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ABSTRACT 

The divisor graph of an associative ring R (denoted as DG(R)) was introduced by Satyanarayana, Srinivasulu.[9]. 

In this paper, we introduce a simple concept “Power Chain in a Divisor Graph” .We prove that if is nilpotent, 

then the power chain starting with a is of finite length.  If DG(R) (the divisor graph of R) contains a power chain starting 

with  which is of infinite length, then , a is non–idempotent and non–nilpotent element.  We announce 

some basic results.  Finally, we deduce that if R be an integral domain and a , then  if and only if the power 

chain starting with a (in DG(R)) is of infinite length. 
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1. INTRODUCTION 

Beck [2] related a commutative ring   R to a graph by using the elements of R as vertices and two vertices  are 

adjacent if and only if . Anderson and Livingston [1] proposed a modified method of associating a commutative 

ring to a graph by introducing the concept of a zero-divisor graph of a commutative ring. Satyanarayana Bhavanari,               

Syam Prasad K and Nagaraju D [26] introduced “Prime Graph” of a ring and later studied by several authors.  These 

concepts are different bridges connecting the two theories: Ring Theory & Graph Theory. 

Now we introduce a concept called “Power Chains in a divisor graph” of a ring.  This idea motivates us to prove 

the following results: (i) DG( ) contains a chain of length . (ii) If p-prime , then DG( )  contain a max chain 

of length p -2. 

Now we review some definitions and results for the sake of completeness. 

1.1 Definitions 

Let  be a graph where  is the set of vertices of G and  the set of edges of G. An edge 

between two vertices is denoted by   .   
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• A graph G (V, E) is said to be a star graph if there exists a fixed vertex v such that E = {vu / u  V and u ≠ v}. A 

star graph is said to be an n-star graph if the number of vertices of the graph is n. 

• (Satyanarayana, Srinivasulu D &Mallikarjuna [14]): Let G be a graph. The star number of G is defined as max {n 

/ there exists an n-star graph which is a subgraph of G and n is an integer with }. We denote this star number 

of G by .   

• (Satyanarayana Bhavanari and Syam Prasad K [25]) A complete graph is a simple graph in which each pair of 

distinct vertices are joined by an edge. The complete graph on ‘n’ vertices is denoted by . 

• (Satyanarayana Bhavanari, Srinivasulu Devanaboina, AbulBasar & Mallikarjuna Bhavanari [9]) Let R be an 

associative ring and . We say that x divides y (if there exists ).A graph 

G = (V, E) is said to be the divisor graph of R (denoted by DG(R)) if V = R and 

. 

Power Chains in a Divisor Graph 

2.1. Definition 

A chain 

 
Figure 1 

is said to be a power chain starting with a if = a and  = a. and  for all . 

2.2 Note: If a  is an idempotent then  and so there is no edge in DG(R)) between a and. 

2.3 Examples: If R = 2 = {0, 1} the ring of integers modulo 2, then V (DG(R)) = {0, 1}.  E (DG(R)) =  . Now DG(R) 

is given in Figure 2. 

  

Figure 2 

If R = 3 = {0, 1, 2} the ring of integers modulo 3, V (DG(R)) = {0, 1, 2} and  E(DG(R)) = {01, 02 , 1 2  }.  

Now there is only one power chain in DG(R) and it is given in Figure 3. 
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If R = ℤ4 = {0, 1, 2, 3} the ring of integers modulo 4,  V(DG(R)) = {0, 1, 2, 3} and E(DG(R))= { , , , 

,  }. Now there exist two power chains in DG(R) and are  given in Figure 4. 

 

 

 

 

 

Figure 4 

If  , then  R =  = {0, 1, 2, 3, 4} the ring of integers modulo 5,  V(DG(R)) = {0, 1, 2, 3, 4} and 

E(DG(R))= { , , , , , }.   Now power chains in DG(R) is given in Figure 5. 

 

 

 

 

 

 

 

If  , then  R =  = {0, 1, 2, 3, 4, 5} the ring of integers modulo 6,  V(DG(R)) = {0, 1, 2, 3, 4, 5} and 

E(DG(R))= { , , , , , }.   Now Power chains inDG(R) is given in Figure 6. 

 

Figure 6 

If , then  R =  = {0, 1, 2, 3, 4, 5, 6} the ring of integers modulo 7,  V(DG(R)) = {0, 1, 2, 3, 4, 5, 6} and 

E(DG(R))= { , , , , , , , }.   Now Power chains in 

DG(R) is given in Figure 7. 
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Figure 7 

2.4. Results  

• DG( )  contains a chain of length  

• (ii) If p-prime , then DG( )  contain a max chain of length p -2 

2.5 Lemma: If is nilpotent then the power chain starting with a is of finite length. 

Proof: Suppose that  is a nilpotent element.  Then there exists a positive integer k such that .  Let m 

be the least positive integer such that  .  Now write = a,            = a. .   

 

Figure 8 

is the power chain starting with ‘a  and its length is m,  a finite length. 

2.6 Lemma: If DG (R) contains a power chain starting with a  which is of infinite length, then , a is non–
idempotent and non – nilpotent element. 

Proof: Suppose that DG(R) contains a power chain starting with a which is of infinite length.  Suppose the chain 

is  

 

Figure 9 

with = a and  = a. = ,  for all n. 

Since  we have that  and so a is not idempotent. 
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If a = 0 then = 0 = , a contradiction.  

Suppose a is the nilpotent element. Then by above lemma, the power chain starting with a is of finite length, a      

contradiction.   

Therefore a con not be a nilpotent element. 

2.7 Lemma: Let R be an integral domain. If  then a cannot be a nilpotent element. 

 Proof: Suppose a is nilpotent, Then there exists a positive integer  without loss 

of generality we assume that n is the least positive integer such that . Now a , a 

contradiction. The proof is complete. 

2.8. Theorem  

Let R be an integral domain and a .  Then if and only if the power chain starting with a (inDG(R)) 

is of infinite length. 

Proof: Suppose a is non-zero element in R. 

Then   for any positive integer. (by lemma – 2.7 )  

Now we prove that  ≠  for all k ≥1. Suppose = .   Then  = 0  = 0                                 

( ) 

a contradiction. 

This shows that  for any positive integer k. 

So the edge   is in the divisor graph DG(R). This is true for all positive integers k.   

Therefore the chain  given here. 

 

Figure 10 

(that is the power chain starting  with a ) is an infinite chain.  

Now the converse follows from Lemma 2.6. 
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