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Abstract 

We propose a return based modification of the portfolio variance matrix for asset 
allocation using risk parity. The modification is based upon a single scalar 
parameter which can be tuned to tailor the allocation for desired expected risk 
and/or return. The present work contributes a new twist on risk parity. While 
classical risk parity methods are based exclusively on volatility, the new solution 
(Modified Risk Parity) considers both historical returns and their variance in the 
construction of an optimal, diversified investment portfolio. We present two 
examples for periods including the recent financial market crises. The results 
suggest that the modification may lead to significantly improved risk adjusted 
returns over those realized by the conventional risk parity method. 
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1. Introduction 

Analytic construction of the asset distribution comprising an optimal invest- 
ment portfolio began with the work of Markowitz (1952), who describe an 
“efficient frontier” of expected return (E) and risk (V) for the portfolio. Markowitz 
showed that individual asset weights could be designed to maximize portfo- lio 
returns for a fixed accepted degree of risk, or alternatively, minimize risk given a 
constant level of expected portfolio return. The idea is to minimize risk exposure 
by diversifying its constituent asset classes, taking advantage of their respective 
uncorrelated temporal price dynamics. 

The mean-variance solution has been criticized on the grounds that it is 
unstable with respect to small variations in inputs, thereby increasing variance of 
the expected return resulting in a sub-optimal solution (Merton, 1980; Michaud, 
1989). 

An alternative approach to risk reduction can be achieved by the so-called 
Risk Parity portfolios, considered by Qian (2005, 2006). In a risk parity portfolio, as 
originally formulated, the asset class distribution is allocated such that each 
instrument contributes an equal amount of risk to the overall portfolio. This 
effectively limits the potential loss contributed by any single asset class, and is 
expected to provide excellent returns for a constant level of risk. It is notable, 
however, that the general problem solved for asset allocation on the basis of risk 
parity can also be formulated as the classical Markowitz problem of minimization 
of the portfolio variance, albeit with a constraint that ensures that the weight of 
each component optimal portfolio be strictly positive (see Chaves et al. (2012), 
and also the Appendix below). From this perspective, risk parity is rather only a 
salient feature of a certain class of minimum variance portfolios, and it need not 
be invoked as an independent fundamental criterion for asset allocation. 

Maillard et al. (2010) analyzed the theoretical unconstrained properties of 
risk parity portfolios. The authors assert that this methodology offers variance 
reduction lying somewhere between the heuristic methods of minimum variance 
(Haugen and Baker, 1996) and equally-weighted portfolios (Benartzi and Thaler, 
2001). Each method has disadvantages to consider: the minimum variance 
approach may concentrate on a few asset classes with the lowest variance, while 
the 1/n portfolio ignores asset covariance and historical dispersion (Maillard et al., 
2010). 

Risk parity is an attractive philosophy in portfolio construction due to its 
intuitive appeal, straightforward computation (Chaves et al., 2012), and relatively 
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strong performance in terms of risk-adjusted return when compared to other 
diver- sification strategies (e.g., see Clarke et al. (2012), Exhibit 2). 

The present work contributes a new twist on risk parity. While classical risk 
parity methods are based exclusively on volatility, the new solution (Modified Risk 
Parity) considers both historical returns and their variance in the construction of 
an optimal, diversified investment portfolio1. In this sense, the variance-return 
relationships of the modified risk parity portfolios are evocative of Markowitz’ 
Efficient Frontier (see the figures below). Indi- viduals routinely invest in 
companies or sectors based on the expectation of performance in the next period. 
In Modified Risk Parity, this information is explicitly represented in the analytic 
construction of the portfolio, which simultaneously distributes risk across asset 
classes. 

The degree to which historical returns influence the portfolio weights 
calculation is controlled by the magnitude of a single tuning parameter. The 
solution reduces to classical risk parity when the value of this parameter is set 
equal to zero. 

Back-testing results for diversified portfolios spanning nearly two and a half 
decades are presented. These results demonstrate that, in certain scenarios, this 
method may lead to significant improvement on returns over those realized by 
the conventional risk parity method. 

The primary application of this new method is low frequency re-balancing of 
long positions in a portfolio of negatively correlated financial instruments. 

 

2. Methods 

2.1. Analysis 

We describe our method in the context of a portfolio which is rebalanced at 
the beginning of every year on the basis of the performance of the assets within it 
during the immediately prior year. Let r = [r1, r2, ...] be the vector of the annual 
returns of the assets of the prior year, and V the variance matrix of the daily 
returns of the prior year. 

                                                           
1 Although the proposed method can in principle be applied to more general cases,   here 
we are interested only in annually updated portfolios with returns and their variance 
computed on the basis of the daily data for the year immediately prior to the beginning    
of the year of investment 
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For a portfolio with two assets, or in the case that V is a diagonal matrix, the 
weights of the assets on the basis of the classical risk parity are given by: 

𝑤𝑤𝑖𝑖 = 𝑘𝑘
𝜎𝜎𝑖𝑖

                                                                                                                          (1)   

where σi is the standard deviation of the daily returns of the asset i, given by 
�𝑉𝑉𝑖𝑖𝑖𝑖  and k is a constant determined by the condition ∑𝑤𝑤𝑖𝑖 = 1. 

In order to explicitly incorporate the asset returns in the methodology, we 
use return modifed standard deviations defined by 

𝜎𝜎�𝑖𝑖 =
𝜎𝜎𝑖𝑖

(1 + 𝑟𝑟𝑖𝑖)𝛼𝛼
                                                                                                             (2) 

where α, the return exponent, is a parameter to be specifed, and with the 
modifed weights determined exactly as in (1) above: 

𝑤𝑤�𝑖𝑖 =
𝑘𝑘�
𝜎𝜎�𝑖𝑖

= 𝑘𝑘�
(1 + 𝑟𝑟𝑖𝑖)𝛼𝛼

𝜎𝜎𝑖𝑖
                                                                                              (3) 

where k, once again, is determined by the constraint ∑𝑤𝑤�𝑖𝑖 = 1. 

The returns exponent α in (3) controls the extent to which the previous 
returns influence the allocation assignment looking forward. If α is positive, the 
allocation to assets with higher prior returns is higher relative to their weights as 
determined according to classical risk parity, reflecting the expectation that the 
assets whose returns were higher in the prior year will continue to outperform. 
Conversely, for a contra-momentum strategy, one specifies α to be negative, with 
the expectation that the assets with lower prior returns will perform better in the 
next year. Obviously, in the limiting case where α = 0, the allocation reduces to 
the classical risk parity solution. The solution regimes controlled by α can be 
summarized as follows: 

α = 0 : Classical Risk Parity     (4) 

α > 0 : Modified Risk Parity, Para-momentum 

α < 0 : Modified Risk Parity, Contra-momentum 

For the general case, the classical risk-parity weights for the vector w = [w1, 
w2, ...] are obtained by the solution of the problem  

𝑉𝑉𝑤𝑤 = 𝜆𝜆 𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤)                                                                                                           (5) 

subject to 

𝑤𝑤𝑖𝑖 > 0,�𝑤𝑤𝑖𝑖 = 1                                                                                                      (6) 
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Here, λ is a constant which is obtained as a part of the solution, and Inv(w) is 
the vector whose elements are the inverses of the corresponding elements of w, 
given by [1/w1, 1/w2, ...]. 

It should be noted that although the problem in equations (5) and (6) is 
generally formulated as arising from the requirement that the risk contribution of 
each asset in the portfolio to the overall portfolio risk be the same (and hence the 
appellation risk parity) –an entirely novel concept at the time of its introduction– a 
more satisfactory way to view the problem is that its solution minimizes the 
portfolio variance, exactly as in the classical Markowitz approach, but subject to a 
constraint that enforces the requirement that the weight of each asset in the 
optimal portfolio be strictly positive (see Appendix). From this perspective, risk 
parity is just a property of a minimum variance portfolio, albeit designed with a 
constraint not used in the construction of the classical minimum variance portfolio, 
rather than an independent fundamental concept. 

For the modified risk parity approach, we solve the same equation (5), except 
that the usual variance matrix V is replaced by the return modified variance 
matrix V, defined by. 

𝑉𝑉 = 𝑅𝑅𝑉𝑉𝑅𝑅                                                                                                                       (7) 

where R is a diagonal matrix with 𝑅𝑅𝑖𝑖𝑖𝑖 = 1
(1+𝑟𝑟𝑖𝑖)𝛼𝛼

. 

We should note that the modification proposed here retains the positive 
definiteness of the variance matrix, and allows the modified risk parity allocation 
problem to be solved by means of existing implementations of risk parity 
algorithms without any changes. Our own method is a Newton-type approach 
described in the following section. 

2.2. A Newton-type method for Risk Parity Allocation 

We have used, for the illustrative examples to follow, a Newton-type method 
for the solution of (5) and (6) that explicitly takes into account the positivity 
constraints on the asset weights. Another application of Newton’s method to risk 
parity based allocation without explicit imposition of the positivity constraint in 
the numerical algorithm has been described by Chaves et al. (2012). 

To solve (5) with (6) for a portfolio containing N assets we use the following 
algorithm. 
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1. Choose a positive and small δ for the positivity constraints for w, the 
convergence parameter ϵ,  and the damping parameter β, with  0 ≤ β < 1 
and initialize. 

1a. Calculate the initial solution w0 by ignoring the diagonal ele- ments 
of V and (1), i.e. 

2. Iterative solution for I = 0,1,2, ... till convergence 

2a. Newton step 

𝑤𝑤� (𝐼𝐼+1) = 𝑤𝑤𝐼𝐼 + (𝑉𝑉 + 𝜆𝜆𝐼𝐼𝐷𝐷𝑖𝑖𝐷𝐷𝐷𝐷�𝐼𝐼𝐼𝐼𝐼𝐼2(𝑤𝑤𝐼𝐼)�))(−1)(−𝑉𝑉𝑤𝑤𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑤𝑤𝐼𝐼)) 

where the elements of the vector Inv2(x) for any vector x are the 
squares of the elements of of Inv(x), and Diag(x) is the diagonal 
matrix containing the elements of the argument on its diagonal. 

2b. Impose positivity constraints 

𝑤𝑤�𝑖𝑖 (𝐼𝐼+1) = 𝑚𝑚𝐷𝐷𝑚𝑚�𝑤𝑤�𝑖𝑖(𝐼𝐼+1),𝛿𝛿� ,   𝑖𝑖 = 1,2,3 …  𝑁𝑁 

2c. Normalize 

𝑤𝑤�𝑖𝑖(𝐼𝐼+1) =
𝑤𝑤�𝑖𝑖(𝐼𝐼+1)

∑𝑤𝑤�𝑖𝑖(𝐼𝐼+1) ,   𝑖𝑖 = 1,2,3 …  𝑁𝑁 

2d. Damped update of w 

𝑤𝑤(𝐼𝐼+1) = (1 − 𝛽𝛽)𝑤𝑤� (𝐼𝐼+1) + 𝛽𝛽𝑤𝑤𝐼𝐼  

2e. Update λ. 

𝜆𝜆(𝐼𝐼+1) = (
1
𝑁𝑁

)𝑤𝑤(𝐼𝐼+1)′𝑉𝑉𝑤𝑤(𝐼𝐼+1) 

2f. Test for convergence. 

If 𝑚𝑚𝐷𝐷𝑚𝑚��𝑤𝑤(𝐼𝐼+1) −𝑤𝑤(𝐼𝐼)�, �𝜆𝜆(𝐼𝐼+1) − 𝜆𝜆(𝐼𝐼)�� < 𝜖𝜖 , stop, otherwise 
increment I and go to step 2a. 

 

2.3. Adaptive Regime Estimation 

The only free parameter in the modified risk parity method described above 
is the scalar that we call the return exponent- see equation (2) above. Some 
preliminary calculations for a period that included the recent financial crisis in 
2008 and the dot-com implosion of the early 2000s suggested that this parameter 
–or more specifically, whether it is positive or negative– significantly affects the 
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long term performance of modified risk parity portfolios. In other words, the 
decision on whether to use a para-momentum or a contra-momentum strategy 
for allocating the weights is of prime importance. We do not claim to have 
completely solved this problem, but a simple device appears to be quite effective 
for the examples that we use to illustrate the performance of modified risk parity 
portfolios. 

Our approach rests on the assumption that the annual returns of equities 
relative to the annual returns of assets that are nominally negatively correlated to 
equities for a given year may be a good indicator of whether or not the high 
performers of the year will continue to outperform in the immediately following 
year. More concretely, for the construction of the portfolio for the year i, we 
consider the equity to bond return ratio series for the prior years. 

𝑆𝑆[𝑖𝑖] = [𝜌𝜌1,𝜌𝜌2,𝜌𝜌3, … ,𝜌𝜌𝑖𝑖−1],   𝜌𝜌𝑗𝑗 =
(1 + 𝑟𝑟𝑗𝑗𝑀𝑀)
(1 + 𝑟𝑟𝑗𝑗𝐹𝐹)

                                                       (8) 

where 𝑟𝑟𝑗𝑗𝑀𝑀  is the annual return for the year j for equities and 𝑟𝑟𝑗𝑗𝐹𝐹  is the annual 
return for the year j for bonds. In the examples shown below, we use the returns 
of a SP500 fund (Vanguard 500 Index Investor, VFINX) as a proxy for equity 
returns, and the returns of a long term treasury fund (Vanguard Long-Term 
Treasury Investment, VUSTX) as a proxy for bond returns. 

We use the mean µS and the standard deviation σS of the array S[i] of the 
return ratios for the years prior to the year for which the portfolio is to be 
constructed and the return ratio for the prior year, ρi−1, to determine whether to 
use a contra-momentum (negative return exponent) strategy or a para-
momentum strategy (positive return exponent) thus: 

𝜌𝜌𝑖𝑖−1 < 1     𝑜𝑜𝑟𝑟    �𝜌𝜌(𝑖𝑖−1) − 𝜇𝜇𝑆𝑆�  ≥  𝛾𝛾𝜎𝜎𝑆𝑆   ∶    𝐶𝐶𝑜𝑜𝐼𝐼𝐶𝐶𝑟𝑟𝐷𝐷 −𝑀𝑀𝑜𝑜𝑚𝑚𝑀𝑀𝐼𝐼𝐶𝐶𝑀𝑀𝑚𝑚         (9) 

𝜌𝜌𝑖𝑖−1 < 1   𝐷𝐷𝐼𝐼𝑎𝑎   �𝜌𝜌(𝑖𝑖−1) − 𝜇𝜇𝑆𝑆�  <  𝛾𝛾𝜎𝜎𝑆𝑆   ∶    𝑃𝑃𝐷𝐷𝑟𝑟𝐷𝐷 −𝑀𝑀𝑜𝑜𝑚𝑚𝑀𝑀𝐼𝐼𝐶𝐶𝑀𝑀𝑚𝑚       

where γ is a fixed constant (which we have specified to be 1.5 for all the examples 
described below). These conditions are based on the premise that normally the 
stock returns are higher than the bond returns and the equity to bond return ratio 
does not deviate too much from the mean of the historical return ratios. 

The criterion in (9) is used for the Adaptive Modified Risk Parity (AMRP) 
calculations below to specify the sign of the return exponent for modifying the 
portfolio variance matrix for the modified risk parity calculations. 
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2.4. Summary of the procedure 

As mentioned above, in the illustrative examples the portfolios are 
rebalanced at the beginning of every year on the basis of the historical annual and 
daily returns of the assets in the portfolio for the immediately prior year, with the 
latter used to compute the portfolio variance for input to the asset allocation 
calculations. The goal is to compare the performance of the portfolios constructed 
on the basis of the following variations of risk parity: 

1. The classical risk parity procedure (RP). 

2. The modified risk parity procedure (MRP) wherein the return expo- nent 
is fixed and positive for the entire period of back tests. 

3. The (limited) adaptive modified risk parity procedure (AMRP) wherein 
the magnitude of the return exponent is fixed and identical for every 
year during the entire period of the back test, but its sign is adaptively 
varied according to (9) in order to allocate the weights appropriate for 
the estimated regime for the ensuing year. Clearly, we have not 
addressed here the interesting and the more general problem of how to 
specify both the sign and the magnitude of the return exponent on the 
basis of historical data available at the time of allocation. 

Generally, in risk parity allocation, all of the assets in the basket are included 
in the calculations. In one of the examples below we also show some results for 
risk parity with a momentum overlay (RP/M, MRP/M and AMRP/M) that excludes 
one or more assets from the allocations on the basis of relative momentum. 

3. Results 

This section provides two examples of the practical application of the 
Modified Risk Parity method. Results of back-testing are compared against 
classical risk parity for diversified asset mixes covering periods that include both 
the dot-com bust of the early 2000s and the financial crisis of 2008. 

3.1. Two Asset Example 

Figures (1-4) display the performance metrics for the two asset basket of the 
SP500 ETF, SPY, and the long term treasury fund WHOSX for the magnitude of the 
return exponent alpha (see, Eq. (2)) in the range [0, 10] for the years 1995-2017. 
In this specific example, every variation of risk parity leads to substantial 
improvement in the risk based performance metrics (volatility, maximum 
drawdown, Sharpe ratio, and Sortino ratio) but only the adaptive modified risk 
parity method enhances the returns as well. We note here that due to the very 
low returns of some classical risk parity based portfolios, risk parity is often used 
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in conjunction with leverage (see, e.g., Qian (2005)). The results for this example 
suggest that adaptive modified risk parity may obviate the need for such leverage. 

Figure 1. Two Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Two Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity 
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Figure 3. Two Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Two Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity 
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3.2. A Multi-Asset Example 

The basket for the muti-asset example consists of four index based equity 
ETFs: (i) SPY for the SP500 large cap stocks, (ii) MDY for mid-cap stocks, (iii) NAESX 
for small-cap stocks, and (iv) QQQ for the NASDAQ 100 index, and the long term 
treasury fund WHOSX. The results for the period 2000-2017 for the magnitude of 
the return exponent α is the range [0, 20] are displayed in Figures (5-8). The 
momentum overlay results in these plots (RP/M, MRP/M, and AMRP/M) were 
obtained by replacing, for a given year, one or or more of the equity ETFs whose 
returns for the prior year were lower than that of the treasury fund, by the 
treasury fund. Once again, the adaptive modified risk parity based portfolios, with 
and without the momentum overlay, yield significantly improved performance, 
both in terms of the risk based metrics as well as the total returns. Quite 
noteworthy is the substantially enhanced improvement in performance in the 
momentum portfolios using the modified risk parity approach. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5. Multi-Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity. The "/M" denotes results for the RP, MRP, and AMRP portfolios with 
a momentum overlay (see Section 3.2) 
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Figure 6. Multi-Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity. The "/M" denotes results for the RP, MRP, and AMRP portfolios with 
a momentum overlay (see Section 3.2) 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Multi-Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity. The "/M" denotes results for the RP, MRP, and AMRP portfolios with 
a momentum overlay (see Section 3.2) 
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Figure 8. Multi-Asset Example 
Notes: RP is Classical Risk Parity; MRP is Modified Risk Parity; and AMRP is Adaptive 
Modified Risk Parity. The "/M" denotes results for the RP, MRP, and AMRP portfolios with 
a momentum overlay (see Section 3.2) 

 

5. Concluding Remarks 

The main contribution of our work is an adaptive modification of the 
portfolio variance matrix that can be used for incorporating asset returns for asset 
allocation within the risk parity framework. The modification is based on a single 
parameter (that we call return exponent) whose value can be changed on the 
basis of the expectation of the relative returns of stocks and bonds in the near 
future.  In our view, the methods for determining the optimal value of this return 
exponent, especially for re-balancing intervals different from a year that we have 
used in our illustrative example may be a fruitful area for further research. 

Our method may find application in the design of balanced portfolios with 
better risk adjusted performance than the classical risk parity based approaches.  
Further, the method may also be used for designing portfolios suited to an 
investors risk tolerance by appropriate choice of the return exponent.  
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Appendix: Risk Parity and Minimum Variance Portfolios 

In this Appendix we show that the solution of the general risk parity problem 
defined by (5) and (6) also minimizes the portfolio variance, though with the 
constraint that ensures that the weight of each asset in the optimal portfolio be 
strictly positive. 

Consider the problem (see [5]) of minimization of the portfolio variance 

𝑀𝑀𝑖𝑖𝐼𝐼𝑖𝑖𝑚𝑚𝑖𝑖𝑀𝑀𝑀𝑀     𝒘𝒘′𝑽𝑽𝒘𝒘                                                                                    (𝐴𝐴. 1) 

subject to 

� ln(𝑤𝑤𝑖𝑖) ≥ 𝐶𝐶                                                                                           (𝐴𝐴. 2) 

where C is finite number. Clearly, the constraint (A.2) ensures that all the weights 
in the optimal portfolio are positive and non-zero. 

The first order conditions for the solution of this problem are, together with 
(A.2): 

𝑽𝑽𝒘𝒘 =
1
2

 𝜇𝜇 𝐼𝐼𝐼𝐼𝐼𝐼(𝒘𝒘)                                                                                   (𝐴𝐴. 3) 

𝜇𝜇 ��𝑙𝑙𝐼𝐼(𝑤𝑤𝑖𝑖) − 𝐶𝐶� = 0      𝑜𝑜𝑟𝑟    ��𝑙𝑙𝐼𝐼(𝑤𝑤𝑖𝑖) − 𝐶𝐶� = 0                  (𝐴𝐴. 4) 

where µ is the Lagrange multiplier associated with the constraint (A.2). Since V is 
positive definite, µ is necessarily larger than zero, and, therefore, the second of 
(A.4) follows from the first, which is the complementary slackness condition for the 
solution of (A.1) and (A.2). 

It is straightforward to verify that if the pair {w*, λ*} is the solution of (5) and 
(6), the pair {w*, µ* = 2λ*} also solves (A.1) and (A.2), with 𝐶𝐶 = ∑ 𝑙𝑙𝐼𝐼(𝑤𝑤𝑖𝑖∗).  
Conversely, if the pair { 𝑤𝑤� , �̂�𝜇 } is the solution of  (A.1) and (A.2) for a specified 
value of C, the pair {𝜃𝜃𝑤𝑤� , 𝜃𝜃2�̂�𝜇 } solves this problem2 with 𝜃𝜃 = 1/∑𝑤𝑤�𝑖𝑖   and 

𝐶𝐶 = ∑ 𝑙𝑙𝐼𝐼(𝜃𝜃𝑤𝑤�𝑖𝑖)  ,  and  the  pair  {𝜃𝜃𝑤𝑤� , 1
2
𝜃𝜃2�̂�𝜇 } also  solves  the problem (5) and (6). 

Thus, risk parity portfolios are also minimum variance portfolios with a constraint 
that enforces the requirement that the weights of all the assets be nonzero and 
positive. 

                                                           
2 This property of the solution suggests that the parameter C of the problem is no longer 
arbitrary as soon as a normalization condition ∑𝑤𝑤𝑖𝑖 = 1 is imposed on the solution w. 


