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The theory that explains the strong interactions of the elementary particles, as part of the standard model, it is the so-called Quantum
Chromodynamics (QCD) theory. In regimes of low energy this theory it is formulated and solved in a lattice with four dimensions
using numerical simulations. This method it is called the lattice QCD theory. Quark propagator it the most important element that is
calculated because it contains the physical information of lattice QCD. Computing quark propagator of chiral fermions in lattice
means that we should invert the chiral Dirac operator, which has high complexity. In the standard inversion algorithms of the Krylov
subspace methods, that are used in these kinds of simulations, the time of inversion is scaled with the inverse of the quark mass. In
lattice QCD simulations with chiral fermions, this phenomenon it is knowing as the critical slowing-down problem. The purpose of
this work is to show that the preconditioned GMRESR algorithm, developed in our previous work, solves this problem. The
preconditioned GMRESR algorithm it is developed in U(1) group symmetry using QCDLAB 1.0 package, as good “environment”
for testing new algorithms. In this paper we study the escalation of the time of inversion with the quark mass for this algorithm. It
turned out that it is a fast inversion algorithm for lattice QCD simulations with chiral fermions, that “soothes” the critical slowing-
down of standard algorithms. The results are compared with SHUMR algorithm that is optimal algorithm used in these kinds of
simulations. The calculations are made for 100 statistically independent configurations on 64 x 64 lattice gauge U(1) field for three
coupling constant and for some quark masses. The results showed that for the preconditioned GMRESR algorithm the coefficient k,
related to the critical slowing down phenomena, it is approximately — 0.3 compared to the inverse proportional standard law (k = —1)
that it is scaled SHUMR algorithm, even for dense lattices. These results make more stable and confirm the efficiency of our
algorithm as an algorithm that avoid the critical slowing down phenomenon in lattice QCD simulations. In our future studies we have
to develop the preconditioned GMRESR algorithm in four dimensions, in SU (3) lattice gauge theory.
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AJITOPUTMMH XIPAJTBHUX ®EPMIOHIB ¥V PEIIITYACTINA KX]T
Dafina Xhako!, Rudina Zegqirllari?
'Kagheopa izuunoi inocenepii, paxyiomem mamemamuunoi inoicenepii ma Qizuunozo mamunodyoyeans,
THonimexniunuit ynisepcumem Tipanu, Tipana, Anbania
’Kagedpa ¢izuxu, Daxyrsmem npupoonuyux nayx, Ynicepcumem Tipanu, Tipana, Anbania

Teopis, sika MOSCHIOE CHJIBHI B3a€MOJIi{ eIEeMEHTapHUX YaCTHHOK, SIK YaCTHHA CTAaHJapTHOI MOJIENI, Ile TaK 3BaHa TeOpist KBAaHTOBOI
xpomoauHamiku (KX). V pexumax manoi eHeprii 1t Teopist (OPMYITIOETBCS 1 BHPILNIYEThCS Y YOTHPHOX-BUMIPHIN pemniTmi 3a
JIOIIOMOTOI0 YHcesIbHOro MozemoBanHs. Lleit Meron HasuBaeThes pemituacta KX/I-teopis. KBapk npomnaratop € HalBaXkJIMBIiLINM
00YHUCITIOBANEHEM €JIEMEHTOM, OCKUIBKHU BiH MIiCTHTH (i3nuHy iHpopMmanito nmpo KX/ pemritky. O04nciieHHs Iponaratopy KBapKiB
xipaJpHUX (PEpPMIOHIB B PElIiTIIi O3HAYAE, 10 MM [IOBUHHI iHBEpTYyBaTH XipanbHuil oneparop Jlipaka, skl Ma€ BUCOKY CKJIaIHICTb.
VY cTaHapTHUX alropuTMax iHBepcii Merogamu KpuioBa, siki BAKOPUCTOBYIOTBCS B IIMX MOJENAX, Yac iHBepcii MaciTabyeTbes 3
oOepHEHOI0 Macoro KBapkiB. Y pemitdacToMy KXJ[-mozmenroBaHHI 3 XipaJbHUMH ()epMiOHAMH L€ SBHUILIE BiIOME SK KPUTHYHA
mpobieMa yroBiTbHEHH. MeToro 1aHoi poOOTH € ToKa3aTH, o po3pobieHuii Hamu nonependiin anroputm GMRESR Bupimye 1o
npo6seMy. 3anpononosanuii anroputM GMRESR pospo6nennii y rpynosiii cumerpii U (1) 3a mronomoroto makera QCDLAB 1.0, six
XOpOIIOTO «CePEeJOBUINA» Ul TeCTyBaHHS HOBHX alTOPUTMIB. Y Iiif poOOTi mOCHimKyeThcs 301IbIICHHS Yacy iHBepcii Bix Macu
KBapKiB ISl LIbOTO aJITOPUTMY. BusiBrItOoCs, 110 11e MIBUAKKIT anroput™ iHBepcil s pemwityactux KX/ MozpentoBans 3 XipalnbHUMHU
(depMioHaMH, IO «3aCHOKOIOE» KPUTHYHE YINOBUIBHEHHS CTaHAAPTHHUX ITOPUTMIB. Pe3ynbTaTn HMOpPIBHIOIOTBCS 3 aITOPUTMOM
SHUMR, sikuii € ONTUMAJIBHUM aJITOPUTMOM, III0 BUKOPUCTOBY€EThCA B IIUX BUJAX MOAeNoBaHHs. Po3paxyHku npoBoasatees a1 100
CTaTHCTUYHO HE3aJeKHUX KOHQirypawiit Ha 64x64 peuritounoMy kanibpoBounomy moii U(1l) mist TppOX KOHCTAHT 3B'SI3KY 1 AJIs
IesKHX Mac KBapkiB. OTpuMaHi pe3yibTaTH MOKa3aiy, mo s nonepeansoro anroputmy GMRESR koedinient k, mos's3anuii 3
KPUTUYHUMH SBHUIIAMH YIOBIIBHEHHS, CTAHOBUTH MPHOIN3HO — 0,3 TOPiBHSAHO 31 3BOPOTHUM MPONOPLUIHHAM CTaHAAPTHUM 3aKOHOM
(k=-1), mo BiH e macmraboBanuM anropurmoM SHUMR, HaBiTe s minbHMX pemritok. Lli pesymbraté poOisTs Oinbr
CTaOITbHIMHU 1 MiATBEPMXKYIOTH €(EKTUBHICTh HAIIOTO ANTOPHUTMY SK TAaKOro, IO MO3BOJISIE YHHKHYTH KPUTHYHOTO SIBUINA
ynoBinpHeHHS B pemritdactux KXJ[-monmemoBaHHSX. Y Hammx MaiHOyTHIX ITOCITI/DKEHHSX MU PO3BHHEMO IONEPEHIH anrophUT™M
GMRESR y wotnpbox BuMipax, [uis penriryacroi kanioposounoi teopii SU(3).

KJIFOUYOBI CJIOBA: airoputmH, XipajbHICTh, KpUTHYHI CIIOBUTEHEHHS, GepmionH, perritku, KX/

Quantum Chromodynamics (QCD) is the quantum theory of strong interactions of particles like quarks and gluons.
It studies the physics of strong interactions for different regimes of energy, from low to high regimes. At high energies
since asymptotic freedom of quarks it is displayed [1], we can make perturbative calculations of QCD. At low energies
it is displayed the quark confinement [1] where the coupling between quarks it is very strong. At these regimes we can
make only non-perturbative calculations. One of the most powerful methods at this point it is the lattice regularization
of gauge theories. It was proposed by Wilson in 1974 [2] as a lattice gauge theory that is formulated on a lattice with
© Xhako D., Zeqirllari R., 2019
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four dimensions, in space and time, where fields of quarks are positioned at lattice sites and the gluon fields are
positioned on the links connecting neighboring sites. Lattice QCD with chiral fermions is very important in
development of the QCD theory. Thus, we have to formulate QCD with chiral fermions on the lattice; for this purpose,
exist two main formulations: the domain wall fermions [3, 4] and the overlap fermions [5, 6], which are closely
related [7]. Specifically, the truncated overlap of domain wall fermions [8], as it is showed in [9] at any lattice spacing,
it is equivalent to overlap fermions in four dimensions. To take physical information from these theories we have to
calculate quark propagators, which are combined to takes meson, nucleon and other elementary particle propagators.
So, the basic major computing problem in lattice QCD simulations with chiral fermions is the calculation of quark
propagator.

MATERIALS AND METHODS
Since we have to simulate the lattice QCD theory with chiral fermions we can use the chiral Dirac operator that is
in fact the Neuberger operator or the so-called overlap operator [10]. The calculation of the overlap quark propagator
means that we have to solve large linear systems of the type:

D-x=b. )

In Eq. (1) operator De C™" is a sparse and large matrix operator representing the overlap Dirac operator on a
four-dimensional space-time lattice, xe C"is the quark propagator and he C" the source of quark. Due to high
complexity of this operator, generally, this problem requires very intensive computations and high computing power.

For the solution of large linear systems as expressed in (1), there are standard tested methods. The optimal
methods for chiral fermions are those from the Krylov subspace methods [11] such as: GMRES (Generalized Minimal
Residual) [11], CGNE (Conjugate Gradient on Normal Equation) [11], SHUMR (Shifted Unitary Minimal
Residual) [11]. These algorithms considerably slowed down for light quarks and in some cases don’t converges. The
inversion time in the Krylov’s inversion algorithms [12] escalate in a disproportionate proportion with the quark mass.
This phenomenon it is called the critical slowdown of simulation algorithms in lattice QCD with chiral fermions. For
this reason we use simulations of lattice gauge theory with U(1) symmetry or the simulations of the Quantum
Electrodynamics (QED), in a lattice with two dimensions, space and time lattice. The QED it is a good “environment”
for testing new algorithms of QCD. In [13] we have developed a faster inversion algorithm used for chiral fermions,
called the preconditioned GMRESR (Generalized Minimal Residual - Recursive) algorithm. The feature of our
preconditioned part is that we used the relation between the overlap operator and the truncated overlap operator with
finite extra dimension. For implementation of the preconditioned GMRESR algorithm, we have used a software called
QCDLAB [14, 15] which is a package designed for lattice QCD simulations and new algorithms. Specifically, we used
the QCDLAB 1.0 version (a free-shared package that can be downloaded from QCDLAB project homepage [16]) [14],
which has the lattice Schwinger model because this model owns similar characteristic and algorithms with lattice QCD.
The idea of the preconditioned part in a lattice QCD algorithm it is developed also in [17]. With our algorithm in lattice
with two dimension, we gain a factor of 2 if we compare our results with [17] for the same quark mass tested. Also,
with this algorithm we have calculated the propagator of the domain wall fermions, and we have used the truncated
overlap of domain wall fermions, in this case in 2+1 dimensions. Our new algorithm gives a significant contribution to
the lattice QCD algorithms and it is a new code that it is added to the QCDLAB 1.0 package, in U(1) gauge field
background. A typical test of the inversion algorithms is to study the convergence history of these algorithms,
specifically the residual norm convergence. This test shows the graphical results of the residual norm of the algorithm
with the number of the Dirac operator multiplications. Such kind of study for the preconditioned GMRESR algorithm
we have done in [18].

In this paper, we bring another important study on the efficiency and speed of an algorithm in the numerical
simulations of the lattice QCD with chiral fermions. It is the escalation of the algorithm with the quark mass. In the
standard inversion algorithms of the Krylov subspace methods, the time ¢ of inversion of chiral Dirac operator is scaled
with the inverse of the quark mass m, (in lattice unit)

t~(m,), @)

where k£ =—1 and this phenomenon is known as the critical slowing down. An inversion algorithm will be optimal one
if the coefficient £ = 0, so totally independent from quark mass. Equation (2) in logarithmic scale will take the form:

log? ~ klogm,. 3)

To study this phenomenon in our case we have calculated for the preconditioned GMRESR algorithm and for the
SHUMR algorithm the time of inversion of overlap operator (in seconds) for different quark masses. Simulations for
this work were performed at the Polytechnic University of Tirana -grid cluster. The cluster consists of 6 node cluster for
computing problems. Each node is an HP ProLiant DL.320 Server with dual-core Intel Xeon 3040, 1.86GHz, 2GB RAM
+ 80GB HDD and two Gigabit Ethernet cards. Total number of cores is 12.
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RESULTS
We have performed numerical calculations for 100 gauge field configurations in U(1) lattice gauge theory which
are statistically independent. The coupling constant of the gauge field background has been tested for three values
B=1.0, B = 1.1, p = 1.2 as sufficient values to finalize the obtained results, in 64 x 64 lattice volume. Using the three
values of coupling constant, simulations were performed for heavy to light quarks at the range of values m, = [0.5,

0.45,0.4,0.35,0.3,0.25, 0.2, 0.15, 0.1, 0.05, 0.01], in lattice units, for each of them. We have done identical numerical
calculations for both algorithms, the preconditioned GMRESR and the SHUMR. The numerical results of simulations
are presented in Table 1, Table 2 and Table 3 for three tested values of the coupling constant, respectively B = 1.0,
p=1.1,p=1.2.

Table 1.
Inversion time of chiral operator for coupling constant p = 1.0 in lattice 64° .
Quark Mass (in Algorithms Inversion Time (in
Lattice Unit) Seconds)
0.5 SHUMR 110.47
GMRESR 43.120
0.45 SHUMR 120.42
GMRESR 42.800
0.4 SHUMR 142.83
GMRESR 42.830
0.35 SHUMR 184.15
GMRESR 43.080
0.3 SHUMR 208.04
GMRESR 45.230
0.25 SHUMR 256.73
GMRESR 46.840
0.20 SHUMR 369.05
GMRESR 47.030
0.15 SHUMR 689.95
GMRESR 50.180
0.1 SHUMR 1024.19
GMRESR 61.230
0.05 SHUMR 2843.24
GMRESR 90.910
0.001 SHUMR 13863.2
GMRESR 117.213
Table 2.
Inversion time of chiral operator for coupling constant = 1.1 in lattice 64°.
Quark Mass (in Algorithms Inversion Time (in
Lattice Unit) Seconds)
0.5 SHUMR 102.20
GMRESR 40.430
0.45 SHUMR 116.78
GMRESR 41.630
0.4 SHUMR 137.23
GMRESR 42.130
0.35 SHUMR 154.25
GMRESR 42.660
0.3 SHUMR 198.64
GMRESR 43.930
0.25 SHUMR 216.03
GMRESR 44.100
0.20 SHUMR 289.11
GMRESR 45.130
0.15 SHUMR 410.17
GMRESR 50.760
0.1 SHUMR 919.65
GMRESR 61.530
0.05 SHUMR 2746.23
GMRESR 76.110
0.001 SHUMR 118705.1

GMRESR 97.930
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Table 3.
Inversion time of chiral operator for coupling constant = 1.2 in lattice 64°.
Quark Mass (in Algorithms Inversion Time
Lattice Unit) (in Seconds)
0.5 SHUMR 96.340
GMRESR 37.190
0.45 SHUMR 103.780
GMRESR 40.630
0.4 SHUMR 127.280
GMRESR 41.240
0.35 SHUMR 134.250
GMRESR 42.660
0.3 SHUMR 168.640
GMRESR 43.030
0.25 SHUMR 198.030
GMRESR 44.100
0.20 SHUMR 259.110
GMRESR 45.130
0.15 SHUMR 330.170
GMRESR 49.760
0.1 SHUMR 824.190
GMRESR 60.530
0.05 SHUMR 1446.24
GMRESR 76.110
0.001 SHUMR 9904.27
GMRESR 91.930

In graphical form according (2) the results are showed in Figure 1, Figure 2 and Figure 3.
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Fig. 1. The graphic of inversion time (in seconds) of the overlap
chiral operator from the quark mass on the logarithmic scale
using the preconditioned GMRESR and SHUMR algorithms, in
64 x 64 lattice with U (1) gauge field and B = 1.0. The linear fit
of our data for the preconditioned GMRESR algorithm gives k =
-0.32 and for SHUMR, k = -1.28.

10 y ; ' -
* GMRESR data (linear fit k=-0.28)
© SHUMR data (linear fit k=-1.27)
9 .
£
= 8r *
c
o
(7]
o 77 .
g
S .1
e 6
ES
o
4 5
3
-5 -4 -3 -2 -1 0

Logarithm of Quark Mass

Fig. 2. The graphic of inversion time (in seconds) of the overlap
chiral operator from the quark mass on the logarithmic scale
using the preconditioned GMRESR and SHUMR algorithms, in
64 x 64 lattice with U (1) gauge field and = 1.1. The linear fit
of our data for the preconditioned GMRESR algorithm gives k =
-0.28 and for SHUMR, k =-1.27.
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Fig. 3. The graphic of inversion time (in seconds) of the overlap chiral operator from the quark mass on the logarithmic scale using
the preconditioned GMRESR and SHUMR algorithms, in 64x64 lattice with U (1) gauge field and = 1.2. The linear fit of our data
for the preconditioned GMRESR algorithm gives k = -0.24 and for SHUMR, k = -1.20.

Figure 1, Figure 2 and Figure 2 represents the graphics of inversion time (in seconds) of the overlap chiral operator
from the quark mass for both algorithms. The graphics are on logarithmic scale in order to find the coefficient k. As we
have explained above, we have used the preconditioned GMRESR and SHUMR algorithms, in 64 x 64 lattice with U
(1) gauge field.

DISCUSSIONS
In Figure 1 the preconditioned GMRESR algorithm escalate with the quark mass as (mq )_0'32 and the SHUMR as

(mq )71'28. So, the coefficient £ for SHUMR algorithm is 4 times greater than for the preconditioned GMRESR
algorithm for coupling constant 3 = 1.0. In Figure 2 the preconditioned GMRESR algorithm escalate with the quark
mass as (mq )70'28 and the SHUMR as (mq )71‘27 . So, the coefficient £ for SHUMR algorithm is 4.5 times greater than for
the preconditioned GMRESR algorithm for coupling constant B = 1.1. In Figure 3 the preconditioned GMRESR
algorithm escalate with the quark mass as (mq )_0'24 and the SHUMR as (mq )_1'20 . So, the coefficient & for SHUMR

algorithm is 5 times greater than for the preconditioned GMRESR algorithm for coupling constant = 1.2. So finally,
the inversion time of chiral operator from the quark mass, in lattice QCD simulations, using the preconditioned
GMRESR algorithm, doesn’t escalate with the invers of quark mass as SHUMR algorithm. So, it “soothes” the critical
slowing down of standard algorithms used in chiral simulations of lattice QCD.
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