
Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 350

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2019 Issue: 05 Volume: 73

Published: 27.05.2019 http://T-Science.org

Vadim Andreevich Kozhevnikov

Senior Lecturer

Peter the Great St. Petersburg Polytechnic University

vadim.kozhevnikov@gmail.com

Nikita Dmitrievich Yatskovets

student

Peter the Great St. Petersburg Polytechnic University

nikita123456789012@yandex.ru

DEVELOPMENT OF A WEB SERVICE FOR BUILDING ROUTES

ACCORDING TO USER INTERESTS

Abstract: This article contains ideas and suggestions about how to create a service and an algorithm that

recommends to users a route for a walk based on his chosen interests. And the article also contains base ideas about

optimization of the suggested algorithm to achieve «production» quality of execution and response time.

Key words: recommender systems, routes building.

Language: English

Citation: Kozhevnikov, V. A., & Yatskovets, N. D. (2019). Development of a web service for building routes

according to user interests. ISJ Theoretical & Applied Science, 05 (73), 350-357.

Soi: http://s-o-i.org/1.1/TAS-05-73-51 Doi: https://dx.doi.org/10.15863/TAS.2019.05.73.51

Introduction

Imagine a situation, a person flies on a plane to

Moscow or other big city for a few days on business,

or just to rest. A person is not familiar with the city

and does not know where to go for a walk, what to

visit, etc. In the case of attempts to find out popular

places in Moscow, a person will face the problem that

there are too many options and to choose one of these

options is difficult. Person need to know the time of

work of each place, read reviews. If there was a

service that would allow in a few clicks to build a

ready route through several popular places, the user

would be much easier. Yes, today we have Google.

Trips [1], but this application doesn’t allow to choose

different options for your route, this application just

build some route, you can’t affect this process. The

main goal of the developed service is to solve this

problem and give user ability to build route by own

interests.

The second situation, people who are in a

familiar city, but do not know where else to go,

because most places have already been visited, and

they don’t want to think where to go (often real

situation, when you don’t know where to go, and you

choose to stay at home). Or a person just wants to

wander around the city, not thinking about self-chosen

route.

Thus, it was decided to create a service that in a

few clicks would allow the user to get an answer to the

question "where to go for a walk in this city?".

The aim of the article

In this article it was decided not to consider the

creation of a mobile application because mobile

application just should to print points on the map,

nothing interesting. Main point of this article – is

describe possible algorithmically solution of

suggested problem and server architecture that can be

used to run suggested algorithm.

The solution that will be described in the article

was tested in St. Petersburg city and showed good

results both in terms of the quality of the routes and

the speed of work. You can find examples of work in

the end of article.

Methods

As a main programming language was chosen

Java programming language, because this langue de

facto is standard for web development and a lot of

framework and libraries exist for solving any web

development tasks.

To store objects that will be used for testing was

chosen MySQL DBMS as most popular free DBMS

[2] for simple web projects [3].

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:nikita123456789012@yandex.ru
http://s-o-i.org/1.1/TAS-05-73-51
https://dx.doi.org/10.15863/TAS.2019.05.73.51

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 351

To work with database was chosen Hibernate

ORM instead of using in-code SQL queries. The main

reason of this choice is simplify working with

database objects like place, because each place will

contain a lot of information like coordinates, name,

description, full address, rating and so on. It is too hard

to handle each filed separately. The easiest way – just

use Hibernate ORM [4] and work with completed

place objects without writing a lot of queries.

To receive user’s requests and proxy these

requests to the algorithm simple http-server is

required. Netty framework [5] was chosen as base for

handling http requests. This framework allows to

implement simple http server with non-blocking

handling of http request quite fast and simple.

So, wrapper (means parts of receiving and

sending user’s requests) of the algorithm that will be

suggested in article has the following form:

1. Using Netty framework, server receiving

user’s request, handle requests and send handled

request to the next stage.

2. Algorithm handle requests and return JSON

object with suggested points.

3. Netty framework send JSON object to user.

As you can see, no stages related with database

working. It is related with performance issue, because

queries to database is too long and affect service

performance. By this reason all the objects stored on

the RAM. Details of this solution will be described

later.

To solve suggested problem offline maps with

meta information about geo-objects required. Was

chosen OpenStreetMaps [6] as maps source, because

these maps have open format and free license.

The algorithm proposed further will not use

machine learning, as it might seem from the title of the

article, since it is almost impossible to select for this

task some training dataset. So, as the method of

creating algorithm was chosen method of heuristics,

when we creating algorithm using various

approximations and assumptions.

Implementation of the algorithm

The first problem that had to be solved of

algorithm development – it is the choice of the way to

interact with offline maps that were obtained from

OpenStreetMaps service. Maps from OpenStreetMaps

service contains a huge amount of meta information to

construct best route between two points and get

estimates of time and distance for constructed route,

so manually working with these maps is very difficult.

By this reason the open-source library GraphHooper

[7] was chosen to work with OpenStreetMaps maps.

GraphHooper library contains completed

algorithms to work with maps from OpenStreetMaps

[6] directly. This library also contains algorithms to

estimate time and distance of the constructed

algorithms. To build best route between two points

chosen library implements two public algorithms:

Dijkstra’s algorithm [8] and A star algorithm [9] only

in bidirectional implementation. Besides these two

algorithms GraphHooper library also implements own

heuristics to construct best route in the fastest way

[10], but we will not to consider these

implementations, because they are not related with

main target of this work.

Constants description

Due to the computational complexity of the

suggested problem, it was proposed to introduce some

constants to reduce huge number of possible routes to

build. To understand the scale of the problem,

consider an example: suppose our service has about

1000 real points on the map, to build only one route

with 5 points for one user service should consider

8250291250200 different routes. It is impossible, so

by this reason we will consider following constants.

Were proposed and implemented following

constants:

private final int

NEXT_STEP_POINTS_RANDOM_COUNT = 8;

private final double

MIN_DISTANCE_BETWEEN_TWO_POINTS =

500;

private double

MAX_DISTANCE_BETWEEN_TWO_POINTS =

1300;

private final double MAX_WALK_TIME = 240 *

1000 * 60;

private final int MAX_POINTS_PER_ONE_ROUTE

= 5;

private final int MIN_POINTS_PER_ONE_ROUTE

= 3;

private final int RADIUS_INCREMENT = 400;

private final int

MAX_DISTANCE_OF_INTERSECTION = 150;

private static final int

MAX_CATEGORIES_NUMBER = 5;

private static final int MAX_RESET_TIMES = 3;

Let’s consider what each constant means

separately.

NEXT_STEP_POINTS_RANDOM_COUNT –

this constant determines the number of points that will

be chosen as potential candidates for the next point in

the route. The choice is made among the points that

have passed the initial filtering by category and fall

into the current search boundaries by the distance

(constants that determines these distances will be

proposed later) from the current point. Algorithm

should try to choose

NEXT_STEP_POINTS_RANDOM_COUNT points

with the shortest distance from the current one for the

next iteration of filtering. The next stage of the

filtering does not necessarily get exactly

NEXT_STEP_POINTS_RANDOM_COUNT points,

this constant is the upper limit of the number of points

at this stage of the algorithm. Default value decided to

set 8.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 352

MIN_DISTANCE_BETWEEN_TWO_POINT

S – this constant determines the minimum distance

between two points in the one route. After some tests

of the completed algorithm it was decided to choose a

value of 500 meters for this constant. It should be

noted that this distance – not the distance between two

points as route, it is distance between two points by

«line». That is, the real distance that the user will have

to go may be somewhat more than 500 meters.

Figure 1 - Filter working demonstration

MAX_DISTANCE_BETWEEN_TWO_POINT

S – this variable determines the upper limit of the

distance between two points. This distance as the

MIN_DISTANCE_BETWEEN_TWO_POINTS is

not the distance between two points as route, it is

distance between two points by «line». It should be

noted, that it is not a constant, it is dynamic value that

can be increased in some bad cases by

RADIUS_INCREMENT constant (this constant will

be proposed later). Main case when this value should

be increased is when user want to build route far from

city center. In this case points in the initial radius may

be not enough to choose next point of the route and we

should increase

MAX_DISTANCE_BETWEEN_TWO_POINTS

value to have more points for choice. Default value is

1300 meters.

Let’s explain how filter works (Fig. 1). Black

point – it is current point of the route. Blue points –

are potential candidates for the next point in the route.

MAX_WALK_TIME – this constant determines

the maximum time for which the proposed route can

be walked without considering stops and visits to

proposed places or establishments. This constant is

introduced to handle cases where the variable

MAX_DISTANCE_BETWEEN_TWO_POINTS

grows to too large values, as well as for cases where

the actual distance between points is very different

from the estimated distance by «line». Default value

is 4 hours should be enough for regular people.

MAX_POINTS_PER_ROUTE – this constant

determines the maximum points in the one route.

Default value for this constant was chosen as 5 points

in the one route. This value was chosen because for

some categories of places, such as parks, for example,

the points become too far geographically separated

and the route will not be interesting to the user (e.g. in

one area of the city rarely more than 5 parks).

MIN_POINTS_PER_ROUTE – this constant

determines the minimum number of points in the one

route. The value set to 3 was chosen as the minimum

adequate, since a route of less than 3 points does not

have any informative meaning for the user.

RADIUS_INCREMENT – this constant

determines the size of the increase in the maximum

allowable distance between the current point and

points - potential candidates for the next point in the

route (variable

MAX_DISTANCE_BETWEEN_TWO_POINTS)

with an unfavorable outcome.

MAX_DISTANCE_OF_INTERSECTION -

this constant determines the maximum value of the

intersection of the already existing part of the route

and the potential continuation of the route. This

constant was introduced due to the fact that, as it was

found out during the experiments, routes that are built

without any restrictions on the places where the paths

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 353

between the points will pass, will be “porridge” from

the intersection and overlapping of the paths between

the points each other. Simply put, the user will go to

different points around the same place, and in the

worst case the route will be impossible to disassemble,

or the user will go on the same roads, which is not at

all interesting. A value of 150 meters was chosen as

optimal for the speed of work and the quality of the

received routes. With the increase of this number, the

quality of routes significantly decreases, since there

are many paths that follow the same road, but in

different directions.

MAX_CATEGORIES_NUMBER – this

constant determines current value of available

categories to choose by user. Now, this constant is

equal to 5.

MAX_RESET_TIMES - this constant defines

the maximum number of times the application will try

to rebuild the route in case of failure to build a route

the first time. The introduction of this restriction was

a side effect of the introduction of all the

improvements and limitations described above, as

now there are many options when a route cannot be

built under certain conditions that will cause the entire

service to hang. The most frequent case when there is

a “reset” (which will be discussed in more detail later)

of the constructed route is when there is only one road

to any establishment and this road is longer than

MAX_DISTANCE_OF_INTERSECTION. Thus, if

this institution was chosen at the previous step, then it

will be impossible to build the next point due to the

restriction

MAX_DISTANCE_OF_INTERSECTION, which

will not allow to go back along the same road.

Full description of the algorithm

Consider, now, the final implementation of the

algorithm.

Each user request creates its own object — an

instance of the class with the constants defined above.

This instance is initialized with two parameters — the

location of the expected start of the walk and the user's

interests, which were chosen from the available

categories.

At the current stage of the algorithm we also

need to get all the points in the city that fit the chosen

user categories. Working with a database is a very

long operation, so it was decided to create a common

storage which contains all the points from database in

memory of application instead call database on each

request. The storage it is just standard Java List

collection. We don’t need to use multi-threading

collections, since the storage will be read-only in its

idea. The storage is initialized when the server starts

and does not change during the service is working.

This solution imposes some difficulties if it is

necessary to update the points. However, this

operation should not occur often, so if necessary, it

will be possible to quickly re-initialize the storage

during small down time of the service. Also, all points

were ordered by categories, which automatically as

quickly as possible solves the problem of filtering

points by categories. These solutions have

significantly accelerated the application.

After selecting all the points that fit the

categories, it is necessary to build a “distribution” of

categories along the route. Under the distribution in

this case refers to the order of each category in the

route. This is necessary so that each category chosen

by the user at least once is guaranteed to meet on the

route in case this condition is not fulfilled, it is

considered that the route cannot be built from this

starting point. Distribution is also needed to exclude

situations when the user chooses the categories

“parks” and “food”, and the service will offer to go 4

times to eat and go in one park, which is most likely

to be completely uninteresting to the user. In this

regard, the conditional weight of each category is not

the same.

Consider the algorithm for constructing the

distribution of points by categories during the route.

Three different situations were highlighted:

1. The user has chosen one category. In this

situation, there is no need to calculate anything - just

fill the resulting array with a value that corresponds to

the chosen category.

2. The user has selected all five categories

currently available. In this case, we also do not need

to calculate anything, algorithm just fill in the result

array with the values of the categories in accordance

with the order in the source list of categories.

3. The user selected two categories and more, but

less than 5. Let the number of selected categories be

N. Then the first N points will have N selected

categories in the appropriate order. Consider now how

the remaining 5-N places are distributed. As noted

earlier, categories have different priorities. It was

decided that the categories “parks”, and “culture”

would have the highest priority. Thus, if among the

categories selected by the user there is the category

“parks” or the category “culture”, then the remaining

5-N places in the distribution are given to one of the

respective categories. If both categories have been

selected, the remaining places are distributed only

among these categories randomly (that is, the chance

to choose each of these two categories for each place

will be 50%). In case there is none of these two

categories, then each category of the chosen ones has

the same chance of getting into each of the remaining

places.

At this stage of the algorithm for the current

instance of the class has all the necessary data to start

the basic algorithm for finding the route. The

algorithm is based on a cycle that works until the

maximum walk time is reached, or until the maximum

number of points in the route is reached by the

MAX_POINTS_PER_ROUTE constant, or until the

algorithm send signal to main thread that route cannot

be built for current input parameters.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 354

At each iteration of the loop, an attempt is first

made to select the

NEXT_STEP_POINTS_RANDOM_COUNT nearest

points to the current point. In this case, the distance

between the potential new point and the current point

should lie in the range from

MIN_DISTANCE_BETWEEN_TWO_POINTS to

MAX_DISTANCE_BETWEEN_TWO_POINTS. To

do this, we need to calculate the distance to a very

large number of points. Considering that this is one of

the first steps of the algorithm and it is possible to reset

the route later, which will result in having to

recalculate everything again, the performance of this

piece of code is very critical for the performance of

the service. During the attempts to optimize this part

of the code, it was found that it was too resource-

intensive to calculate the distance between two points

using the GraphHooper library. It was decided to

sacrifice the possible accuracy to significantly speed

up the algorithm. Instead of calculating the real

distance, it was decided to calculate the distance by

«line» as described before. That is why the description

of all the constants appears exactly the distance by

«line». As you know, the distance between the points

by «line» can be easily and

accurately calculated if there is information

about the coordinates of each point, information on

which hemisphere points and the availability of some

information about the globe [11]. The problem with

the definition of the hemisphere in this case is not

necessary to solve, since all points are obviously

located in the northern hemisphere. The coordinates

of both points are known. As a radius of the earth, a

value of 6371 kilometers was taken. As a working

formula, the Haversine formula was chosen - (1).

∆𝜎 = 2 ∗

 sin−1 (√sin2(
𝜙2− 𝜙1

2
) + cos 𝜙1 ∗ cos 𝜙2 ∗ sin2(

∆𝜆

2
))

(1)

Next, we need to translate the obtained distance

from radians into meters, for this purpose, the

obtained value using the formula of Haversine must

be multiplied by the radius of the earth in meters.

Thus, the distance between the points will be obtained

with good accuracy. This formula is quite complex in

terms of computation, but the use of the spherical

cosine theorem is not possible because the distances

between points are usually very small, and the

spherical cosine theorem gives a very large error in

this case. To use an even more accurate modification

of the Haversine formula – (2) for antipode points

does not make any sense, since its computational

complexity is even more, but antipode points are

obviously impossible within the boundaries of one

city (antipode points are points that lie opposite each

other, but in different parts of the planet).

∆𝜎 =

tan−1(
√(cos 𝜙2∗ sin Δ𝜆)2+ (cos 𝜙1∗sin 𝜙2− sin 𝜙1∗cos 𝜙2∗ cos Δ𝜆)2

sin 𝜙1∗ sin 𝜙2+ cos 𝜙1∗cos 𝜙2∗cos Δ𝜆
)

(2)

After replacing the use of the GraphHooper

library to calculate the exact distance to calculate the

distance using the Haversine formula, the speed of the

algorithm increased significantly.

However, as you can see, the Haversine formula

contains many «heavy» CPU operations, such as

various trigonometric operations, multiplications, and

taking the root. In this regard, it was decided to use a

non-standard library to calculate these operations. The

choice fell on the library Jafama FastMath. According

to the authors of the library, the acceleration should be

up to 10 times due to various optimizations [12]. After

examining the performance estimates, it was found

that all trigonometric functions used in the Haversine

formula are much faster than in the standard Java

library (Table 1).

However, it was also found that the speed of

taking the root is 2 times slower [12] than in the

standard library (Table1), therefore, the standard

library will be used to calculate the root. The

application of these changes also greatly accelerated

the process of calculating all distances. In addition to

calculating distances, it is also checked that the user

will have time to reach a potential new point,

considering the entire previous route. The initial time

of the walk, now, is considered as the time the user

accesses the system, but in the future, it can be set by

the user for more flexible construction of routes.

If no matching points were found for the current

MAX_DISTANCE_BETWEEN_TWO_POINTS

parameter,

MAX_DISTANCE_BETWEEN_TWO_POINTS

will be increased by RADIUS_INCREMENT and the

search will continue with the new value of the

parameter. Each point found is excluded from the

search for this route in order not to come to a point

that has already been visited at a later stage. No matter

how many points were found, more than

NEXT_STEP_POINTS_RANDOM_COUNT search

iterations will not be performed and regardless of the

result, the algorithm proceeds to the next step.

In the next step, we need to weed out the points

from those that were obtained in the previous step,

which have intersections of more than

MAX_DISTANCE_OF_INTERSECTION meters

with paths already built. For this it is necessary to

resort to the help of the GraphHooper library and to

build already real routes and distances between the

current point and of each potential one. Of all the

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 355

remaining points, a random one is selected and added

to the route. In addition to the point itself, we must

also save all the points that make up the path between

the current point and the selected one in order to check

the dimensions of the intersection of the paths for the

new points. Further, the cycle begins already for the

selected point.

The result of the algorithm is a data structure that

contains from 3 to 5 points of the route to visit, as well

as data arrays that contain information about how to

move between each of the neighboring points. We can

send this data to mobile client using JSON format.

Table 1. Comparing Java.Math and FastMath.

Function Math Mean FastMath Mean Times Faster

acos 58 16 3.6

asin 57 15 3.8

atan 94 15 6.2

atan2 145 23 6.3

cbrt 112 18 6.2

cos 74 13 5.7

sqrt 7 15 0.5

Figure 2 – «Eat» and «Parks» categories

Results and discussion

So, as said before, described algorithm already

implemented completely and all the described

constants were chosen after manually testing. To show

examples of working of described algorithm was

implemented Android application using React Native

framework developed by Facebook company [13].

Implementation description of this application has

been omitted, because it is just simple prototype

developed only for illustrative examples.

First example is using «Eat» and «Parks»

categories with starting point near university. As you

can see on picture, application suggested to visit 4

parks and one pizza café (Fig. 2).

Second example is using «Culture» and «Drink»

categories near center of Saint-Petersburg city. You

can see suggested points on picture. Was suggested

very interesting route near Neva river with beautiful

landscape and famous points like

Kunstkamera museum (it is first museum in

Russia) and Peter and Paul Fortress (Fig. 3).

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 356

Figure 3 – «Culture» and «Drink» categories

Conclusion

A ready-to-use web service was created. In

addition, was implemented simple mobile phone

application to test created service. This service helps

users to get an answer to the question "where to go for

a walk in this city?" with completed route and points

to visit related with chosen interests.

References:

1. (n.d.). Organize your trips with Google trips

[online]. Retrieved May 24, 2019, from

https://get.google.com/trips/

2. (n.d.). What is DBMS [online]. Retrieved

May 23, 2019, from

https://searchsqlserver.techtarget.com/defini

tion/database-management-system

3. (n.d.). Top 10 DBMS [online]. Retrieved

May 24, 2019, from

https://mytechdecisions.com/it-

infrastructure/10-best-database-software-

systems-business-professionals/

4. (n.d.). Hiberante ORM for Java [online].

Retrieved May 24, 2019, from

https://hibernate.org/orm/

5. (n.d.). Introduction to Netty [online].

Retrieved May 24, 2019, from

https://www.baeldung.com/netty

6. (n.d.). About OSM [online]. Retrieved May

24, 2019, from

https://wiki.openstreetmap.org/wiki/Main_P

age

7. (n.d.). GraphHooper how to build route

[online]. Retrieved May 23, 2019, from

https://github.com/graphhopper/graphhoppe

r/blob/0.7/docs/core/routing.md

8. (n.d.). Description and implementation of the

Dijkstra’s algorithm [online]. Retrieved May

15, 2019, from

https://en.wikipedia.org/wiki/Dijkstra%27s_

algorithm

9. (n.d.). Description and implementation of the

A start algorithm [online]. Retrieved May 15,

2019, from

https://en.wikipedia.org/wiki/A*_search_alg

orithm

https://get.google.com/trips/
https://searchsqlserver.techtarget.com/definition/database-management-system
https://searchsqlserver.techtarget.com/definition/database-management-system
https://mytechdecisions.com/it-infrastructure/10-best-database-software-systems-business-professionals/
https://mytechdecisions.com/it-infrastructure/10-best-database-software-systems-business-professionals/
https://mytechdecisions.com/it-infrastructure/10-best-database-software-systems-business-professionals/
https://hibernate.org/orm/
https://www.baeldung.com/netty
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://github.com/graphhopper/graphhopper/blob/0.7/docs/core/routing.md
https://github.com/graphhopper/graphhopper/blob/0.7/docs/core/routing.md
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 357

10. (n.d.). Now flexible routing is at least 15

times faster [online]. Retrieved May 23,

2019, from

https://www.graphhopper.com/blog/2017/08

/14/flexible-routing-15-times-faster/

11. (n.d.). Calculate distance, bearing and more

between Latitude/Longitude points [online].

Retrieved May 19, 2019, from

https://www.movable-

type.co.uk/scripts/latlong.html

12. (n.d.). Improving Java Math Performance

with Jafama [online]. Retrieved May 24,

2019, from

https://www.element84.com/blog/improving

-java-math-performance-with-jafama

13. (n.d.). Getting started React Native [online].

Retrieved May 24, 2019, from

https://facebook.github.io/react-

native/docs/getting-started.html

https://www.graphhopper.com/blog/2017/08/14/flexible-routing-15-times-faster/
https://www.graphhopper.com/blog/2017/08/14/flexible-routing-15-times-faster/
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.element84.com/blog/improving-java-math-performance-with-jafama
https://www.element84.com/blog/improving-java-math-performance-with-jafama
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html

