquat is an important member of the bipyridylium family of
broad-spectrum herbicides and is commonly used to control
pests in important crops such as soybeans, sorghum, sugar
cane, cotton, and corn. It interferes with photosynthetic
electron transport and reduces oxygen to superoxide free
radicals, leading to membrane rupture and leaf desiccation
(Sarwar et al., 2015). Many countries have already banned
paraquat due to its acute pulmonary and cutaneous toxicity or
established restricted-use measures, such as limited
concentrations of the active ingredient in formulated products
and manipulation by licensed mixers and ground applicators
only (Kuo & Yu, 1991). In experimental models, paraquat has
been linked to the production of reactive oxygen species
(ROS), oxidative stress, and aggregation of α -syn proteins in
DA neurons (Kuter et al., 2007, 2010). However, the
mechanism used by paraquat to access DA neurons is not yet
fully understood (Vaccari et al., 2017; Zhou et al., 2017).

Rotenone models
As a mitochondrial toxin, rotenone can produce dose-
dependent systemic toxicity and mortality (Sanders &
Greenamyre, 2013). Following delivery of this compound (via
osmotic minipump), a proportion of animals becomes
parkinsonian, with different degrees of nigrostriatal lesions
(Perier et al., 2003). Furthermore, rotenone (2–3 mg/kg/day) is
reported to elicit selective nigrostriatal degeneration, generally
without nonspecific lesions (Trigo et al., 2018). For example,
Cicchetti et al. (2010) found that rotenone caused severe
digestive issues, with an enlarged stomach full of undigested
food, following systemic application. Although it was not
recognized as such, this may have been the first indication
that rotenone can reproduce the lesser-known gastrointestinal
symptoms of PD, such as gastroparesis (Johnson et al.,
2018). Indeed, Bové & Perier (2012) reported that rotenone
accurately recapitulates the pathological and functional
features of parkinsonian gastrointestinal impairment.

Although the reasons for the discrepancies between
research results are uncertain, recent refinements of the
rotenone model have made it more reproducible and reduced
the number of nonspecific toxicities. Smirnova et al. (2016)
demonstrated that withdrawal of rotenone led to counter-
regulation of mir-7 and the ASS1, CTH, and SHTM2 genes,
suggesting a possible role of these genes in direct cellular
responses to this toxicant and the suitability of the model at

addressing the processes of resilience and recovery in
neurotoxicology and PD. Furthermore, Cimdins et al. (2019)
used rotenone, as a potent complex I-specific mitochondrial
inhibitor, to determine the neuroprotective effects of APP and
sAPPα in vitro, in neuronal cell lines over-expressing APP,
and in a retinal neuronal rotenone toxicity mouse model in
vivo. Overall, it is difficult to effectively model all aspects of a
complex, age-related human disease such as PD in rats.
Even genetically accurate models of PD have met limited
success in replicating key behavioral and pathological
features of the disease. Nevertheless, a great deal has been
learned–and remains to be discovered–about the pathogenic
mechanisms of PD using rotenone models of the disease.

Genetically engineered models
Genetic NHP PD models have been generated previously by
intracerebral injection of viral vectors encoding mutant α-syn
or administration of LB extracts (Marmion & Kordower, 2018).
Nigral overexpression of human wild type or mutant A53T α -
syn, induced by adeno-associated viral (AAV) vectors, has
been shown to induce PD-like motor symptoms, significant
nigral DA cell loss, and α -syn aggregates in common
marmoset monkeys (Eslamboli et al., 2007; Kirik et al., 2003).
AAV and lentiviral vectors encoding A53T α -syn have also
been used in cynomolgus (Koprich et al., 2016) and rhesus
monkeys (Yang et al., 2015). In both studies, expression of
A53T α-syn led to nigral cell loss and α-syn accumulation and
aggregation, though without behavioral changes.
Furthermore, while AAV-induced overexpression of A53T α -
syn and parkin, another PD-implicated protein, in cynomolgus
monkeys led to a decrease in striatal DA markers and α -syn
accumulation and phosphorylation, no PD motor symptoms
were observed (Recasens et al., 2014). Notably, nigral
injection of AAV expressing short hairpin RNA (shRNA) to
knock down α -syn in vervet monkeys induced a region-
specific decrease in tyrosine hydroxylase (TH) -positive nigral
cell number and striatal innervation compared to animals that
received scrambled shRNA, although no behavioral changes
were reported (Collier et al., 2016). Intracerebral inoculation
with α-syn fibrils has been extensively used in rodents, but not
yet in monkeys (Luk et al., 2012; Paumier et al., 2015). On the
other hand, cadaveric Lewy body extracts have been injected
into the striatum and nigra of cynomolgus monkeys with and
without previous treatment with MPTP (Recasens et al.,
2014), which induced a variable decrease in striatal and nigral
DA markers and an increase in α -syn expression, but no PD
motor symptoms. It should be noted that, with the exception of
AAV-mediated α -syn studies in marmosets, all investigations
on genetically produced models have been performed using
only a few subjects. Therefore, further characterization and
validation of such models is necessary before they can be
used as robust testing platforms for SCT.

Transgenic NHP models induced by injection of NHP
oocytes with lentiviral vectors encoding PD-relevant proteins
with mutations of interest have emerged in recent years. For
example, transgenic rhesus monkeys overexpressing mutant
A53T α-syn have been reported (Niu et al., 2015), with some
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behavioral deficits observed at 1.5–2.5 years of age. New
technologies such as CRISPR/Cas9-genomic editing also
present an opportunity to generate NHP models with PD-
associated mutations expressed at physiological levels, which
may help clarify the mechanism of disease onset, including
the development of motor and non-motor symptoms
(Handschel et al., 2011; Luol et al., 2016). These novel NHP
models may provide clues to better understand α -syn-related
disorders and enable the development of SCT to treat them.

STEM CELLS AS SOURCES FOR CBT

Embryonic stem cells
Embryonic stem cells (ESCs) have attracted considerable
attention as an alternative source for the generation of DA
neurons. Handschel et al. (2011) described a technique for
culturing ESCs in the absence of artificial scaffolds, which
generated mineralized micromasses. This technique made it
possible for ESCs to proliferate, which is a prerequisite for
CBT. Due to their pluripotency and highly proliferative
properties, ESCs can give rise to any type of cell in the body,
including DA neurons (Thomson et al., 1998), which can be
produced in sufficient numbers for transplantation therapy.
ESCs are associated with the risk of tumorigenesis due to
genomic instability in culture (Zhao et al., 2015), even if the
cells appear to fully differentiate into DA neurons in vitro
before transplantation (Luk et al., 2012). Myocyte enhancer
factor 2 (MEF2C) directs the differentiation of mouse ESC-
derived neural precursors into neurons (Skerjanc & Wilton,
2000). Furthermore, MEF2C confines hESCs to the neuronal
lineage, which can be used to generate neurons and avoid
tumor formation for use in SCT (Eslamboli et al., 2005).
Human and rodent ESC-derived DA neurons have been
shown to survive transplantation into the striatum of
parkinsonian NHPs and generate a degree of functional
recovery (Hayashi et al., 2013).

Nevertheless, studies have shown that the survival of ESC-
derived DA neurons post transplantation is relatively low. Li et
al. (2017) demonstrated that hESCs differentiated into DA
neurons when co-cultured with PA6 cells, with almost 92% of
hESC colonies containing cells positive for TH, a critical
catecholaminergic enzyme, after three weeks of differentiation.

Two potential drawbacks may limit the therapeutic
application of ESCs. First, the generation of hESCs requires
fertilized eggs from donors and the destruction of early
embryos, which raises a plethora of ethical and legal
concerns. Second, hESC-derived grafts are allogeneic to
recipient patients, thus making immuno-suppressive regimens
necessary (Leng & Tian, 2016). Despite these limitations,
hESCs are currently the "gold standard" of SCT for PD, and
hESC-derived midbrain DA (mDA) neurons are currently being
developed for clinical trials in the USA and Europe (Kern et
al., 2018; Weick et al., 2011). Chinese scientists have also
initiated clinical trials of ESC-based therapy for PD
(Cyranoski, 2017).

Induced pluripotent stem cells (iPSCs)
iPSCs are adult somatic cells that are converted into
pluripotent cells via the introduction of specific transcription
factors found in normal PSCs. The cells can be differentiated
into most somatic cell types and are self-renewable (Zhang et
al., 2019). As recently as five years ago, direct therapeutic
treatment of PD through transplantation of iPSCs was not
feasible. Transplantation faced many problems such as low
efficiency, virus requirements, and teratoma development (Li
et al., 2015b). Attempts to use xenogeneic materials resulted
in contamination by animal-source pathogens, which can
cause an immune response after transplantation in humans
(Bergstrom et al., 2011). However, researchers have since
developed a xeno-free medium alongside a feeder-free
culture system and cre-mediated excision of reprogramming
factors to obtain transgene-free iPSCs with improved
efficiency (0.15%–0.3%) (Lu et al., 2014). Although more
testing is needed, especially in animal models, these results
suggest that iPSCs are more viable than previously thought
from an efficacy standpoint (Li et al., 2015b).

Recent progress in clinical treatment shows promise in
animal models of PD. For example, Han et al. (2015) found
that human iPSCs transplanted into 6-OHDA-induced
parkinsonian rats improved functional "rotational asymmetry"
defects several weeks after transplantation. In another study,
iPSC-derived DA neurons were transplanted into parkinsonian
cynomolgus monkeys and survived for two years over the
length of the study; in addition, the transplanted DA neurons
reinnervated the host brains, grew into the putamen, and
showed long-term viability (Hallett et al., 2015). Although the
results were only positive for one of the three tested monkeys,
the study demonstrated that iPSC-derived DA neurons can be
used for transplantation with long-term improvement in motor
function without immunosuppression (Hallett et al., 2015).

Kikuchi et al. (2017) transplanted neurons derived from
iPSCs into NHP brains and found that symptoms improved
significantly after two years of tracking the monkeys. Morizane
et al. (2017) also transplanted grafted DA neurons induced by
cynomolgus iPSCs into allogeneic NHP PD models. Different
from Kikuchi et al. (2017), who used FK506 (immune inhibitor)
to reduce immune rejection, Morizane et al. (2017) used major
histocompatibility complex (MHC) -matched allogeneic neural
cell grafting in the brain, which is considered a less immune-
responsive tissue, using iPSCs derived from MHC
homozygous cynomolgus macaques. Furthermore,
immunohistological analyses revealed that MHC-matching
reduced the immune response by suppressing the
accumulation of microglia (Iba-1+) and lymphocytes (CD45+)
in the grafts (Morizane et al., 2017). These studies have made
great contributions to cell transplantation.

Mesenchymal stem cells
Therapeutic stem cell studies have often utilized multipotent
mesenchymal stem cells (MSCs) rather than ESCs, the use of
which poses ethical concerns. Bone marrow, umbilical cord
blood, and adult adipose-derived stromal tissue have been
used as sources of MSCs for autologous grafts (Fallahi et al.,
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2007; Park et al., 2015).
Using human umbilical MSCs, Wang et al. (2011) showed

the potential of this approach for PD treatment. Specifically,
human MSCs isolated from Wharton's jelly of the umbilical
cord were induced to transform into DA neurons in vitro
through stepwise culturing in neuron-conditioned medium,
resulting in a 12.7% success rate, as characterized by positive
staining for TH and dopamine released into the culture
medium. When these cells were transplanted into the striatum
of parkinsonian rats (induced by unilateral striatal lesioning
with 6-OHDA), the transplantation partially corrected lesion-
induced amphetamine-induced rotation, with the cells showing
viability for at least four months. Furthermore, Wang (2011)
also found MSCs showed protective effects on progressive DA
neural loss in vitro and in vivo. Treatment decreased MG-132-
induced DA neuronal loss with a significant reduction in
caspase-3 activity. Subsequently, application of hMSCs in MG-
132-treated rats dramatically reduced the decline in the
number of TH-immunoreactive cells, with an almost 50%
increase in the survival of these cells in the substantia nigra
(Wang et al., 2011). Furthermore, hMSC treatment
significantly decreased OX-6 immunoreactivity and caspase-3
activity (Park et al., 2015). While MSC transplantation may be
effective in modulating the immune response in
neurodegenerative diseases, it is highly unlikely that MSC-
derived neurons will ever be used for cell replacement therapy
(Xu et al., 2012). Treatment with MSCs suppresses
autoimmunity and restores salivary gland secretory function in
both mouse models and Sjogren syndrome patients (Xu et al.,
2012). MSC treatment directs T cells toward Treg and Th2,
while suppressing Th17 and Tfh responses, and can alleviate
disease symptoms (Xu et al., 2012). Collectively, the
immunological regulatory functions of MSCs play an important
role in Sjogren syndrome pathogenesis, and allogeneic MSC
treatment may provide a novel, effective, and safe therapy for
patients with this syndrome.

Neural stem cells
Neural stem cells (NSCs) are multipotent cells capable of
differentiating into both neurons and glial cells. By using a
monkey model, a group reported that the engrafted newborn
neurons could functionally integrate into the host neuronal
network, and this had proved that transplantation of NSCs
may be a valid way for curing brain injuries (Wang et al., 2017;
Wei et al., 2017). There are two ways to obtain human NSCs
(hNSCs), i. e., directly from the brain (Abe et al., 2016) and
differentiated from other cells, including stem (Kim et al.,
2004) and somatic cells (Ai et al., 2016). Bjugstad et al.
(2005) transplanted hNSCs into the caudate and substantia
nigra of MPTP-induced PD monkeys and concluded that
hNSCs may be beneficial for maintaining a normal
environment. Their research group also analyzed the
differentiation and migration ratio of hNSCs transplanted into
the body (Bjugstad et al., 2008; Kern et al., 2011). These
studies provide an important basis for the clinical application
of hNSCs.

Recent studies have indicated that certain NSCs persist in

the adult nervous system and are capable of regenerating
new neurons (Bacigaluppi et al., 2016; L'episcopo et al.,
2018). Compared with pluripotent stem cells, multipotent
NSCs exhibit higher cellular survival rates and lower risk of
teratoma formation (Pardal & Barneo, 2012). In addition to the
fetal isolation of NSCs, these cells can be obtained from areas
of the adult brain, including the subventricular zone,
subgranular zone, and hippocampus (Wang et al., 2012).
Acquisition of NSCs from non-fetal sources avoids the ethical
issues associated with the use of ESCs. Because NSCs can
self-renew and differentiate into many types of neurons,
including those that are dysfunctional in neurodegenerative
diseases, their potential use in the treatment of patients with
PD is promising (Choi et al., 2017).

FUTURE DIRECTIONS OF NHP-ENABLED SCT

RESEARCH

NHPs are similar to humans in size, behavior, physiology,
biochemistry, and immune functions (Vierboom et al., 2012;
Zhang et al., 2014). Due to their many advantages, NHP
models of PD can compensate for the deficiencies in SCT
clinical trials of PD and provide vital information unavailable
from rodent models, such as cellular migration, survival, and
differentiation after transplantation, choice of target sites, and
timelines of recovery (Vermilyea & Emborg, 2018). To date,
however, all NHP-based studies on CBT for PD have been
performed in neurotoxin-induced PD models. Validating state-
of-the-art, recently available genetic models are anticipated to
facilitate the development of SCT for PD and its clinical
translation.

Different types of stem cells, including ESCs, NSCs, MSCs,
and iPSCs, can be used for specific cellular therapeutic
approaches. Multiple factors can differentiate these cells into
DA neurons, which can be used to replace damaged neurons
in PD patients. Methods for inducing differentiation depend
upon the type of stem cell. Furthermore, risks such as tumor
formation remain after transferring DA cells into PD patients.
ESCs and iPSCs have advantages over the other two stem
cell types. For example, ESCs remain highly proliferative in
vivo and can survive and generate DA neurons after
transplantation. In turn, iPSCs can generate unlimited, PD
patient-specific cells, and produce a degree of functional host
recovery after transplantation (Morizane et al., 2017).

Graft distribution could also benefit from NHP-based studies
and noninvasive imaging approaches. For example, Silvestrini
et al. (2015) used real-time intraoperative magnetic resonance
imaging (MRI) to monitor cell transplantation into a swine and
cadaveric human head for possible application in the human
brain. Furthermore, Malloy et al. (2017) used an MRI-
compatible delivery system to monitor the distribution of cells
pre-labeled with a contrast agent into the basal ganglia of a
baboon. These new MRI-based imaging methods can
increase the safety and accuracy of grafting procedures and
facilitate the evaluation of different target sites.

In addition to the challenges mentioned above, many
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questions remain to be answered in order to improve effective
SCT for PD. For example, the influence of cell preparation and
storage on engraftment, method of transplantation, choice of
target sites, and timelines of recovery are basic parameters
that still require evaluation in NHP models to improve SCT for
PD and its translation into clinical treatment.
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