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Abstract—Convolutional neural networks have been
attracted great attention in the field of complex tasks,
mainly in image recognition. They were specifically
designed to handle images as inputs, as they act in
local receptive fields performing a convolution process.
However, understanding the working principle of con-
volutional neural networks may not be an easy task,
especially for beginners in the area of computational
intelligence. So, the aim of this work is to present in
a didactic and intuitive way the convolutional neural
networks. A case study involving alphabet character
recognition is presented in order to illustrate the feasi-
bility of the approach.

Index Terms—Convolutional neural networks, cha-
racter recognition.

I. Introduction

ARTIFICIAL neural networks have been applied in
several areas of knowledge, such as pattern recogni-

tion, character recognition, time series forecasting, among
others [1]. Since they first appeared, they have been
improved, adapting to several applications, one of which
is image classification, for which the most widely used is
the convolutional neural network (CNN).

The CNN [2] has a structure specially built to receive
images as inputs. It can preserve the correlations among
neighboring pixels because it acts on the local receptive
fields, performing the convolution operations. This way,
we can reduce the sensitivity to image translation, rotation
and distortion [3]. Other types of neural networks cannot
capture this kind of relationships, because they consider
images as an unidimensional array.

Nevertheless, the convolutional neural networks are
more complex than other neural networks architectures,
what makes it more difficult for beginners in the area of
computational intelligence to understand the way it works.

Even though there are several papers on convolutional
neural networks in the literature, just a few of them aims
at a comprehensive introduction. O’Shea and Nash [4] give
a brief introduction to CNNs, discussing recent papers and
techniques for their development. Wu [5] discusses CNNs
mathematically in a more clear way. In Brazil, as far as the
authors know, there are few introductory articles on the

subject. Araújo et al. [6] describe the CNNs main concepts,
besides presenting the model in a practical way.

The problem of character recognition is well known in
literature. LeCun et al. [7] used CNNs for a dataset of
digits known as MNIST. For the same base, Mohebi and
Bagirov [8] used a modified self-organizing maps (SOM).
Bai et al. [9] used a variation of CNN to recognize
characters from different languages. Besides character re-
cognition, CNN can be used in several applications, such
as license plates automatic recognition. Another examples
of applications include document digitalization, receipt
images, check processing, medical services form processing
and others [10].

The goal of this work is to present convolutional neural
networks in a didactic and intuitive way. For that, we
will make a brief introduction to artificial neuron and
conventional neural network (called multi-layer percep-
tron) in section 2, because it is used as the final stage
of a convolutional network. Section 3 discusses in details
the elements of a convolucional neural network, focusing
mainly on the convolution and pooling operations. In order
to facilitate the understanding, we present a case study on
alphabetic character recognition in section 4. Finally, we
present the conclusions in section 5.

II. Artificial Neural Networks

ARTIFICIAL neural network is a parallel and dis-
tributed information processing system [11]. It

presents similar characteristics to the biological neural
network, such as parallel processing and the ability to
learn [12].

Neural networks are made up of several simple proces-
sors called artificial neurons, each one of them producing a
series of real valued activations [13]. The artificial neuron
is the basic processing unit in an artificial neural network.
Several models were proposed, but the most one used was
created by McCulloch and Pitts [14].

An artificial neuron basically consist of input signals,
weights, activation function and output signal, as shown
in Figure 1. Each input xi is multiplied by a weight wi and
the resulting values are summed. A bias value b is added
and thus an activation signal u is generated (calculated by
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the formula u =
∑

i xi ·wi + b). This signal is then passed
through an activation function f(u) resulting in the output
y.

Fig. 1. Artificial neuron [15]

The most common activation functions are: logistic
sigmoidal, hyperbolic tangent and rectified linear unit
(ReLU). These functions are calculated by the equations
1, 2 and 3 respectively.

f(u) =
1

1 + e−u
(1)

f(u) =
1 − e−u

1 + e−u
(2)

f(u) = max(0, u) (3)

It is easier to understand the process through an exam-
ple. Given a neuron with a logistic sigmoidal activation
function, inputs [x1 = 0, x2 = 0.5, x3 = 1], weights
[w1 = 0.1, w2 = 0.2, w3 = 0.7] and bias [b = −0.8],
one generates the output 0.5, according to the following
calculations:

u =
∑
i

xi · wi + b

u = x1 · w1 + x2 · w2 + x3 · w3 + b

u = 0 · 0.1 + 0.5 · 0.2 + 1 · 0.7 − 0.8

u = 0

y = f(u)

y =
1

1 + e−u

y =
1

1 + e−0

y =
1

1 + 1
y = 0.5

(4)

Several connected neurons form an artificial neural
network, whereas the output y of a neuron is the input
of other neurons in the next level. It is common that they
are grouped into layers and their connection is unidirec-
tional, with the input going ”forward”(feedforward). The
structure of a neural network is illustrated in Figure 2.

The first layer is called input layer, which only re-
ceives data and transmits them to the following layer.
The intermediate layers are called hidden layers, being

Fig. 2. Structure of a multi-layer artificial neural network

responsible for information processing. Finally, the output
layer, whose goal is to present the network’s response
(output) to the problem at hand, which can be either a
class identification or a continuous value.

III. Convolutional Neural Networks

A. Introduction

Convolutional neural networks are a kind of neural net-
works inspired by the animal visual cortex [16]. The initial
layers are specialized in extracting features from data
(specially from images), and the neurons are not totally
connected to the next layer. The final layers are totally
connected, as shown in Figure 2 and are responsible for
interpreting the information extracted by the initial layers
and offering a response. Convolutional neural networks are
based on the work of Hubel and Wiesel [17], who studied
the visual field of cats, identifying that visual cells respond
to different types of stimuli.

In 1980, Fukushima introduced a neural network called
Neocognitron. This network is self organized using un-
supervised learning (which does not need a tutor) and
acquires the ability to recognize patterns of stimuli based
on geometric similarity [18].

This network structure is made up of multiple layers
with hierarchy levels, being made of layers of simple,
complex and hyper-complex cells. These cells respond to
specific types of stimuli from receptive fields. At each level,
the complexity of the features extracted from the stimuli
increases, in a similar way to the visual nervous system.

In 1986, there was a huge breakthrough in artificial
neural networks, with the work of Rumelhart et al. [19],
who developed a supervised learning algorithm known as
backpropagation, which provide the networks the ability to
solve nonlinear problems.

In 1989, LeCun [2] used hierarchically structured neural
networks with invariance to translation detectors called
“Multilayer Constrained Networks”. In those networks, the
connections were made locally but using shared weights
and only the final layers were fully connected. The training
was carried out in a supervised way using a variation of
the backpropagation learning algorithm.
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In 1994, LeCun et al. [3] referred to the networks
previously referenced as “Multilayer Convolutional Neural
Network” or simply “Convolutional Neural Network”. In
1994, the term “Convolutional Neural Networks” appeared
in the title of a paper by LeCun et al. [20] and in 1995,
LeCun and Bengio [21] published a paper dedicated to con-
volutional neural networks and their applications. In 1998,
LeCun et al. [7] described a model of convolutional neural
network with a large number of layers (seven in total)
called LeNet-5. In 2012, Krizhevsky et al. [22] developed
a model of CNN called AlexNet, made of 8 layers. They
used the model to perform classification within a large
database, which store millions of images, called ImageNet.
In order to train the network, they used graphic processing
units (GPUs).

Ever since, with the increase of computational power,
the number of layers of Convolutional Neural Networks
increased, e.g., dozens or even hundreds of layers.

B. Architecture of a convolutional neural network

Convolutional neural networks are feedforward neural
networks designed to minimize sensitivity to the input
image translation, rotation and distortion [3]. They are
built of local connections, shared weights, pooling and the
use of several layers [23].

The network is organized into layers with different
purposes. The convolutional layer is responsible for ex-
tracting image features, the pooling layer is responsible
for performing a sub-sampling of the image and the fully
connected layers are responsible for the interpretation of
the extracted features.

C. Convolutional layer

In the convolutional layer, the units are organized into
“feature maps”, in which each unit is connected to a part
of the previous layer by a set of weights called ”filters” [23].
The processing units (or neurons) use a technique called
”shared weights” which consists on several connections
being defined by the same parameter (weight) [2]. This
technique decreases the number of parameters of network.
In addition, this type of connection organization simulates
the convolution operation, which seeks to extract some
image features, such as lines and contours.

In Figure 3 we illustrate the technique of weight sharing.
The goal of this example is to show how the connections
between the inputs and the neurons in the convolutional
layer is made (the output of those neurons form the feature
maps). Each neuron, in grey, connects to two inputs
through a weight filter [w1, w2]. In a sequential way, we can
imagine at first glance that the two weights are connected
to the two first inputs and generate the first unit of the
feature map. At second glance, the weights slide down and
connect to the second and third input, forming the second
unit of the feature map. Further on in this paper, we will
show a case of a 2D input and a 2D filter.

The filters can also be organized in two or three dimen-
sions. At each moment, they are connected to a specific

Fig. 3. Neuron weight sharing in the convolutional layer

part of a matrix called local receptive field. In this case,
filters can be understood as small squares or cuboids that
slide within a matrix. They have a specific size, such as 5x5
or 5x5x3 (for inputs in three dimensions) and a movement
step called “stride”.

Fig. 4. Example of convolution

In Figure 4 we have an input image of size 3x3 with
values between 0 (zero) and 1 (one), where 0 correspond
to the lighter pixels and 1 to the darker ones. The filter
used has size 2x2, with weights [1, 1, 0, 0] and acts on the
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local receptive fields (square with red borders) of the image
of the same size (2x2). Each filter weight is multiplied
by the value of the corresponding pixel in the receptive
field. These values are summed and add to the bias term,
resulting in a value for the corresponding unit of the
feature map. In this example, the bias is not shown in the
Figure 4 and, hence, its value was considered as equal to
zero. The size of the stride used is one, which means that
at each moment, the local receptive field is dislocated one
pixel to the right. When we get to the end of a line (like in
the second moment of the image), we shift one pixel down
and go back to the beginning of the line.

As shown in Figure 4, the application of a filter (2x2)
in an image (3x3) results in a feature map with size 2x2.
The size of the feature map is calculated according to the
following equation::

Tm =
M − k

s
+ 1 (5)

where Tm is the size of the feature map, M is the size of
the image and k is the size of the filter kernel and s is
the stride size. The variables Tm, M and k represent the
size in one of the dimensions (horizontal or vertical), but
it is more frequent to use square images and filters, which
have equal lengths and heights. Hence, the variables would
represent the sizes in both dimensions.

Fig. 5. Illustration of an example of zero-padding

In order to achieve a specific size for a feature map,
sometimes it is necessary to change the size of the input
image. This is done adding a border called padding or
zero-padding, which consists in inserting zeros around the
image, as illustrated by Figure 5. This way, the resulting
size of the feature maps includes the width of the border
p that is calculated according to the following formula:

Tm =
M + 2p− k

s
+ 1 (6)

After generating the values of the feature map, it is
necessary to make them go through an activation function,
This is done so that they become able to solve nonlinear
problems (in this case, the activation function must also
be nonlinear). The activation function most used with
convolutional neural networks is the ReLU.

Algorithm 1 summarizes the process that is performed
by the convolutional layer.

In the pseudocode, xi,j is the pixel value at position
(i, j) of image x, M is the image height and N is the image
width. The variable ui,j stores the value of position (i, j) of

Algorithm 1 Convolution

1: Initialize the values of the weights w with small values
2: For i = 1 to (M − k)/s+ 1 Do
3: For j = 1 to (N − k)/s+ 1 Do
4: ui,j =

∑k
c=1

∑k
d=1 xi·s−1+c,j·s−1+d · wc,d + b

5: yi,j = f(ui,j)
6: End-for
7: End-for

the feature map and yi,j is the output after going through
the activation function. The variable wc,d indicates the
filter weight at position (c, d).

D. Pooling layer

The goal of the pooling layer is to reach a certain level of
invariance towards rotation, reducing the resolution of the
feature maps [24]. It acts similarly to the convolutional
layer, but the stride has the same size as the filter (in
the case of the previous layer, the stride was equal to 1).
This makes the receptive fields to be totally different and
reduces the feature maps by 75%. The most common types
of pooling are max pooling and average pooling. In max
pooling, we select the highest value of the receptive field
and in average pooling, we calculate the average of the
values.

In Figure 6, the pooling layer receives as input an image
in shades of green and perform the max pooling operation
on it. As a result, the output is an image with half of the
original height and width.

The pooling operation performed after the convolutional
layer is described in the algorithm 2 (considering s = k).

Algorithm 2 pooling

1: For i = 1 up to (M − k)/s+ 1 Do
2: For j = 1 up to (N − k)/s+ 1 Do
3: If max pooling Then
4: yi,j = max(x(i−1)·k+1,(i−1)·k+1, . . . , xi·k,j·k)
5: End-If
6: If average pooling Then
7: yi,j = (

∑k
c=1

∑k
d=1 xi·s−1+c,j·s−1+d)/(k2)

8: End-If
9: End-For

10: End-For

E. Fully connected layer

The input passes through the convolutional and pooling
layers, which identify the features, from the simplest to the
most complex, until they enter the fully connected layers.
Usually, the previous layer is a pooling one, in which the
feature maps have more than one dimension. Hence, they
are redefined for a single dimension (as a vector), so that
they can be connected to the final part of the network. The
fully connected layers work as a multilayer feedforward
neural network and are responsible for the interpretation
of the features extracted by the initial layers.
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Fig. 6. Illustration of a max pooling operation

The pseudo-code for the fully connected layer processing
is shown in the algorithm 3.

Algorithm 3 Fully connected layer

1: If previous layer is either a pooling or convolutional
one Then

2: resize(x)
3: End-If
4: For each neuron j of the fully connected layer Do
5: For each input i from the previous layer Do
6: uj =

∑n
i=1 xi · wi,j + bj

7: yj = f(uj)
8: End-For
9: End-For

F. Softmax

The final layer is responsible for presenting the results.
The number of neurons is defined by the number of classes
of the problem. Each neuron presents the output as a
probability in the range [0, 1])and the response is the

neuron with the highest output. This is performed with
the softmax function, described by the following equation:

yj =
ey(j)∑n
i=1 e

y(i)
(7)

where the output y of neuron j is the output value divided
by the sum of all the other outputs from the neurons in
this layer.

For instance, consider that the neural network output
before the application of the softmax function are: [y1 = 1,
y2 = 1.5, y3 = 2]. Hence, the outputs from the network
will be calculated according to the following equations:

yj =
ey(j)∑n
i=1 e

y(i)

yj =
eyj

ey1 + ey2 + ey3

yj =
eyj

e1 + e1.5 + e2

yj =
eyj

2.72 + 4.48 + 7.39

yj =
eyj

14.59

y1 =
ey1

14.59
=

e1

14.59
=

2.72

14.59
= 0.186

y2 =
ey2

14.59
=

e1.5

14.59
=

4.48

14.59
= 0.307

y3 =
ey3

14.59
=

e2

14.59
=

7.39

14.59
= 0.507

(8)

So, we complete the construction of the convolutional
neural network, which is illustrated in Figure.7.

Fig. 7. Convolutional neural network

G. Learning Algorithm

Usually, learning is performed using the error back-
propagation method, which uses the gradient descent to
update the weights [24]. In order to calculate the error,
it is necessary to define a specific cost function, such as
the Euclidean distance between the network response and
the expected value. Nevertheless, for classification, when
there are more than two classes, it is used the cross entropy
function described by the following equation:

C = −
∑
i=1

yilog(ŷi) (9)
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where C is the cost, yi is the neuron output and ŷi is the
desired output.

The training process consists in minimizing the cost
function by changing the weights. The update is performed
according to the following equation:

∆wt
i = η

∂C

∂wt
i

(10)

wt+1
i = wt

i − ∆wt
i (11)

where wt
i is the weight i of the network at the current

time (t), η is the learning rate and ∆wt
i is the variation of

weight i at the current time.
In order to smooth the gradient descent, we can use part

of its previous movement by incorporating the momentum
term, according to the following equation:

wt+1
i = wt

i − ∆wt
i + α∆wt−1

i (12)

where α is the momentum and its value is an exponential
decaying average of the previous weight variations.

In addition, the gradient descent can be described using
a stochastic gradient descent (SGD). This method esti-
mates the gradients based on single examples selected
randomly [24]. In fact, the gradients are calculated based
on a set of samples called mini-batch [24]. Using batches
requires less weights updates than the incremental mode
(one example at a time), and therefore, reduces training
time (which can be high if there are many images).

At each iteration we apply the weight updating process,
which is done until we complete the whole set of samples.
The process of adjusting the weights for all training sam-
ples is called an epoch.

Some other algorithms based on gradient descent
are: RMSProp, Adagrad, Adadelta, Adam, among many
others.

H. Dropout

Sometimes, the network may learn too well the images
in its training set and at the same time, be unable to have
a good performance with other images unseen during the
training. In order to avoid this overfitting in its learning,
we use the dropout technique. It consists in withdrawing
randomly some units from the neural network [25], as can
bee seen in Figure 8. We define a probability p, that defines
whether each unit may propagate its signal throughout the
network.

I. Development Platforms

There are several tools which include the implementa-
tion of several mechanisms that help build convolutional
neural networks, such as convolution, pooling, activation
functions and learning algorithms.

TensorFlow [26] is a library for large scale machine lear-
ning developed by researchers from Google. It is normally
used with the Python programming language through an
API. It also supports C++ and Java.

Fig. 8. Dropout. In the left, we see a network without dropout,
with all its neurons active. In the right, one neuron in the second
layer is randomly chosen to be ”turned off”, characterizing the use of
dropout.

Keras [27] is a high level API for neural networks
construction that works over other frameworks such as
TensorFlow, CNTK and Theano.

Caffe [28] is an open source framework developped by
the Berkeley Vision and Learning Center (BVLC). Its code
was written in C++, using CUDA for graphic board com-
putation, and it also provides libraries for Python/Numpy
and MATLAB.

Torch [29] is a scientific computation framework which
supports several machine learning algorithms. It is used
through a script language called LuaJIT.

These tools make the process of building a neural
network simpler and faster. Besides, by using them, the
user can improve the performance of the neural network
training using graphic processing units (GPUs) with no
additional code.

It this paper, we used the Tensorflow framework, be-
cause it supports the Python programming language and is
quite intuitive. In addition, it is very flexible, i.e, it allows
the users to create and modify several structures within
the neural network.

IV. Extreme Learning Machine

Extreme Learning Machine (ELM) is a learning algo-
rithm for artificial neural networks with a single hidden
layer [32]. The weights between the initial and the hid-
den layers are initialized randomly. The network training
occurs in the weight matrix between the hidden and the
output layer, which is calculated analytically. Since it does
not require an iterative process, generally the network
training is performed very quickly.

The first step of the ELM algorithm consists in defining
the matrix H, which is the resulting matrix from the
hidden layer neurons output for each of the samples of
the input set, according to the following formula:

H =

 f(x1w1 + bi) . . . f(x1wn + bm)
...

. . .
...

f(xmw1 + bi) . . . f(xmwn + bn)

 (13)

where the lines represent the samples and the columns
represent the neurons in the hidden layer, m is the number
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of input samples and n is the number of neurons in the
hidden layer. In this case, xi is the atribute vector and wi

is a weight vector.

The second step consists in calculating β̂, the weight
matrix between the hidden layer and the output layer. It is
calculated as the solution of the least squared error (LSE)
minimization problem for the linear system Hβ̂ = T ,
where β̂ = H†T , and H† is the generalized Moore-Penrose
inverse of the matrix H and T is the desired output vector
for the input samples [32], [33].

Consider the problem of the logic function AND, in
which there are two types of input: 1 (presence of an
electrical current) and 0 (no electrical current). The logic
gate receives two inputs and returns: 0&0 = 0, 0&1 = 0,
1&0 = 0 and 1&1 = 1. Hence, X and T are defined as
follows:

X =


0 0
0 1
1 0
1 1

 , T =


0
0
0
1

 (14)

Consider also that the ELM has two neurons in the hidden
layer with a logistic sigmoidal activation function and that
the weights W and the bias B were generated randomly
as follows:

W =

[
0.2 0.5
0.6 1

]
, B =

[
−0.5 0.5

]
(15)

So, β̂ is calculated as follows:

β̂ =H†T

β̂ =(f(XW +B))†T

β̂ =


f(x11ẇ11 + x12ẇ21 + b1) f(x11ẇ21 + x12ẇ22 + b2)
f(x21ẇ11 + x22ẇ21 + b1) f(x21ẇ21 + x22ẇ22 + b2)
f(x31ẇ11 + x32ẇ21 + b1) f(x31ẇ21 + x32ẇ22 + b2)
f(x41ẇ11 + x42ẇ21 + b1) f(x41ẇ21 + x42ẇ22 + b2)


†

T

β̂ =


f(0 · 0.2 + 0 · 0.6 + (−0.5)) f(0 · 0.5 + 0 · 1 + 0.5)
f(0 · 0.2 + 1 · 0.6 + (−0.5)) f(0 · 0.5 + 1 · 1 + 0.5)
f(1 · 0.2 + 0 · 0.6 + (−0.5)) f(1 · 0.5 + 0 · 1 + 0.5)
f(1 · 0.2 + 1 · 0.6 + (−0.5)) f(1 · 0.5 + 1 · 1 + 0.5)


†

T

β̂ =


f(−0.5) f(0.5)
f(0.1) f(1.5)
f(−0.3) f(1)
f(0.3) f(2)


†

T

β̂ =


1

1+e−(−0.5)
1

1+e−0.5

1
1+e−0.1

1
1+e−1.5

1
1+e−(−0.3)

1
1+e−1

1
1+e−0.3

1
1+e−2


†

T

β̂ =


0.38 0.62
0.53 0.82
0.43 0.73
0.57 0.88


†

T

β̂ =

[
−6.4520 6.9861 −17.0639 12.2380
4.3023 −4.0280 10.9916 −7.2892

]
T

β̂ =

[
−6.4520 6.9861 −17.0639 12.2380
4.3023 −4.0280 10.9916 −7.2892

]
0
0
0
1


β̂ =

[
12.2380
−7.2892

]
(16)

The calculation of the generalized inverse is a little more
complex, but most programming languages have libraries
to perform this calculation. Having the matrix β̂, the
output y of the ELM for a test sample Z is given as follows:

y = f(ZW +B) ∗ β̂ (17)

V. Case study

Even though MNIST is a standard digit recognition
database widely used in the literature [30], in this work
we will consider the problem of recognizing alphabetic
characters from several sources to illustrate the application
of CNN. It was chosen due to the fact that the latter
problem is very similar to the former but the network
needs to classify among 26 letters instead of only 10 digits,
making the task a little bit more complex.

A. Database

The database ’Alphabet’ was developed by students at
the Labcin research lab (Nature Inspired Engineering and
Computing Lab) from the graduate program in Computer
Science. This database contains a total of 11,960 images
of alphabetic characters in gray scale, both lowercase and
capital letters, divided into 26 classes (each corresponding
to a letter). Figure 9 shows some examples from this
database.

Fig. 9. Samples from the Alphabet database.

The database was divided into three parts: 70% for
training, 15% for validation and 15% for testing. The value
of each pixel is in the interval [0,255], but was normalized
in the [0,1] range.

B. Setting of the convolutional neural network

A convolutional neural network used1 is presented in
Figure 10. It receives as input an image of size 30x30 pixels,
followed by a convolutional layer of 32 filters (in green).
Each filter has 5x5 weights, with a stride of 1 pixel and

1The source code is available from the author upon request via
email (eliveltoebermam@gmail.com)
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Fig. 10. Architecture of the convolutional neural network used in this case study

padding of 4 pixels to keep the original image size. Hence,
we generate 32 feature maps of 30x30 pixels (in blue).

In each one of these feature maps we apply the max
pooling operation of size 2x2 pixels, reducing both dimen-
sions of each one of the maps by half. As a result, we have
a new image of 15x15x32 pixels (in orange), i.e., an image
of 32 channels.

In this image, a new convolution operation is performed
with 64 filters with dimension 5x5x32, with the same
values of stride and padding as the first one. As result, we
have 64 feature maps of size 15x15 pixels, and each one of
them goes through the max pooling operation. After that,
we have an image of size 8x8x64 pixels, which is vectorized
to a single dimension of 4096 pixels.

Each pixel is the input to a fully connected first layer
with 512 neurons (in grey). We use dropout with 50%
probability of signal propagation. The outputs of the first
layer neuron is connected to another one of 512 neurons
and once again we use the same droupout.

Finally, there is a layer with 26 neurons (in pink), which
is followed by a softmax function, which calculates the
probability of each class.

For the training, the images were scrambled and we used
batches of 52 images with 2 images for each class in them.
The activation function used was the Rectified Linear Unit
(ReLU). The learning method was the stochastic gradient
descent (SGD) with 0.9 momentum and learning rate of
0.01.

C. Simulation results

WE performed 30 tests in a computer with a AMD
Phenom X2 processor and 4 Gigabytes of RAM

memory. The code was developed in Python with the use
of the TensorFlow API. The network achieved accuracy of
91.08% of correct classifications on average, with standard
deviation of 1.44%. The best result achieved was 93.1%.
The network training took on average 1761.52 seconds,
with a standard deviation of 118.09 seconds.

Table I shows the confusion matrix for the letters. The
columns represent the correct letters and the lines, the
network responses. A confusion matrix, or error matrix, is
the most efficient way to represent the accuracy of each
category, together with errors [31].

TABLE I
Confusion matrix of the database of alphabetic characters

a b c d e f g h i J k l m n o p q r s t u v w x y z

a 59 2 2 1 1 1 2 1

b 66 1 1 1

c 1 65 1 2

d 63 2 1 1 1 1

e 1 64 1 1 1 1

f 1 61 2 1 2 1 1

g 1 2 61 2 1 1 1

h 2 63 1 1 1 1

i 1 53 3 9 1 1 1

J 1 2 65 1

k 2 1 61 1 1 1 2

l 1 1 20 1 45 1

m 1 1 65 2

n 1 3 60 2 1 2

o 1 2 64 1 1

p 1 68

q 2 2 64 1

r 1 1 1 63 1 1 1

s 1 2 1 1 64

t 1 1 66 1

u 2 1 1 63 2

v 1 4 60 1 3

w 1 1 67

x 1 1 1 63 3

y 1 1 1 1 2 63

z 1 2 1 65

For most letters, the network found a good classification.
The letters that were easier for the network were: p
(98.5%), w (97.1%), b (95.65%) and t (95.65%). On the
other hand, the letters that imposed the greater difficulty
were: l (65.21%), i (76.81%), a (85.5%), n (86.95%) and v
(86.95%). The main confusions committed by the network
were exchanging l by i (28.98%), i by l (13.04%), v by u
(5.79%), i by j (4.34%), n by h (4.34%) and v by y (4.34%).

Based on the fact that we presented both lowercase and
uppercase letters, the possibility of having similar letters
is higher, such as in the case of an “I” (uppercase i) with a
“l” (lowercase L). Sometimes, a letter from a specific font
is very hard to recognize and very easy to confound in
isolation, and people usually distinguish them based on
their context.

D. Comparison with another method

The results obtained from the CNN were compared with
another neural network that has been widely used, the
extreme learning machine (ELM) [32], [33].

The experiments performed for the ELM were done
exactly like those for the CNN. The ELM used has 900
input units (one for each pixel in the image), 3000 neurons
in the hidden layer and 26 neurons in the output layer. The
activation function used was the sigmoidal function.
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The ELM obtained an average classification accuracy of
77.03% with standard deviation of 0.75%. This network
took in average 51 seconds to be trained, with a stan-
dard deviation of 5.88 seconds. Figures 11 and 12 show
the box-plots for the classification accuracy for and the
computational training time, respectively for both CNN
and ELM.

Fig. 11. Classification accuracy for test data in the alphabetic
characters database

Fig. 12. Computational time to train the neural network

E. Evaluation of the performance of the convolutional
neural network

The convolutional neural network, acting on the local
receptive fields of the image, can preserve important in-
formation, such as the correlation between neighbouring
pixels in the image. This is an advantage that it has
over other neural networks, such as ELM, which need to
change the image to one dimension, losing the original
image structure. This way, as seen in the case of alpha-
betic characters classification, a CNN achieves a higher
classification accuracy.

The CNN structure is also effective for multiple layers.
The shared weights and pooling techniques reduce the
number of weights in the network. Other neural networks

of the type feedforward have difficulties with the training
process by adding layers.

Nevertheless, the time to train a CNN is high. For
the case study, it took 30 times longer than the ELM.
Even with weight reduction techniques, the number of
connections is still high. Training in an iterative way is
a computational burden. Some CNN models require an
adequate hardware to train (usually GPUs of the latest
generation).

VI. Final Considerations

IN this paper we presented a comprehensive introduc-
tion to convolutional neural networks in an intuitive

and self-explanatory way. The network mechanism were
explained in details, with examples that illustrate the
processes. In addition, we presented a case study of the
application of a CNN model for the classification of manus-
cript alphabetic characters and compared it with another
neural network, the ELM.

The results for both techniques were described using
their average and standard deviation both for classification
accuracy and computational training time. The tests were
performed 30 times. The classification accuracy of the
CNN was a little inferior if compared to cases in which it
was applied to the MNIST database, for instance. It should
be taken into consideration the fact that the database used
in this study presents some very difficult cases, such as the
uppercase ”I”and the lowercase ”l”, which are quite similar.
Still, in terms of accuracy, the CNN was quite superior to
the ELM.

We believe that modifying the network structure and
other parameters, the results might be still better. Howe-
ver, the goal of this work was to show the CNN work prin-
ciple in a simple and direct way, and for that we applied
a standard model (LeNet). So, we expect that beginners
in the area of computational intelligence might be able to
use this material to better understand convolutional neural
networks.

As future goals, we can extend the application of the
CNN for words and license plates recognition. Another
expansion is the application to color images and the
recognition of animals, plants and objects.
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