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Current understanding on the roles of gut microbiota in
fish disease and immunity

Intensive aquaculture has increased the severity and frequency
of fish diseases. Given the functional importance of gut
microbiota in various facets of host physiology, modulation
of this microbiota is a feasible strategy to mitigate emerging
diseases in aquaculture. To achieve this, a fundamental
understanding of the interplay among fish health, microbiota,
and invading pathogens is required. This commentary focuses
on current knowledge regarding the associations between fish
diseases, dysbiosis of gut microbiota, and immune responses.
Furthermore, updated research on fish disease from an
ecological perspective is discussed, including colonization
resistance imposed by commensals and strategies used by
pathogens to overcome resistance. We also propose several
directions for future research, such as exploration of the
causal links between fish diseases and specific taxa, and
identification of universal gut microbial biomarkers for rapid
disease diagnosis.

Fish aquaculture is the fastest growing animal food sector
to support the growing human population, with a year-on-year
growth rate of 10.4% (FAO, 2013). However, fish production is
threatened by numerous diseases (Lafferty et al., 2015). This
is particularly pertinent to aquacultural systems that impose
various stressors on aquatic animals (Lafferty et al., 2015;
Li et al., 2017a). Traditionally, antibiotics have been widely
applied to prevent and treat diseases in aquacultures. However,
antibiotic abuse has been highlighted in the transfer of
resistance genes among pathogens, and has raised concerns
regarding environmental pollution and consumer safety (Brandt
et al., 2015). In recent years, the introduction of probiotics
has been considered a sustainable strategy to improve fish
health and protect them from emerging diseases (de Bruijn et
al., 2017). Despite the extensive list of candidate probiotics
investigated in previous studies (Dawood et al., 2016; Liu et al.,
2018; Ramesh et al., 2017), successful application has been
limited, as reported in a survey of farmers (Xiong et al., 2016).
The lack of consistency in probiotic performance may be due
to unsuccessful colonization as a result of sudden changes in
habitats, e.g., from aerobic culture conditions to the anaerobic
intestines (Giatsis et al., 2016). In addition, the fish gut is a
main pathogen transmission route and a portal of entry (de
Bruijn et al., 2017; Li et al., 2017a; Ringø et al., 2007; Zhang
et al., 2015). Therefore, understanding the factors that dictate

the invasion of pathogens and establishment of probiotics in
the intestine will provide an initial step towards predicting and
treating fish diseases.

Gut microbiota can affect fish physiology, development, life
span, immunity, and barriers against pathogens (Burns et al.,
2016; Nie et al., 2017; Smith et al., 2017; Yan et al., 2016).
Therefore, the gut microbiota plays an indispensable role in fish
fitness. Several recent reviews have centered on the diversity
and functions of bacterial communities in healthy fish (de Bruijn
et al., 2017), as well as on the external factors that affect fish
gut microbiota (Wang et al., 2017) and interactions between
gut microbiota and innate immunity in fish (Gómez & Balcázar,
2008; Nie et al., 2017). However, most previous studies have
focused on factors that govern healthy gut microbiota, such as
diet, rearing conditions, and fish genotype (Schmidt et al., 2015;
Sullam et al., 2012; Yan et al., 2016). In contrast, few studies
have reported on the interplay among gut microbiota, fish
immunity, and disease (Nie et al., 2017). In this commentary,
we summarize current knowledge on the associations between
fish immunity, gut microbiota, and invading intestinal pathogens.
We also highlight recent progress in uncovering the ecological
processes of fish diseases.

According to the diversity resistance hypothesis, a more
diverse microbial community harbors greater probability of
having a species with an antagonistic trait toward an invader
or pathogen (Fargione & Tilman, 2005). Consistent with
this assertion, higher alpha diversity (mean species diversity
at the habitat level) is frequently detected in healthy fish
compared with diseased fish, such as largemouth bronze
gudgeon (Coreius guichenoti) (Li et al., 2016), crucian carp
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(Carassius auratus) (Li et al., 2017a), and ayu (Plecoglossus
altivelis) (Nie et al., 2017). One possible explanation for this
pattern is that the invading pathogens out-compete the gut
commensals, thereby reducing diversity. Similarly, gnotobiotic
zebrafish (Danio rerio Hamilton, 1822) have been shown to be
more sensitive to pathogenic infections (Oyarbide et al., 2015).
In addition, antibiotic administration generally reduces diversity
of the gut microbiota, which, in turn, facilitates colonization by
external pathogens (He et al., 2017). Indeed, gut microbial
diversity has been used as a biomarker of fish health and
metabolic capacity (Clarke et al., 2014), with low diversity
and stability of the microbiota closely associated with fish
disease (He et al., 2017; Li et al., 2017a; Nie et al., 2017). A
preponderance of evidence has demonstrated that more diverse
gut communities exert greater protective effects on the host (De
Schryver & Vadstein, 2014; Johnson et al., 2008; Zhu et al., 2016).
In this regard, gut microbial diversity in fish should be maximized
to reduce pathogenic invasions in aquaculture systems.

Fish are in continual contact with a complex and dynamic
planktonic microbiota. Therefore, it is expected that gut
microbiota in fish will be largely affected by microbes in
the environment. This has been demonstrated by the high
similarity between water and gut microbiotas of Atlantic cod
larvae (Gadus morhua) (Bakke et al., 2013), rainbow trout
(Oncorhynchus mykiss) (Wong et al., 2013), and tilapia larvae
(Giatsis et al., 2015). Based on the co-evolution theory,
however, to improve host fitness, mutualistic relationships
between fish and gut microbiota should be tightly regulated to
ensure suitable bacterial colonization (McFall-Ngai et al., 2013).
As a result, gut bacterial communities between recently caught
and domesticated fish share similar community structures
(Roeselers et al., 2011). Intriguingly, reciprocal gut microbiota
transplants between zebrafish and mice have shown that the
relative abundance of lineages changes to resemble normal gut
microbiota of the recipient host (Rawls et al., 2006). Similarly,
previous meta-analysis has revealed that host phylogeny
determines the composition of fish gut bacteria, even at the
bacterial phylum level (Sullam et al., 2012). For example, the
gut microbiota of largemouth bronze gudgeon is dominated by
phyla Proteobacteria, Actinobacteria, and Tenericutes (Li et al.,
2016), whereas Gammaproteobacteria, Alphaproteobacteria,
Firmicutes, and Bacteroides are predominant in the gut of ayu
(Nie et al., 2017). This pattern also holds true for different fish
species (herbivorous Ctenopharyngodon idellus, carnivorous
Siniperca chuatsi, and Silurus meridionalis) reared in the same
pond (Yan et al., 2016). Indeed, it has been suggested that
gut microbiotas of fish are distinct from those in rearing water
and/or sediment (Li et al., 2017a; Schmidt et al., 2015; Zhang et
al., 2018). However, this does not mean that the gut microbiota
is temporally stable during the entire lifetime of the fish;
rather, gut bacterial communities vary significantly during the
developmental stages in healthy fish (Li et al., 2017b; Stephens
et al., 2016; Yan et al., 2016; Zhang et al., 2018). This
high temporal pattern is largely contributed to by maturation
of the host (Burns et al., 2016; Zhang et al., 2018) as
selection of gut microbiota is reinforced with time. Intriguingly,

several species of fish exhibit core gut microbiota, including
zebrafish (Roeselers et al., 2011), rainbow trout (Wong et al.,
2013), channel catfish (Ictalurus punctatus), largemouth bass
(Micropterus salmoides), and bluegill (Lepomis macrochirus)
(Larsen et al., 2014), though location-dependent variations in
gut microbiota also exist. These core lineages may be used as
baselines for future probiotic trials.

It is worth emphasizing, however, that the tight link between
fish and their gut microbiota can be disrupted by diverse
variables, with host disease being the primary factor (Li et
al., 2017a; Nie et al., 2017). Gut bacteria reside on mucosal
surfaces, which provide the first line of defense against
pathogens. Specifically, commensal bacteria compete for or
modify the ecological niche and available nutrients to inhibit
the colonization and proliferation of incoming pathogens in the
intestine (Kamada et al., 2013). For example, well-known
probiotic Bifidobacterium prevents pathogenic Escherichia
coli invasion via acidification of the intestinal environment
(interspecies barrier effect) (Fukuda et al., 2012). In addition,
gut commensals can produce bacteriocins and proteinaceous
toxins that specifically inhibit members of the same or similar
bacterial species (intraspecies barrier effect). Therefore,
susceptibility to pathogenic infection seems to rely, at least in
part, on the structure of the host’s gut microbial community
(Galindo-Villegas et al., 2012; He et al., 2017). Indeed,
dysbiosis in the gut microbiota is frequently associated with
fish disease (He et al., 2017; Nie et al., 2017). However, it is
currently unclear whether changes in the microbial community
are a cause or consequence of these diseases.

Responses of a community to disturbance (e.g., disease)
are not solely the sum of the traits of individual species
but are also dependent on interspecies interactions (Faust &
Raes, 2012; Zhu et al., 2016). Our recent work showed
that pathogenic infections have a significant impact on the
gut microbiota, with diseased ayu exhibiting less complex and
diverse interspecies interactions (Nie et al., 2017). Indeed,
interspecies interaction analysis has been applied to identify
candidate pathogens and/or probiotics in gut diseases (Buffie
et al., 2015; Dai et al., 2018). Furthermore, it is apparent
that populations, not clones, are the causal agents of some
aquaculture diseases (Hou et al., 2018; Lemire et al., 2015).
This idea overturned the traditional view that only a pathogen
and/or virulence gene result in disease (Falkow, 1988), and led
to the ‘ecological Koch’s postulates’, which aims to untangle the
interplay between host health, microbiota, invading pathogens,
and diseases (Vonaesch et al., 2018). However, current
understanding on the ecological processes that govern the
gut microbiota in fish is still in its infancy, and no consensus
has yet emerged. For example, it has been reported that
the relative importance of determinism increases as zebrafish
mature (Burns et al., 2016), whereas other studies have
shown the opposite trend (Li et al., 2017b; Yan et al., 2016).
Understanding the factors that govern the gut microbiota
provides an initial step to establishing and maintaining a healthy
fish microbiome (de Bruijn et al., 2017; De Schryver & Vadstein,
2014). In this regard, exploring the underlying mechanisms of
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fish diseases will provide an integrated approach to systems
biology and ecology.

Going a further step, gut signatures can also be associated
with fish diseases. For example, taxa affiliated with genera
Vibrio, Aeromonas, and Shewanella are overrepresented in
the gut microbiota of “red-operculum” disease in crucian
carp, whereas Cetobacterium species are indicators of
healthy fish (Li et al., 2017a). Similarly, Aeromonas is
a biomarker for largemouth bronze gudgeon suffering from
furunculosis (Li et al., 2016). This phenomenon suggests
that certain gut microbial signatures are indicative of host
health status irrespective of disease pathogeny, as has
been demonstrated in human gut diseases (Mancabelli et
al., 2017). Recent mechanistic studies suggest that the
inflammatory host response produces reactive oxygen species,
which facilitate a competitive advantage to facultative anaerobic
lineages, such as Aeromonas (Winter & Bäumler, 2014). To
date, however, surprisingly few studies have examined the
association between disease severity and degree of dysbiosis
in the gut microbiota during disease progression in fish. As
a result, it is unclear whether the transition from healthy to
diseased gut microbiota is gradient-like or a discrete process
(Knights et al., 2014). If the transition is gradual, gut microbial
signatures could serve as independent variables for predicting
the incidence of fish disease, similar to that observed in shrimp
diseases (Xiong et al., 2017; Xiong et al., 2018).

In addition to direct inhibition, the fish gut microbiota also
plays critical roles in epithelial renewal and maturation, which,
in turn, regulate immune responses (Gómez & Balcázar,
2008; Wang et al., 2017). Under normal conditions,
goblet cells secrete mucus, which functions as a barrier
to inhibit migration of microorganisms out of the intestinal
lumen (Ringø et al., 2007). A mature gut mucosa is
also essential for distinguishing pathogens from commensals
through pattern recognition receptors (PRRs, such as toll-like
receptors, RIG-I-like receptors, NOD-like receptors and
AIM2-like receptors), which detect bacterial antigens and
activate signaling cascades to regulate immune responses
(cytokines) (Pérez et al., 2010). For example, the toll-like
receptor family, a representative member of PRRs, recognizes
conserved structures in pathogens, which can recruit and
regulate the immune and inflammatory cells that initiate and
mediate systemic immune responses (Fasano & Sheadonohue,
2005). Additionally, commensals can protect the host by
depriving invading pathogens of nutrients, secreting a range
of antimicrobial substances and occupying the niche (de
Bruijn et al., 2017; Gómez & Balcázar, 2008; Pérez et al.,
2010). However, if this balance is disrupted, such as during
pathogenic infections, the innate and adaptive immune systems
are activated to prevent disease exacerbation. Conversely,
there is a correlation between colonization of probiotics and
innate immune responses, such as phagocytic and alternative
complement pathway activities, which protect fish against
pathogens (Balcázar et al., 2007; Kim & Austin, 2006).

Studies on gnotobiotic zebrafish demonstrate that the gut
microbiota enhances the stability of β-catenin via activation

of Wnt signaling, thereby promoting intestinal cell proliferation
over normal ontogenesis (Cheesman et al., 2011; Rawls et
al., 2006). Compared with germ-free zebrafish, conventionally
raised zebrafish exhibit a greater abundance of genes
associated with epithelial proliferation and innate immune
response (Rawls et al., 2004). However, germ-free zebrafish
with a commensal microbiota can robustly activate NF-κB
and its target genes in intestinal and extra-intestinal tissues
(Kanther et al., 2011). Similarly, colonization of commensals
in larvae stimulates neutrophils and activates pro-inflammatory
genes through the TLR/MyD88 signaling pathway and
phagocytes, which can enhance disease resistance in
zebrafish (Galindo-Villegas et al., 2012). Specifically, the gut
microbiota induces intestinal macrophages by upregulating
pro-IL-1β. The mature form of IL-1β (activated by pathogen
infection) recruits neutrophils, thereby priming macrophages
to eradicate pathogens (Kamada et al., 2013). Significant
association between the gut microbiota and transcription level
of secreted immunoglobulin M (sIgM, a proxy for adaptive
immune development) has been reported during healthy
zebrafish development (Stephens et al., 2016). Compared with
functional B- and T-cell receptor immune-deficient zebrafish,
wild-type zebrafish exhibit an individualized gut microbiota and
increased determinism of gut microbiota assembly (Stagaman
et al., 2017). Our recent work also showed pro-inflammatory
cytokines IL-1β and TNF-α to be activated in response
to pathogenic infections in ayu (Nie et al., 2017). On
the other hand, administration of probiotics to sea bass
(Dicentrarchus labrax L.) results in the downregulation of
IL-1β and transforming growth factor-β (Picchietti et al., 2008).
Collectively, these results indicate a normal gut microbiota
contributes indispensable roles in regulating the fish immune
system, and vice versa.

As described above, the host and gut microbiota have
co-evolved multiple strategies to not only prevent colonization
by external pathogens, but also suppress resident pathogens.
However, pathogens have developed various strategies to
overcome these barriers, including entry into the host,
occupation of a unique niche, circumvention of commensals
and host defense barriers, and acquisition of nutrients from
fish hosts (Ringø et al., 2007). Specifically, pathogens express
sortases and adhesins for anchoring to host intestinal cells.
After attachment to the intestinal tract, pathogens produce
toxins and hemolysins to aggressively damage the intestinal
lining and induce inflammatory responses (Mazmanian et al.,
2001; Ringø et al., 2007). There is evidence that the inflamed
environment induces production of reactive oxygen and/or
nitrogen species by the host, resulting in a bloom of facultative
anaerobic bacteria (e.g., Proteobacteria) and reduction in
obligate anaerobic bacteria (Winter & Bäumler, 2014). This
shift in community composition compromises colonization
resistance imposed by gut microbiota, thereby facilitating the
overgrowth of potentially harmful indigenous bacterial species
(Galindo-Villegas et al., 2012; He et al., 2017). To escape
from host immune clearance, some enteric pathogens harbor a
modified form of siderophore (chelating iron under iron-limiting
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conditions) that is not inhibited by host cell-secreted lipocalin 2,
which can further promote the growth of pathogens (Fischbach
et al., 2006). Additionally, pathogenic capsules promote
virulence by reducing host immune responses (Singh et al.,
2011). Gram-negative pathogens commonly encode the type
6 secretion system (T6SS), which enables pathogens to attack
the resident microbiota and to confer them with a competitive
advantage (Russell et al., 2014; Vonaesch et al., 2018). In
addition, to counteract nutritional competition by commensals,
some pathogens can use alternative or pathogen-specific
nutrients, which expand the nutrient niche for their colonization
(Fabich et al., 2008). Alternatively, invaders can also occupy
a distinct niche during replication to reduce competition with
commensals. For example, pathogenic Citrobacter rodentium
expresses intimin, which enables its localization to the intestinal
epithelial surface, where commensals do not normally occur
(Kamada et al., 2012). Intriguingly, pathogens can sense
cues (e.g., bile acids, temperature, and nutrient availability)
from their host to regulate virulence genes at the appropriate
location (Fraser & Brown, 2017; Vonaesch et al., 2018). This
regulatory mechanism can therefore maximize the chance of
successful invasion.

Once a pathogen escapes colonization resistance imposed
by gut commensals and host immunity, it can replicate
and further express diverse virulence factors to attack fish
and cause disease. There is increasing evidence that
pathogenic infections cause profound disturbances to the fish
gut microbiota and immune responses (He et al., 2017; Nie et
al., 2017; Ringø et al., 2007). Notably, variations in the gut
microbiota of ayu are significantly associated with TNF-α and
IL-1β expression levels (Nie et al., 2017). Similarly, antibiotic
administration can also cause imbalance in the gut microbiota
of zebrafish, resulting in a compromised immune response,
which further increases susceptibility to infections (He et al.,
2017). Molecular experiments further suggest that decreased
water quality can promote pathogen virulence (Penttinen et al.,
2016). Therefore, disease onset in fish can be attributed to
a variety of disturbances, such as environmental stress and
antibiotic administration, which disrupt the gut microbiota in
stressed fish and enhance the virulence of pathogens.

In summary, the introduction of pathogens into hosts is
antagonized by environmental pressure, fish filtering, and
colonization resistance of gut commensals (Mallon et al.,
2015). In healthy fish, the gut microbiota directly antagonizes
the colonization or overgrowth of pathogens (Nie et al.,
2017). These effects include competition for resources,
niche exclusion, and suppression of virulence factors. In
addition, pathogens are suppressed by immune clearance. In
diseased fish, balances in the protective commensal microbial
community and host immunity are disturbed by external factors.
For example, antibiotic usage can decrease species diversity
and alter gut microbial community structure in fish (He et al.,
2017). Pathogenic infections have been shown to significantly
disrupt interspecies interactions in the fish gut microbiota (Nie
et al., 2017). These alterations may open up ecological
niches for pathogenic invasions. Furthermore, environmental

stresses may impose additional pressure on fish, leading to
compromised immunity. Lastly, the expression of virulence
genes in pathogens can also be induced by poor water quality
(Penttinen et al., 2016; Zhou et al., 2012). These detrimental
effects cumulatively attenuate resistance to colonization by
pathogens and allow overgrowth of harmful colonies that may
lead to disease.

Given the functional importance of the gut microbiota
in improving host fitness, introduction or augmentation of
beneficial microbes may be a promising approach for protecting
fish from emerging diseases (de Bruijn et al., 2017). However,
various studies have identified long lists of implicated microbes
that may contribute to the gut microbiota dysbiosis-disease
relationship, and these associations may reflect biomarkers
of disease. Therefore, future work is required to explore the
causal links between fish disease and specific taxa, which may
enable us to optimize gut microbiota composition to mitigate
fish disease. Pathogenic infections involve several phases:
introduction, establishment, spread, and impact, which are
governed by the environment, host, and gut microbiota (Mallon
et al., 2015). To understand the mechanisms underlying fish
disease, one should focus on the infection process from an
ecological prospective (De Schryver & Vadstein, 2014; Xiong
et al., 2016) instead of isolating potential pathogens from
diseased fish. Next generation sequencing has allowed the
identification of universal gut microbial biomarkers (common
features of affected individuals) in various fish diseases from
different regions. Therefore, we recommend that relevant
information should be deposited into a public database, which
could enable convenient cross-disease comparisons. This
would facilitate rapid diagnosis as well as promote prediction
of the course and prognosis of disease.
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