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SECTION 7. Mechanics and machine construction 

 

NONLINEAR ELASTOPLASTIC DEFORMATION OF A HOLLOW FINITE 

LENGTH CYLINDRICAL SHELL UNDER HYDRODYNAMIC LOADING 

 

Abstract: The process of nonlinear elastoplastic deformation of a cylindrical shell under influence of pulse and 

hydrodynamic loadings is numerically investigated. Calculations of shell were carried out for elastic and elastoplastic 

models on the basis of the Kirchhoff-Love and Timoshenko theories. The influences of the loading duration, its intensity 

and amplitude, as well as geometrical and mechanical characteristics of the structure on the nonstationary behavior of 

the hydroelastoplastic system are analyzed. 
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Introduction.  

A large number of publications have been devoted 

to solving problems of studying the stressed-strain state 

of elastic and elastoplastic deformable systems under 

impact, pulse and hydrodynamic loadings. Various 

aspects of the appearance of elastic and elastoplastic 

deformations of structures under influences of pulse 

and hydrodynamic loadings [3, 4, 10] and compression 

waves [5, 6, 8] are investigated, leading to damage of 

the barrier and the subsequent flow of the containing 

fluid. 

Because of the impossibility of obtaining closed 

solutions for most of such problems, using of 

numerical methods seems to be the most efficient [9, 

11]. In this case, classical Kirchhoff-Love theory [2] 

and the refined S.P. Tymoshenko type theories are used 

to describe behavior of the shell [6]. For the interacting 

fluid, depending on the problem, various fluid models 
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are used as ideal [4, 8], viscous [2, 7], metastable [3, 

10] and others [1, 2, 5]. 

In additional, in recent years, the development of 

methods for numerical modeling of high-speed 

deformation [11, 12] and nonlinear analysis [13, 14] of 

the dynamic behavior of cylindrical shells of different 

structures under pulsed [15] and shock [16] loading 

have been noted. 

Therefore, in the future, the study of the dynamic 

reaction and strength under hydrodynamic loading of 

structural elements are actual. Below, we investigate 

the process of nonlinear elastoplastic deformation of a 

sloping cylindrical shell of finite length under the 

action of an internal axisymmetric impulse and 

hydrodynamic loads. 

 

Statement of problem.  
The problem of numerical investigation of the 

nonstationary interaction of elastoplastic shell of finite 

length containing deformable liquid medium is 

considered. It is assumed that the shell ends are free 

and deformed under the influence of external forces 

acting its inner surface. As a source of disturbances, the 

non-stationary hydrodynamic pressure that occurs 

when an underwater explosion charge of cylindrical 

form is taken, and in the case of the absence of liquid, 

it is assumed that a short-time pulse acts on the inner 

surface of the structure. 

To describe the behavior of the shell basic 

relations of the geometrically nonlinear theory of S.P. 

Timoshenko are assumed. The motion of a cylindrical 

shell is axisymmetric, so the terms containing the 

circumferential displacement and derivatives with 

respect to the angular coordinate in the equations of 

motion are zero. Then 
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where y, x are district and axial coordinate; u, w are 

longitudinal and radial displacements; Nx, Ny are 

longitudinal and circumferential forces; Mx is axial 

moment; Qx is shear force; Р is pressure in fluid;  х 

is angle of rotation; t are time; , R, h  are density, 

radius and thickness of a shell respectively. 

Nonlinear relations between components of the 

deformation tensor and the displacement vector, which 

allow expressing forces and moments in (1) through 

displacements, are taken in the form [3] 
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Relations between the components of stress and 

deformation tensors is established in accordance with 

the theory of flow, described in detail in [5], in respect 

to problems of nonstationary deformation of thin-

walled structures 
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 (2) 

Substituting expressions (2) in formulas of forces 

and moment, we obtain the refined expressions for 

forces and the moment: 
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The shear force is defined as: 
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Taking into account of (3) and (4) equations of 

motion (1) we will write in the form: 
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Thus pressure P in the right hand side of the 

second equation of (1) is from the following equations 

for ideal fluid in cylindrical system of coordinates r, x 

[16]: 

 fluid conservation equations 
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where r, x are radial and axial coordinates; xr  ,  are 

radial and axial speed of fluid respectively;  - current 

density of liquid; q – artificial viscosity.  

 State equation of liquid:  

a) Bubble:  

 000
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where   ;1 0
00




 f 0 =2100 MPa; 0nV  - 

the volume of the gas-containing bubbles in fluid; 

b) Ideally elastic (Tet's equation):  
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where  , В - some constants (for water: В = 304,5 

MPа;  =7,15); 

c) cavitating (destroyed): kPP  ; at the same 

time it is considered that cavitation in a point of fluid 

disappears, if kPP  , where kP  - critical value of 

pressure, Р – pressure on Tet; 

d) metastable (widely-band equation of 

Kuznetsov): 
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THe boundary conditions of the problem with 

allowance for the free ends of the shell have the form 

Nx = 0; Mx = 0; Qx = 0. On the boundary of the contact 

between the fluid and the shell, the linearized 

kinematic condition takes place Rrr
t

w





 . The 

initial conditions of the problem for the shell are zero. 

 

Solution algorithm of the problem.  
For the solution of an objective the finite 

difference algorithm in the form of the implicit scheme 

is used [5]. 

 Let’s construct difference equations for the 

motion equation of the shell (5). We receive the 

implicit scheme by means of the following 

representations  , wu and x   on m th step of time: 

;11   mmm uuu   

;11   mmm www   

.11 
 mm

x
m

x        (7) 

Here  ,  - weight coefficients of the scheme, 

and 1 .  
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where functions )(1 wF , 
PF1 , ),(2 wuF , 

p
F2

 are in 

the right parts of the equations (8) on formulas (6). 

Using the central differences and taking into 

account of boundary conditions, receive the difference 

equations, corresponding (8): 

  

. 

; 

; 

3

1

13

1

2

1

11

2

1

13

1

2

1

11

1

1

13

1

2

1

11

mm

i

m

i

m

i

mm

i

m

i

m

i

mm

i

m

i

m

i

QCCC

QwAwAwA

QuBuBuB

































      (9) 

Here  

;;
)1(

21

   ;
)1(

   ;

;
)1(

21 ;
)1(2

  ;  ;21   ;
)1(

1322

2

12

22

2

113

22

2

122

22

1

13122

2

1

CC
vR

E
CC

vh

E
CAA

vR

E
AA

vh

kE
A

BBBB
vh

E
B

x

x

x

x








































 



Impact Factor: 

ISRA (India)       =  1.344 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 4.102 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

 

 

 

Philadelphia, USA  260 

 

 
 

 

 

,)(
)1(

6

)1(
2

;),,(

)1(

)1(2
2

;)(

)1(
2

3

2

3

211

2

22

2

12

2

2
1

3

22

2

1

22

2

2

1222
1

2

112

12

2

2
1

1

Pmm

i

m

i

m
m

i

m

i

m

Pm

x

mm

m

i

m
m

i

m

i

m

pm
m

m

i

m

i

m

FwF
vh

kE

xv

E
Q

FPwuF
h

w
vR

E

x

w

vh

kE
wwQ

FwF
x

u

v

E
uuQ

































































































 

where xh - step on length of the shell. 

Difference expressions for m

i

m

i FQ   ,  can be easily 

obtained by replacing the derivatives of 
m

x

mm

x

mm wuwu    ,  ,  ,  ,  , m111   with the 

corresponding difference relations. 

The right hand side of the equations (8) 

nonlinearly depend to 
m

x

m

x

mmmm wwuu      ,   ,  ,   ,  , 111  . There are for 

brevity not all derivatives entering in ,,, 321

mmm QQQ  

are written difference form, in particular composed 

)(),,,(),( 321
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mmm wFwuFwF   turn out from 

)(),,,(),( 321 wFwuFwF x  (6) when replacing 

derivatives from xwu ,,  corresponding central 

differences. 

In finite differences, the boundary conditions for 

the shell 0  ;0  ;0  xxx QMN  at 0x  

were written in the form: at  i = 2 
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Here the central differences were applied. In the 

derivation of the first and last relationships, one-sided 

differences were also used, for example  
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(10) 

Boundary conditions in the cross section x = L / 2 

(or x = L) were written analogously. Equations (9), 

(10) are represented in the form convenient for 

solutions by a tridiagonal matrix algorithm. Let us 

briefly discuss the method for solving equations (9). 

The system (9) has a matrix of tridiagonal structure and 

can be solved by the tridiagonal matrix algorithm. As is 

known, in this case the solution of the system is 

represented as follows 
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           (11) 

The first stage of the solution, so-called direct 

algorithm, consists in the sequential determination of 

the coefficients by the recurrence formulas 
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k ,22,22,22   ,   ,  ,    ,   are used, which 

are found from the boundary conditions at x = 0. Then, 

starting from 
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are found in 
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The second stage, or the reverse run, consists in 

determining, by (11), the required values 
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is known from the condition at x = L. 

The equations of hydrodynamics are solved 

numerically using the difference algorithm of M. 

Wilkins [14]. The finite-difference formulation of the 

original differential equations includes discretization 

with respect to time and space coordinates. 

Discretization with respect to spatial variables was 

carried out by finite-difference operators using 

quadrangular mesh nodes with a second order of 

accuracy. In calculations, the relative volume in the 

mass conservation equation was identified with the 

volume of the cell of the finite-difference node, and the 

derivatives in the equation of motion of continuous 

media were calculated from the position of the four 

mesh nodes approaching the node under consideration. 

In this case, the velocities and displacements were 

calculated for the mesh nodes, and the density, stresses, 

damage parameters and deformation were calculated 

for the center of the cell. An explicit difference scheme 

is used for time integration. 

 

Results of calculations.  
As an example, we study the reaction of steel 

cylindrical shell of finite length to the action of an 

internal hydrodynamic loading. Geometrical 

dimensions of the shell: R = 0.014 m; h = 0.001 m; L = 

0.2 m. The material characteristics are as follows: E = 

200,000 MPa; ν = 0.25; ρ = 7850 kg / m3; 
t  = 400 

MPa; E1 = 500 MPa. Hydrodynamic loading occurs 

when a cylindrical charge of explosive, located along 

the axis of the cylinder filled with fluid, is undermined. 

The pressure is determined by the dependence defined 

for spherical charges [6]. Ends of the shell are free. 

The problem is axisymmetric with respect to the 

central point along the length, and therefore consider 

half of the computational domain. We divide the 

computational domain into mesh with step hx=L/20; 

hr=R/10;  =h*/(ka), h*=min(hx,hr), and the coefficient 

k was determined from the stability condition of the 

scheme [5]. The values of the accumulated plastic 

deformation were refined through a certain step  . 

The charge is located in the volume of two calculated 

cells at the point x = L / 2. 

The shell was divided in thickness into 4 parts. 

The step along this coordinate was 0.00025 m, a  = 

0.2 mks. Accumulated plastic deformation was refined 

through step 1  . Calculations showed that a change 

15   , and an increase in the thickness division up to 

8 parts, had practically no effect on the residual 

displacements.  

Further increases led to approximation of the 

results for the elastic shell, for example, at  201  , the 

maximum deflections differed by a factor of two than 

 1
. 

Fig. 1 plotted deflection w (Fig. 1, a) and the 

pressure variation curves P (Fig. 1, b) in a bubble 

liquid of small gas content (nV = 0.000009 [5]) of the 

shell at the point x = L / 2 at q0 = 1000 MPa (P0 is the 

initial pressure in the gas). The solid curves determine 

w and P calculated with allowance for, dashed curves - 

without taking into account the plasticity of the 

material of the shell. The solid curve selected by the 

letter Э was obtained experimentally [6]. 

Theoretical and experimental solid curves agree 

well with each other. It follows from the comparison 

that taking into account the plastic properties of the 

material leads to a significant increase in the maximum 

values of deflections. Also Fig. 1 shows that ductility 

leads to decrease of the pressure wave amplitude in the 

fluid. 

The influence of the fluid model on the 

deflections of the shell was investigated. Figure 2 

shows the time variation of deflections of the central 

point of the shell, depending on the fluid models, 

respectively. The curve numbers correspond to model 

numbers. The calculations were carried out taking into 

account the plasticity (a) and without it (b). It can be 

seen that the maximum deflections of the shell, 

determined with allowance for ductility, exceed the 

corresponding values for the elastic shell. In addition, 

models of bubble and cavitation of fluids give similar 

results, and the model of Theta - with the model of 

Kuznetsov. This can be explained by the fact that the 

Theta model of the fluid admits rarefaction waves of 

arbitrarily large amplitude, and the Kuznetsov model 

(boiling liquid at room temperature) is close to the 
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Theta equation. Models of bubble and cavitation of 

liquid do not allow significant negative pressures. 

 

 

 

 
a)                                                                                         b) 

Fig.1. Dependences of the deflection w (a) of the shell and the pressure P (b) in a bubble liquid of a small gas 

content with time. Continuous curves are calculated taking into account, a dasheds - without taking into account 

the plasticity of the shell material. The solid curve, isolated by the letter Э, was obtained experimentally [5]. 

 

 
a)                                                                                  b) 

Fig.2. Time variation in deflections of the central point of the shell as a function of time for different fluid 

models (a - with allowance for, b - without plasticity). 
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Fig.3. Influence of changes in the parameters of the shell material (curve 1 - steel, 2 - CuSi3Mn1, 3 - D16AT) 

on the deflections of the central point of the elastic shell. 

 

 
Fig.4. Step-by-step account of the influence of the accumulated plastic deformation of the shell on its deflections 

(curve 1 - through 1 step, curve 2 - through 5 steps, curve 3 - through 10 steps, curve 4 - through 20 steps) 

 

The effect of changes in material parameters and 

shell geometry is not significant for the stability of 

computations. The calculations were carried out until 

such a time that the edge effects do not affect the 

residual deflection acquired by the shell (Fig. 3). 

A step-by-step account of the accumulated plastic 

deformation of the shell significantly affects the 

deflections of its central point (Fig. 4). 

 

Conclusions.  

In the process of calculations, it is established 

that the influence of the hydrodynamic load generates a 

complex stressed-strain state in the hydro-elastic-

plastic system. The influence of the loading parameters 

and the medium state is essential for evaluating the 

strength and load-carrying capacity of the shell. 

Therefore, the use of the theory of elastoplastic flow in 

the analysis of this class of problems seems necessary. 

Thus, the developed numerical method and the results 

of the work make it possible to more reasonably 

approach the dynamic calculation of some technical 

objects and designs, more accurately mathematically 

simulate and solve a number of problems of non-

stationary hydroelasticity, taking into account the 

nonlinear nature of structural elements in the 

nonstationary interaction with the medium. The 

proposed numerical method for solving this problem 

based on Timoshenko's nonlinear model for the shell 

and for various models (bubble, cavitation, metastable) 

of an ideal fluid can be applied to a number of related 

problems in mathematical physics. 
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