
Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 358

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2019 Issue: 05 Volume: 73

Published: 27.05.2019 http://T-Science.org

Valentin Nikolayevich Kiselev

Student,

Peter the Great St.Petersburg Polytechnic University

mrexox@yahoo.com

 Vadim Andreevich Kozhevnikov

Senior Lecturer,

Peter the Great St.Petersburg Polytechnic University

vadim.kozhevnikov@gmail.com

SECTION 4. Computer science, computer

engineering and automation.

DEVELOPMENT OF THE AUTOMATIC SYNCHRONIZATION

SERVICE FOR PACKAGES AND FILES FOR RPM AND DEB BASED

DISTRIBUTIONS

Abstract: The article describes the approach to development of the system with a few independent services that

handle synchronization of packages and files in RPM and DEB based distributions.

Key words: synchronization, Ruby, Rhel, CentOS, Debian, RPM, DEB, inotify, DRb, RPC, TOML.

Language: English

Citation: Kiselev, V. N., & Kozhevnikov, V. A. (2019). Development of the automatic synchronization service

for packages and files for RPM and DEB based distributions.. ISJ Theoretical & Applied Science, 05 (73), 358-362.

Soi: http://s-o-i.org/1.1/TAS-05-73-52 Doi: https://dx.doi.org/10.15863/TAS.2019.05.73.52

Introduction

The synchronization problem of two and more

computer systems appears when there is a need to

keep them all in fresh state. Cluster systems use

sharing resources and distributed file systems [1],

kernel utilities to create something like RAID 1 on the

systems via internet connection and other utilities of

controlling the system resources and rescuing

machines.

The main reason why these technologies

appeared was the need to apply changes on a group of

machines to make them act like a cluster. We miss

something after all: configuration and program files

updates. There is always a chance that something can

change in requirements and all systems will need the

update. That is why it is important for an administrator

to think about synchronization of files and packages.

Motivation

The main disadvantages of existing state

synchronization approaches are: master-slave

architecture and manual actions. Configuration of

these systems (e.g. Chef, Puppet, and Ansible) makes

the administrator to create special files and apply them

from a server to manually selected clients. It is handy

for executing some commands but the whole process

takes too much time and leaves a place for mistakes.

If there was a system that handles changes on

one machine and sends them to another machines

automatically, it would decrease a chance to mistaken

and make synchronization more simple.

Requirements

The system must meet following requirements:

− Automatic updates of RPM and DEB

packages;

− Automatic updates of selected files when

they change;

− Decentralized synchronization.

These requirements lead to some restriction and

features:

− The program works in a background;

− The program has a configuration file;

− The program works only in local network.

Technology review

Background processing in Linux is implemented

via daemons controlled by initialization system. In

almost all Linux distributions for now this

initialization system is called Systemd [2].

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:mrexox@yahoo.com
mailto:vadim.kozhevnikov@gmail.com
http://s-o-i.org/1.1/TAS-05-73-52
https://dx.doi.org/10.15863/TAS.2019.05.73.52

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 359

Most daemons get their configuration from

special configuration files, kept under /etc [3].

Configuration file format vary from simple to

complex, but the base are: INI, YAML, TOML,

JSON, XML. TOML format is the most rich and

readable if choosing between them. It has the

following advantages:

− inclusive settings (INI doesn’t have them),

− insensitive to spaces and tags (YAML is not),

− provides understandable syntax with

comments (not like JSON);

Hierarchical structure allows to describe

configuration of many services in one file.

There are also unique configuration file formats

for such programs as cron, nginx, freeradius, ntp, etc.

Discovering systems in the network needs using

transport layer UDP protocol and broadcast requests.

This technology is widely used in many protocols that

need to discover some server in a local network, for

instance DHCP, DNS.

The synchronization system is decentralized and

that is why every node of network has the whole

database of events. When any node goes offline and

then recovers, it asks for events and filters them to

apply only new. The redundancy of data make the

whole system more resistant to unfortunate occasions.

To start with, it is important to choose a

programming language for the realization. There are

requirements to a programming language:

− ability to be extended fast and easy,

− ability to change realization of any module

not touching others,

− RPC solution out-of-the-box,

− lots of stable packages and extensions.

The only type of programming languages that

fits these requirements is scripting programming

language. The choice of Ruby is more appropriate,

because it has an RPC solution from the standard

library called DRb. Also Ruby provides object

oriented design and fits into event-driven design by

providing blocks – code, that can be passed to a

function and yielded in it, if needed.

As it was mentioned, there are some well-known

approaches to node discovering. The design is very

simple: a server listens on a specific port, and the

client requests sends the requests on that port. There

are three ways to do it in Ruby:

− UDP socket,

− Event Machine,

− SSDP.

Every approach encapsulate sending a UDP

broadcast requests but provides different mechanisms

and integrations.

SSDP – is a network protocol for discovering

network services. It is a common standard for service

discovering but may look overabundant. This protocol

is the standard for network discovery and it is the main

advantage of using it.

UDP socket usage makes the programmer to

perform some actions in right order. For example,

sending a broadcast message using UDP socket

includes:

Figure 1 – Behavior of the monitoring system

− Opening a UDP socket on special host and

port;

− Setting up the socket to be broadcast;

− Sending the broadcast message;

− Closing the socket.

The server side part is:

− Opening a UDP socket on 0.0.0.0 to accept

all requests;

− Handling incoming requests.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 360

Setting up Event Machine with UDP server is a

bit harder. Using Event Machine is valuable only

when using it as the base for all services. Also using it

for RPC provides a multi-lingual solution [4], so new

services may be written for such system in another

programming language.

There are some well-known RPC approaches for

Ruby:

− JSON-RPC,

− DRb,

− SOAP,

− XML-RPC,

− Apache Thrift.

DRb is the most native approach and provides

out of the box solution for remote procedure calls [5].

Anyway, the realization of communication may be

changed because of modular architecture of the

program.

Architecture

Any program can be described with two

characteristics. The first one is its architecture. Good

architecture decreases the cost of further changes and

allows to widen features with low cost. The second

characteristic is the behavior. As soon as program can

manage well some critical states its behavior is more

reliable. The aim is to reach good architecture and

suppose correct behavior of the program [6].

Object oriented approach was used to provide

independent modules so the SOLID principles could

be reached [7]. The program consists of four

microservices, four daemons that run independently:

− evemond – provides monitoring and

notifying about events like package installation or file

change;

− evehand - provides business logic, a reaction

on events happening in the system;

− evesyncd – provides synchronization

between nodes;

− evedatad – provides database connection and

saves all events to database.

The whole system works correctly only when all

the daemons run. Each action of monitoring, handling,

saving to database and synchronization are

implemented in separate modules.

The interactions between modules are rather

simple (pic. 1). The event formed in the Watcher

module is catched by the Trigger module and saved

via Database daemon. Then the event goes to other

systems and gets handled by the Handler module,

which applies the change and saves it to local database

too.

Watcher module implements monitoring

changes and adding events to an event queue. This

module is a factory for two main watching modules:

packages watcher and file watcher. The event queue is

processed by Trigger module in the same daemon but

different thread.

Trigger module is a controller, which handles all

actions a system, must perform to save, apply and

share an event. The main task of this module is to

control the flow of events from Watcher module. In

addition, when an event is received from Handler

module, it means the remote node has sent the event.

That is why after applying an event and receiving it

again from local Watcher module the Trigger must

ignore this event. The purpose of ignoring is not to

duplicate messages in local network. Duplicating one

message about package upgrade by hundreds of nodes

may cause decreasing of throughput.

Reacting logic is in the Handler module. This

module implements the service that handles events

from remote nodes. With the synchronization service,

they make a public interface of the system for

interactions.

Inter-process communication is implemented in

an IPC module. It provides server and client side.

Using DRb technology makes it easy to call

corresponding methods directly without wrapping in

any communication protocol. In addition, DRb

provides message encryption using SSL certificates.

Besides mechanisms for calling external

methods this module provides a special type of objects

to be used as messages. Package and file events are

wrapped in a special class with metadata that can be

marshalled into the text and saved into the database.

After extracting it from the database, it can be easily

parsed into a usual Ruby object. Metadata for these

events includes a timestamp and actual object name

that are used as a unique key for a particular event.

Using standard Marshall Ruby module does not

fit the requirements for two reasons. The first one –

marshalled objects will not be able to be loaded via

another language. This is important because there

must be a place of widening the system with other

utilities [7] and they may be written in other

programming languages, for instance C++, and there

must be a way to implement an event class and parse

it in any language. Therefore, the second reason is that

Marshall module provides marshalling into a binary

format, not textual. Binary format is not so easy to

send within network, that is why textual format was

chosen.

Database class implements working with a

database. For this project, the LMDB database fitted

the best. There were following reasons:

− No reasons to use relational database,

because there are no relations;

− LMDB is called the fastest key-value

database [8];

− LMDB is not client-server database but

provides transactions using special locks;

− LMDB supports parallel reading;

− It works “out of the box” installed from Ruby

gem.

LMDB stores the data in files of a specified

folder. So, the replication can be easily made by

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 361

copying its files. This approach is useful if we would

like to implement offline synchronization, loading and

applying events from a database file.

Sync class provides synchronization between

nodes and controls discovering of systems.

Discovering is implemented via UDP server that

listens to the “world” and UDP broadcast requests that

are sent seldom. When the system starts, the request is

sent automatically and all nodes that answers are

asked about events. After that timestamps are

analyzed and compared with saved events on the local

machine. When the algorithm finds the missing events

the synchronization service requests them from

corresponding nodes and applies changes to the

system. After that, the node becomes synchronized

with the others.

Behavior

The behavior demonstrates business logic and

processes in the system. Every service has its own

responsibility and plays its role. That is why the

system improvement and error checking is not as

complicated as it could be if it was monolithic.

Evemond daemon initializes Trigger and

Watcher modules and starts monitor-react-handle

event cycle. It also starts an IPC server so other

threads and services can call its public methods to

control the watching behavior.

Evehand daemon starts public IPC server so

other daemons and nodes can interact with it. Evehand

processes following requests:

− request for getting events timestamp list from

local database,

− request for getting particular events in

marshalled form,

− request for handling events from other

system.

Evehand communicates with the watcher

daemon. For example, when evehand daemon handles

request to update some package, the watcher service

notifies about package event. The handler’s job is to

say Trigger module to ignore particular packages and

not to perform any usual action.

Evedatad daemon is used for saving events and

providing data from the database (fig. 1 and 2).

Evesync daemon is responsible for

synchronization. To perform synchronization it needs

to send some messages to remote nodes, ask for

missed events and apply them using handler service

(pic. 2).

Figure 2 – Synchronizing events.

To provide working with RPM and DEB

packages every time the system starts it parses /etc/os-

release file to find out what distribution it was started

on. When this file contains words like “rhel” or

“centos”, it means that rpm packages and yum

package manager might be used. When this file

contains the word “debian”, it means that apt package

manager and “dpkg” package control utility are used.

To catch changes of package system the monitor

lists all packages in the system and saves names and

versions once the specified interval. On the next

iteration, it compares this snapshot with the previous

one and finds out the changes. These changes become

package events that are catched in the Trigger module.

The same way file changes work. When the

system starts, files that should be monitored are

watched by inotify subsystem. Files Watcher module

gather all events for a small period and parses them

into the appropriate event objects that the Trigger

module catches.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 362

Testing

There is a testing framework for Ruby

programming language called Rspec. This framework

makes possible testing algorithms of synchronization

and database service API. This is the main point for

using unit tests in this project. In addition, Rspec

allows freezing some business logic and making sure

that it will not change its behavior in some time [9].

Testing business logic is more complicated.

Container-based approached was developed to make

it easier [10]. The Docker container is used to install

all the dependencies on a clean system. Two and more

replicas get started for testing using docker-compose

program. Docker-compose provides a utility that

allows uniting many instances of container into one

network. It allows using containers as standalone

virtual machines in a local network. In addition, there

is a possibility to mount project root into every

container file system. Therefore, all changes in a

project appear in all containers. It allows

automatically update the code that runs in the

containers.

When an event occurs on any container it is

automatically synchronized between other containers

and we can check it via logs or commands of package

manager.

Using containers for testing is cheaper and faster

than using virtual machines. It is more appropriate

because every time a container runs it has a clean

system.

Conclusion

To implement an automatic synchronization

between computers with one Linux distribution there

were four services developed and tested. The system

provides monitoring, applying, saving and

synchronizing events. Micro-service architecture was

chosen, because it makes development and widening

easier and does not bind API between independent

elements of the system.

Using unit testing allowed making sure that new

features will not damage old algorithms. Using

Docker containers made testing synchronization

easier also.

References:

1. (n.d.). HDFS, Bauman National Library.

Retrieved May 10, 2019, from

https://ru.bmstu.wiki/HDFS_(Hadoop_Distribut

ed_Filesystem)

2. (n.d.). Systemd, Wikipedia. Retrieved May 14,

2019, from

https://ru.wikipedia.org/wiki/Systemd

3. (n.d.). Filesystem Hierarchy Standard,

Wikipedia. Retrieved May 14, 2019, from

https://en.wikipedia.org/wiki/Filesystem_Hierar

chy_Standard

4. (n.d.). EventMachine UDP Server Example,

Parrotty Blog. Retrieved May 15, 2019, from

https://parroty00.wordpress.com/2013/07/14/ev

entmachine-udp-server-example/

5. (n.d.). DRuby aka DRb – the baseline for

distributed systems on Ruby. Principles of

working, Habrahabr. Retrieved May 16, 2019,

from: https://habr.com/ru/post/143671/

6. Sandi, M. (2018). Practical Object-Oriented

Design: An Agile Primer Using Ruby (2nd

Edition), Addison-Wesley Professional, p.288.

7. Robert, C. M. (2017). Clean Architecture: A

Craftsman’s Guide to Software Structure and

Design. Prentice Hall, p.432.

8. (n.d.). Lightning Memory Mapped Database,

Wikipedia. Retrieved May 15, 2019, from

https://ru.bmstu.wiki/LMDB_(Lightning_Mem

ory-Mapped_Database)

9. (n.d.). Introduction to Ruby and RSpec, Medium.

Retrieved May 19, 2019, from

https://medium.com/craft-

academy/introduction-to-ruby-and-rspec-

135da4051802

10. (n.d.). Manuel Weiss. How Docker Makes

Testing More Efficient. Retrieved May 19, 2019,

from: https://blog.codeship.com/testing-with-

docker/

https://ru.bmstu.wiki/HDFS_(Hadoop_Distributed_Filesystem)
https://ru.bmstu.wiki/HDFS_(Hadoop_Distributed_Filesystem)
https://ru.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://parroty00.wordpress.com/2013/07/14/eventmachine-udp-server-example/
https://parroty00.wordpress.com/2013/07/14/eventmachine-udp-server-example/
https://habr.com/ru/post/143671/
https://ru.bmstu.wiki/LMDB_(Lightning_Memory-Mapped_Database)
https://ru.bmstu.wiki/LMDB_(Lightning_Memory-Mapped_Database)
https://medium.com/craft-academy/introduction-to-ruby-and-rspec-135da4051802
https://medium.com/craft-academy/introduction-to-ruby-and-rspec-135da4051802
https://medium.com/craft-academy/introduction-to-ruby-and-rspec-135da4051802
https://blog.codeship.com/testing-with-docker/
https://blog.codeship.com/testing-with-docker/

