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ABSTRACT 
The uncertainties present in hydrological models have made them difficult and often 

impossible to apply. This work evaluated the sensitivity of input parameters in the SWAT 

model used for the modeling of average monthly flow-discharge in the Jucu River Basin, 

located in the southeast portion of the state of Espírito Santo, Brazil. Sensitivity analysis was 

performed using the SWAT-CUP program, which uses the SUFI-2 algorithm. Four sensitivity 

analysis tests differing by the length of hydrological series, number of iteration and fluviometric 

station locations resulted in different sensitivity levels of input parameters used in the model. 

In this way, the present study emphasizes the need for a greater detailing of methodological 

processes used in the sensitivity analysis, so that different hierarchies of parameters can be 

obtained through the same tool. 

Keywords: sensitive parameters, simulation, SWAT-CUP. 

Análise de sensibilidade do modelo Soil and Water Assessment Tools 

(SWAT) na modelagem de vazões em uma bacia hidrográfica rural 

RESUMO 
As incertezas presentes em modelos hidrológicos têm dificultado e muitas vezes 

inviabilizado sua aplicação. Este trabalho tem como objetivo a avaliação da sensibilidade dos 

parâmetros de entrada no modelo SWAT para a modelagem de vazões médias mensais na bacia 

do rio Jucu, localizado na porção sudeste do estado do Espírito Santo (Brasil). A análise de 

sensibilidade foi realizada por meio do programa SWAT-CUP ao qual faz uso do algoritmo 

SUFI-2. Quatro testes que se diferenciavam pelo tamanho da série hidrológica, escolha da 

estação de monitoramento de vazões e número de variações dos valores dos parâmetros durante 

a análise de sensibilidade resultaram em diferentes níveis de sensibilidade para os parâmetros 

de entrada do modelo SWAT. Desta forma, o presente estudo enfatiza a necessidade de maior 

detalhamento dos processos metodológicos empregados na análise de sensibilidade, tendo em 

vista que diferentes hierarquias de parâmetros podem ser obtidas por meio da mesma 

ferramenta. 

Palavras-chave: parâmetros sensíveis, simulação, SWAT-CUP.  
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1. INTRODUCTION 

Hydrological models are powerful tools to represent water-resource availability and 

behavior in drainage basins under many applications, such as climate change, flood, drought, 

runoff and nutrient movement (Abbaspour et al., 2015). They can assist in the planning and 

decision-making processes for environment protection and the guarantee of water availability 

for future uses (Da Silva et al., 2015; Fatichi et al., 2016). 

The Soil and Water Assessment Tool (SWAT) is a physically based, continuous-time, 

mathematical-hydrological model (Arnold et al., 1998). It has been initially designed to 

estimate water quantity and quality under different conditions over time (past, present and 

future) in small- and large catchments with satisfactory accuracy (Francesconi et al., 2016; 

Lamba et al., 2016; Zhang et al., 2016; Golmohammadi et al., 2017). 

The ability of a hydrological model to produce satisfactory predictions are necessarily 

correlated to adequate sensitivity analysis and model calibration (Song et al., 2015). 

Hydrological models, such as SWAT, incorporate several parameters (pedological, climatic, 

hydrological and others) obtained theoretically and through field data collection. Some of these 

contribute greatly to model outputs (sensitive parameters), while others have minor relevance 

(non-sensitive parameters) (Van Griensven et al., 2006).  

The calibration process of the SWAT model using all of the input variables requires a great 

deal of effort, money and time, whereas the removal of sensitive variables decreases the 

accuracy of the results (Zadeh et al., 2017; Song et al., 2015). The inappropriate removal of 

parameters during the sensitivity process may lead to inconsistent model results (Sahu et al., 

2016). 

Sensitivity analyses can be classified into local, in which changes in parameters are made 

one-by-one, while all the others are kept constant, and global, which promotes a multilinear 

regression of the entire input space (Brouziyne et al., 2017; Song et al., 2015). There are many 

techniques that can be applied to sensitivity analyses:  manual operations, screening methods, 

regression analyses, variance-based methods, meta-modeling methods, and others (Song et al. 

2015). 

Besides the increasing of SWAT publications, only a few of the techniques focus on 

sensitivity-analysis improvements (Brouziyne et al., 2017). Wu and Liu (2012) proposed an 

automated sensitivity analysis through R-package Flexible Modeling Environment (FME). 

Romagnoli et al. (2017) highlighted that data availability, such as flowstream and precipitation 

series length, may affect the sensitivity ranking. Kouchi et al. (2017) examined the sensibility 

of parameters under different algorithms and objective functions, obtaining a diverse range of 

sensitive parameters leading to different streamflow estimations. 

Some other studies done in Brazil (Da Silva et al., 2015; Pontes et al., 2016; Brighenti et 

al., 2016) and internationally are also relevant (Sarrazin et al., 2016; Zhang et al., 2016; 

Tegegne et al., 2017) when searching for regional-sensitive parameters. However, none of these 

has paid much attention to how procedures (number of iterations) and data input (length of 

historical series and fluviometric station selection) may affect the sensitivity-analysis process. 

Considering this deficiency, this paper conducted a global sensitivity analysis using the 

Sequential Uncertainty Fitting Version 2 (SUFI2) algorithm replicated under four different 

scenarios differing by input variables and number of iterations. Using this procedure, we 

investigated how methodologies can influence the rank of sensitive parameters on the SWAT 

model.  
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2. MATERIAL AND METHODS 

2.1. Hydrological modeling 

The study relates to the Jucu River Basin, located in the southeast portion of the state of 

Espírito Santo, which has a catchment area of 2,183 km2 (Figure 1). This area was chosen 

because it is the main freshwater source for more than 1.9 million inhabitants (IBGE, 2018) of 

the metropolitan area of Vitória (state capital), making the accurate prediction of water 

availability over time crucial. Additionally, the basin has a database from previous monitoring 

(such as streamflow, soil use, and pedology), which are required for SWAT-modeling runs. 

 
Figure 1. Location of the Jucu River Basin. 

The first SWAT-modeling step involved the design of the hydrographic basin, sub-basins 

and drainage network by means of a digital elevation model (DEM) with a spatial resolution of 

30 meters (Figure 2a) obtained by the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) in 2011. 

Then, physiographic data of pedology (Figure 2b), land use and occupation (Figure 2c) 

and classes of slopes were obtained. The soil information was acquired from a survey of soil 

from the state of Espírito Santo conducted in 1978 by the Brazilian Agricultural Research 

Corporation (EMBRAPA). The soils types found in the Jucu River Basin were: 

● LVd2 - dystrophic red yellow ferralsol: A moderate clayey texture, strong corrugated 

relief; 

● LVd3 - dystrophic red yellow ferralsol: A moderate clayey texture, and mountainous 

relief; 

● LVd12 - dystrophic red yellow ferralsol: A moderate clayey textured, soft wavy relief; 

● Cd1 - dystrophic haplic cambisol: A moderate clayey texture, and medium strong wavy 

mountainous relief; 

● PV2 - alic acid red yellow acrisol: A moderate clayey relief texture; 

● Amd2 - dystrophic arenosol: A moderate sandy flat relief; 

● Ad1 - dystrophic fluvisol: A weak and moderate texture, medium plane relief; 

● AR - eutrophic leptosol: A moderate texture and clayey, steep relief, mountainous and 

strong wavy. 
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Land-use and occupation data were obtained from a survey carried out by the State Institute 

of Environment and Water Resources (IEMA, 2007). From the data described above, the 

hydrologic response units (HRU) were established. 

After HRU definition, the data from climatic stations located in the study basin were 

inserted on the SWAT model. These data refer to solar radiation (KJ.m2), rainfall (mm), 

maximum and minimum air temperatures (°C), relative humidity (%) and wind speed (m.s-1). 

These data were obtained from the Capixaba Institute for Research, Technical Assistance and 

Rural Extension (INCAPER, 2016) and the National Water Agency (ANA, 2016). 

The last stage of SWAT processing consisted of the simulation, where the warm-up period, 

simulation period, time-step of the monthly simulation, and output data (water production - 

series of monthly average flows) were defined. Once the output data were determined, the 

sensitivity analysis of the parameters related to water production in the river basin was 

performed. 

The sensitivity analysis used discharge data from two different fluviometric stations. The 

first, under code 57230000, was called “Fazenda Jucuruaba”; and the second, under code 

57170000, was called “Córrego do Galo”. Both are under the responsibility of the National 

Water Agency (ANA). The latter station covers a drainage area of 1,675.19 km2, while the 

former station covers 965.67 km2, as shown in Figure 2-d. The list of climatic stations, station 

operators, coordinates of the station, data type and respective length of historical records is 

shown in Table 1, arranged in turn geographically by means of Figure 2-d. 

 
Figure 2. Map of topography (A), pedology (B), land use (C), location of climatic, 

fluviometric and pluviometric stations (D) in the Jucu River Basin. 
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Table 1. Input data of the SWAT model. 

Type Symble Station Code Controller 
Coordinates* 

Latitude Longitude 

Climatic 
a Domingos Martins - 

INCAPER 
7745120.60 284999.72 

b Viana - 7746850.66 342404.53 

Pluviometric 

c Arace 02041020 

ANA 

7718808.69 281119.36 

d Marechal Floriano 02040012 7716039.40 218592.79 

e Perobinha 02040015 7735136.92 260035.13 

f Fazenda Jucuruaba 02040001 7709938.37 310756.88 

g Marechal Floriano 02040012 7716039.40 218592.79 

Fluviometric 
h Córrego do Galo 57170000 

ANA 
7752588.84 327516.21 

i Fazenda Jucuruaba 57230000 7741838.41 344989.90 

*UTM SIRGAS 2000 Zone 24S. 

2.2. Sensibility Analysis 

The sensitivity of the SWAT parameters was performed using the Sequential Uncertainty 

Fitting Version 2 (SUFI2) algorithm executed by the SWAT Calibration and Uncertainty 

Programs (SWAT-CUP) software. This process is carried out in conjunction with the 

calibration process, so it is necessary to include the flows estimated by the SWAT and the 

monitored flows. That is necessary because sensitivity is estimated according to the variations 

according to objective function that evaluates the model calibration’s effectiveness. 

The sensitivity of the parameters is computed by multiple regression systems represented 

in Equation 1, which returns the values of the parameters generated by the Latin hypercube 

sampling versus the objective function values (Abbaspour et al., 2007). 

g = α+ ∑ β
i
bi

m
i=1         (1) 

where g is the objective function value; b is the parameter; α is the regression constant; β 

corresponds to the technical coefficient attached to the variable b; and m is equal to the number 

of parameters. 

The mean of the variations in the objective function estimates the sensitivity. It is computed 

by altering each parameter, one by one, while all other parameters remain the same. This is 

evaluated by the values of t-stat and p-value. The higher the absolute value of t-stat and smaller 

the value of p-value, the more sensitive is the parameter (Abbaspour et al., 2007). 

The t-stat is the regression coefficient of a parameter divided by its standard error. If the 

coefficient value is greater than its standard error, the value of t-stat is greater than zero, so the 

parameter is sensitive (Abbaspour et al., 2015). To calculate the p-value, it is necessary to 

compare the value of t-stat with the values given on the t-Student distribution table. The p-value 

for each parameter tests the null hypothesis that the regression coefficient is equal to zero. 

A small value of p-value (<0.05) indicates that we can reject the null hypothesis. This 

means that the parameter exerts influence on the dependent variable, thus it is sensitive. The 

value of 0.05 indicates that there is a 95% probability that a parameter change will affect the 

dependent variable (Abbaspour et al., 2009). 

The parameters chosen for this analysis refer to those that can be adjusted and relate only 

to the water production in a river basin. The SWAT database presents a table of these parameters 

indicating their ranges of value, action plan (basin, sub-basin or HRU), form of variation of 

values (replace by a given value, add to the existing parameter value or relative when an existing 

parameter value is multiplied by), and the sensitivity-analysis group (water production, 

sediment yield or water quality). 
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Table 2 shows the parameters available for water production, their description, lower (LL) 

and upper (UL) limits for adjustments and the method of value variation.  The parameter 

descriptions, physical properties, and lower/upper limits are detailed by Arnold et al. (2012) in 

Soil & Water Assessment Tool Input/Output Documentation. The limits used here are adequate 

with field analyses, when compared with the indicated values given by Arnold et al. (2012). 

Table 2. Parameters of the sensitivity analysis related to water production. 

Parameter Description Unit LL LU 
Method of 

variation 

ALPHA_BF Baseflow alpha factor  day 0 1 Replace 

BIOMIX Biological mixing efficiency 1-1 0 1 Replace 

BLAI Maximum potential leaf area index  m2 m-2 0 1 Replace 

CANMX Maximum canopy storage  mm 0 10 Replace 

CH_K2 
Effective hydraulic conductivity in the main 

channel alluvium  
mm h-1 0 150 Replace 

CH_N2 Manning's "n" value for the main channel  s m-3 0 1 Replace 

CN2 
Initial SCS runoff curve number for moisture 

condition II 
1-1 -25% 25% Relative 

EPCO Plant uptake compensation factor 1-1 0 1 Replace 

ESCO Soil evaporation compensation factor  1-1 0 1 Replace 

GW_DELAY Groundwater delay time  day -10 10 Add 

GW_REVAP Groundwater "revap" coefficient  1-1 -0,036 0,036 Add 

GWQMN 
Threshold depth of water in the shallow 

aquifer required for return flow to occur  
mm -1000 1000 Add 

REVAPMN 

Threshold depth of water in the shallow 

aquifer for “revap” or percolation to the deep 

aquifer to occur  

mm -100 100 Add 

SOL_ALB Moist soil albedo  1-1 -25% 25% Relative 

SOL_AWC Available water capacity of the soil layer  mm mm-1 -25% 25% Relative 

SOL_K Saturated hydraulic conductivity  mm h-1 -25% 25% Relative 

SOL_Z Depth from soil surface to bottom of layer  mm -25% 25% Relative 

SURLAG Surface runoff lag coefficient day -25% 25% Relative 

TLAPS Temperature lapse rate ºC km-1 0 10 Replace 

SLSUBBSN Average slope length m 0 50 Replace 

1-1: dimensionless 

Four sensitivity tests were performed to verify the influence of the amount of input data 

(length of historical records of flows and fluviometric station location) and the number of 

variations in the values of each parameter within the range present in Table 1 (iterations) during 

the analysis. The tests are listed below: 

● 1st Test: long historical records (1987 to 2015) flow data from the Fazenda Jucuruaba 

fluviometric station with 300 iterations; 

● 2nd Test: long historical records (1987 to 2015) flow data from the Córrego do Galo 

fluviometric station with 300 iterations; 

● 3rd Test: same characteristics as the 2nd Test, but with 100 iterations; 

● 4th Test: short historical records (2013 to 2015) flow data from the Córrego do Galo 

fluviometric station with 300 iterations. 

The results obtained by the sensitivity analyses were evaluated by the t-stat and p- values. 

The first provides the sensitivity measure, where the higher its value the more sensitive the 

parameter is. The second determines the significance of the sensitivity, where a value close to 

zero indicates greater significance provided by SWAT-CUP. 
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3. RESULTS AND DISCUSSION 

The modeling results in SWAT divided the Jucu River Basin into 147 sub-basins, creating 

a total of 2,341 hydrological response units (HRU). The fluviometric station of Fazenda 

Jucuruaba was located in sub-basin Number 128 and Córrego do Galo in sub-basin Number 57. 

The first sensitivity test generated the sensitivity hierarchy of the parameters presented in 

Figure 3-a according to p-value and t-stat values. The second test, based on the same 

characteristics as the first one, but with data from the Córrego do Galo fluviometric station, 

generated the results of Figure 3-b. The third test corresponds to the same characteristics of the 

second, but only 100 iterations were used (Figure 3-c). Finally, the fourth test was constructed 

with short historical records of 3 years (2013 to 2015), with flow data from the Córrego do Galo 

fluviometric station, using 300 iterations (Figure 3-d). 

Van Griensven et al. (2006) suggest the classification of parameters regarding their 

sensitivity by means of the increasing hierarchical position of the parameters. Thus, the 

parameters can be categorized as very important (1st), important (2nd-6th), slightly important 

(7th-14th) and not important (15th-20th). 

For each test, the parameters considered as very important and important according to Van 

Griensven et al. (2006) correspond to the first six parameters with the lowest values of p-value 

and higher values (in module) of t-stat. They are presented below in descending order of 

sensitivity for the four tests: 

● 1st test - ALPHA_BF, SOL_Z, GW_DELAY, CN2, SOL_K, and ESCO; 

● 2nd test - ALPHA_BF, SOL_Z, GW_DELAY, ESCO, CN2, and CH_K2; 

● 3rd test - ALPHA_BF, SOL_Z, GW_DELAY, SOL_K, CH_K2, and CANMX; 

● 4th test - SOL_Z, ALPHA_BF, GWQMN, GW_DELAY, CN2, and SOL_K. 

In terms of sensitivity in predicting superficial flow rates, note that some parameters are 

important in some tests, while not in others. For example, the ESCO parameter is important in 

the 1st and 2nd tests, although in the 3rd test it is considered slightly important and not 

important in the 4th test. Thus, the ESCO parameter can be turned into one of the most- or least-

sensitive parameters for the same region under study depending on the methodology used. 

From the results (Figure 3), the least-sensitive parameters (the six with the major p-values 

in Figure 3) were categorized as "not important"; but in other tests, some were kept in the "not 

important" while others moved to the "slightly important" category. Even though that was 

expected, some parameters are generally less-sensitive, such as BLAI, REVAPMN, and 

CH_N2, while the most-sensitive are ALPHA_BF, SOL_Z, GW_DELAY, and CN2.  

For each performance used on the input data, such as length of historical records, 

fluviometric station chosen or the number of iterations used during the analysis-sensitivity 

process, there is a different list and sequence of sensitivity parameters. Even Abbaspour et al. 

(2018), the main developer of the SWAT sensitivity analysis method, affirms that sensitivity 

analysis provides information about the most important process-drivers in the study region, 

according to local characteristics.  

Therefore, the most sensitivity parameters should be analyzed for each study region, since 

the input data (land use, pedology, physical characteristics of the watershed and climatic data) 

are different. Besides, this paper indicates the use of different performances in analysis 

sensitivity in order to make the best choice of the most influential parameters on flow 

estimation. Each performance should be well-justified, such as the length of historical records, 

monitoring stations, number of iterations, minimum interval, maximum interval and method of 

variation of each during the sensitivity analysis. 
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Figure 3. Sensitivity of flow parameters for the first (A), second (B), third (C) and 

fourth (D) tests. 
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In this case study, we opted for the five common parameters obtained in the first and 

second alternatives, since the calibration tests used flow data from both fluviometric stations. 

The number of iterations considered appropriate corresponds to these alternatives because the 

SWAT-CUP developer recommends it. Lastly, the largest historical records available 

encompass a more-extensive series of flood and drought events. 

In summary, the parameters considered the most sensitive for the study region are: basal 

recession constant (ALPHA_BF), depth from soil surface to bottom of layer (SOL_Z), recharge 

time of the shallow aquifer (GW_DELAY), evaporation compensation factor (ESCO) and the 

SCS runoff curve number for moisture condition II (CN2). 

4. CONCLUSIONS 

The study investigated how methodological procedures (changing input variables and the 

number of iterations) can influence the ranking of sensitive parameters on the SWAT model. 

The primary conclusions reached are summarized as: 

● The sensitivity of the hydrologic parameters of the SWAT model not only depends on 

the physiographic and climatic variables of the study area, but also on the procedures 

used in the sensitivity analysis. The SWAT-CUP sensitivity analysis using the SUFI-2 

algorithm obtained different parameter hierarchies. It emphasizes the relevance of a 

greater detailing of methodological processes used in the sensitivity analysis, 

considering that different hierarchies of parameters can be obtained through the same 

tool. 

● Besides characteristics from the study area, all the procedures used to formulate the 

sensitivity analysis scenarios, such as variation in the number of iterations, fluviometric 

station location and length of historical records, affected significantly the results of 

sensitive parameters for estimating flow rate in the Jucu River Basin. Therefore, it is 

important that each study region that uses the SWAT model to predict superficial flow 

rates perform different procedures in sensitivity analysis to correctly determine the most 

sensitive parameters. 

● Among the range of input variables of the model, pedological variables were the ones 

that presented the highest sensitivity for the Jucu River Basin. 

We recommend the application of similar tests using other algorithms, rather than SUFI2, 

for parameter sensitivity analysis to estimate mean flows. In this way, it would be possible to 

investigate how those methodological procedures affect the results by the use of different 

sensitivity techniques. 
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