УДК 582.736: 574.2 https://doi.org/10.33619/2414-2948/39/03

AGRIS F40

ИССЛЕДОВАНИЕ ИНДИКАТИВНЫХ СВОЙСТВ *MEDICAGO SATIVA* L. В УСЛОВИЯХ НЕФТЯНОГО ЗАГРЯЗНЕНИЯ

©Гафарова Б. Т., Бакинский государственный университет, г. Баку, Азербайджан ©Мамедова А. О., д-р биол. наук, Бакинский государственный университет, г. Баку, Азербайджан

INDICATIVE PROPERTIES STUDY OF MEDICAGO SATIVA L. CULTURE UNDER THE OIL-POLUTED CONDITION

©Gafarova B., Baku State University, Baku, Azerbaijan ©Mammadova A., Dr. habil., Baku State University, Baku, Azerbaijan

Аннотация. Представлены результаты исследований изучения индикативных свойств окультуренной растительности с участием Medicago sativa L. на нефтезагрязненных территориях Апшеронского полуострова. Была определена способность произрастания семян, обработанных сырой нефтью различной вязкости: 1%; 5%; 10%; 15%; 50%. Проведены морфометрические измерения индуцированных семян на первой стадии их онтогенеза.

Abstract. For indicative properties study of plant culture with Medicago sativa L. was made an effort in oil-polluted areas under the Abcheron condition. With this purpose the sprouting ability of the plant seeds treated by different density 1%; 5%; 10%; 15%; 50%. Crude oil was determined and the morphometric measurements of the inducted seeds were performed in their ontogenesis first stage.

Ключевые слова: Апшеронский полуостров, Medicago sativa L., сырая нефть, фитоиндикация.

Keywords: Abcheron peninsula, Medicago sativa L., crude oil, phytoindication.

Повсеместное распространение нефтезагрязненных земель на Абшеронском полуострове и очистка этих земель в настоящее время является одной из актуальных экологических проблем. Более вековая добыча нефти на Абшеронском полуострове, эксплуатация на первой стадии нефтяных скважин при добычи нефти и пластовых вод и складирование их в наземных резервуарах, а также отсутствие современной технологии, привело к сильному загрязнению почв нефтепродуктами. Более 10 тыс га плодородных земель Абшеронского полуострова были превращены в негодные состояние.

Ускоренный рост населения в Азербайджане, развитие урбанизированных населенных пунктов, требует выделения дополнительных площадей продуктивных земель. Для расширения площадей садоводства и озеленительных зон необходима рекультивация, оздоровление нефтезагрязненных земель.

В зависимости от степени загрязнения и глубины проникновения нефтепродуктов по профилю почв, необходимо в первую очередь выявление ареалов загрязненных земель, комплексная оценка растительного покрова и восстановление путем рекультивации нефтезагрязненных земель [1,2].

Растительный покров — один из самых чувствительных компонентов биосферы к загрязнению является. К фактором, существенно влияющих на трансформацию растительного покрова на территориях нефтопромыслов, относятся сырая нефть, высокоминерализованные буровые воды и другие воды различного химического состава выходящие на земную поверхность при добычи нефти. Удивительно, но растения в данных зонах адаптированы к развитию ив этих экстремальных условиях. Возрастание степени загрязнения в среде, обуславливают накопление металлов в растениях и оптимизации в свою очередь экологического состояния среды [3-5].

Исследования посвящены изучению влияния загрязненной среды на индикативные свойства окультуренной растительности. Целью исследования стало выявление возможности использования растений в виде индикаторов, для чего были определены способности произрастания семян обработанных сырой нефтью различной вязкости 1%; 5%; 10%; 15%; 50% и проведены морфометрические измерения индуксированных семян на первой стадии онтогенеза. *Medicago sativa* L. на нефтезагрязненных территориях Абшеронского полуострова.

Материалы и методика исследований

Представителями семейства бобовых являются травянистые растения, высотой 50-80 см и глубоким проникновением корневой системы, в благоприятных условиях нередко достигающих 8-10 м. Люцерна посевная (*Medicago sativa* L.), семейство бобовых, имеет около 80 окультуренных и диких сортов и форм, а клевер луговой (*Trifolium pratence* L.) — 6 диких форм. Люцерна содержит около 10 витаминов (A, E, C и др.) [6]. В составе люцерны 60,5% белка, минералов, ферментов, витаминов и др. веществ. При высыхании растения происходит потеря 80% витаминов [7].

В корнях люцерны — азотофиксирующие бактерии, которые способны обогащать N почву ежегодно в первые 2 года — 2-3 г на 250-300 кг, а на 3 год — до 500-600 кг N. Именно поэтому люцерна является незаменимым предшественником для всех культур, т.к. урожайность всех культур возделываемых в поле после люцерны увеличивается на 15-30%. В связи с чем определение индикативных и ремедативных возможностей данной культуры в нефтезагрязненных условиях имеет важное значение.

При проведении исследований были исспользованы различные методы. Для проведения фенологических наблюдений применялась общепринятая методика, утвержденной Советом Ботанических садов СССР [8].

После обработки семян *Medicago sativa* L. нефтепродуктами Azeri Light (1%; 5%; 10%; 15%; 50%) проводилось наблюдение за развитием всходов.

Наблюдения за развитием вегетативных органов растений пересаженных в почву в особых ящиках проводились в условиях Ботанического Сада НАНА. Результаты были сопоставлены с контролем — оптимально загрязненным вариантом.

Семена были обработаны сырой нефтью в лаборатории кафедры ботаники Бакинского государственного университета. Для сравнения процентного соотношения произростания семян, обработанные нефтепродуктами семена и семена контроля в чашках Петри были перенесены на фильтровальную бумагу.

Семена *Medicago sativa* L. были выдержаны в течение 3 дней (72 часов) в растворе нефти 1%; 5%; 10%; 15%; 50%, и соответственно сосуды были пронумерованы K, 1, 2, 3, 4, 5. После 72 ч, когда семена дали первые свои всходы, они были перенесены в почву на территории Ботанического сада НАНА. Контроль — на глубину 2-3 см (сухие семена) и проросшие семена (обработанные 1%; 5%; 10%; 15%; 50% раствором). До посадки семян почва была изначально тщательно перемешана, полита и в почву были внесены органические удобрения (навоз).

Обсуждение результатов исследования

Анализ результатов исследования показал, что нефтезагрязнители существенно уменьшают содержание питательных элементов (N и P), и оказывают токсическое воздействие на развитие растений (распад хлорофиллов и каратиноидов). Наблюдалось раннее проявление в листьях растений хлороза. Влияние нефтепродуктов различного процентного соотношения, естественно зависит от способности произростания семян, что является одним из основных показателей.

Рост и развитие семян в лабораторных условиях проводилось в течение 15 дней, результаты приведены в Таблице 1.

Таблица 1. ПРОРОСТАНИЕ СЕМЯН *Medicago sativa* L. ОБРАБОТАННЫХ СЫРОЙ НЕФТЬЮ В ЛАБОРАТОРНЫХ УСЛОВИЯХ

Варианты		Oбщее количество семян — 50										
Бар	иинты		Количество проросших семян									
дни		1	2	3	4	7	9	11	14	15		
кон	троль	14	37	40	40	46	46	46	46	46		
1	1%	0	18	44	44	46			_			
2	5%	0	4	33	34	34	25	25	25	25		
3	10%	0	1	23	38	44	44	44	44	44		
4	15%	0	3	21	29	38	39	39	39	39		
5	50%	0	2	32	42	48	48	48	48	48		

После пересадки, через 48 ч, семян в почву, наблюдается их дальнейшее развитие (Рисунок 1). Морфологические измерения всходов люцерны после посадки в почву даны в Таблипе 2.

Рисунок 1. Через 48 ч после посадки Medicago sativa L.

Таблица 2. МОРФОМЕТРИЧЕСКИЕ ПОКАЗАТЕЛИ ВСХОДОВ *Medicago sativa* L. ПОСЛЕ ПОСАДКИ В ПОЧВУ

Варианты			Размеры проросших семян, см								
дни		1	2	3	4	7	9	11	14	15	
кон	троль	0,5	1,2	2,8	2,9	3,1	4,2	4,2	4,2	4,2	
1	1%	_	0,3	1,2	1,3	1,5	_				
2	5%	_	0,2	0,8	1,2	1,4	1,4	1,4	1,4	1,4	
3	10%	_	0,3	0,5	0,9	2,2	3,03	3,03	3,03	3,03	
4	15%	_	0,2	0,9	1,2	2,3	3,3	3,3	3,3	3,3	
5	50%		0,2	1,1	1,4	2,5	4,2	4,2	4,2	4,2	

Процентное соотношение развития растений в почве (в ящиках) согласно вариантам — различно. Данное соотношение всходов растений соответственно вариантам опыта составляет: контроль — 55%, 1 — 25%, 2 — 30%, 3 — 35%, 4 — 33% и 5 — 30%. Замеры приведены в Таблице 3.

Через 72 ч после посадки процентное соотношение развития проростков составило: на контроле — 74,5%, 1 — 78,25%, 2 — 77%, 3 — 70,5%, 4 — 69% и 5 — 54%.

Таблица 3. ПРОЦЕНТНОЕ СООТНОШЕНИЕ РАЗВИТИЯ Medicago sativa L. ПОСЛЕ ПОСАДКИ В ПОЧВУ

	Варианты	Доля проросших семян, $\%$				
	дни	на 2 день (48 ч)	на 3 день (72 ч)			
	контроль	55	74,50			
1	1%	25	78,25			
2	5%	30	77			
3	10%	35	70,50			
4	15%	33	69			
5	50%	30	54			

Измерения были проведены в течение 15 дней после посадки семян в почву. На 60 день также были проведены измерения. Результаты морфометрических измерений показаны на Рисунке 2.

Средняя величина роста растения: на контроле — 4,0 см, 1 —3,9 см, 2 — 5,6%, 3 —5,0 см, 4 — 4,3 см и 5 — 5,1 см.

При сопоставлении загрязненных нефтепродуктами растений выявлено, что общая длина растений при 1% по отношению к контролю возросло на 24,3%, при 5% — на 6,3%, при 10% — 7,8%, при 15% — уменьшение на 21% и при 50% —уменьшение длины на 6,8%.

Максимальное сокращение длины стебля согласно контролю приходится на 50% вариант, а на других вариантах не наблюдается резкого отклонения от контроля и различий.

Рисунок 2. 60-й день развития обработанных нефтепродуктами семян Medicago sativa L.

На Рисунке 3 показаны результаты морфометрических измерений на 60-й день развития растения. При 1%, — растение стимулируется в развитии, а при 15% и 50% —происходит спад развития по сравнению с контролем (Рисунок 4).

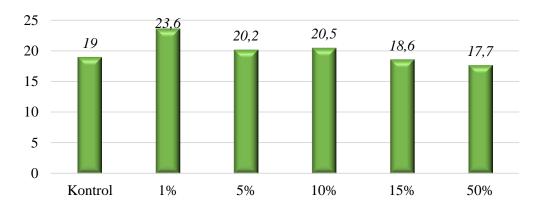


Рисунок 3. 60-ти дневная динамика развития Medicago sativa L.

Рисунок 4. Контроль и развитие *Medicago sativa* L. при обработке семян нефтепродуктами 15% и 50%.

На 90 день развития растений наблюдения показали, что по сравнении с контролем, на листьях растений из обработанных нефтепродуктами семян, наблюдается пожелтение.

Выводы

На основе проведенных исследований можно заключить, что оказывая токсическое воздействие на рост и развитие растений нефтепродукты, расщепляют хлорофиллы и каротиноиды, в результате чего происходит пожелтение листьев растений. Люцерна может стать биоиндикатором нефтяных загрязнений и широко использоваться при рекультивации земель.

Список литературы:

- 1. Али-заде В. М., Ширвани Т. С., Алирзаева Э. Г. Устойчивость растений к токсичности металлов и нефтяных углеводородов. Подходы к фиторемедиации. Баку: Элм, 2011. 280 с.
- 2. Миронова С. И., Иванов В. В., Гаврильева Л. Д., Назарова Г. В., Петров А. А. Научные основы выбора способов биологической рекультивации отвалов карьера «Айхал» // Успехи современного естествознания. 2012. №11-1. С. 125-127.
- 3. Мамедова А. О. Биоиндикаторы растений и оценка окружающей среды. Баку: БГУ, 2008. (на азерб. яз).
- 4. Tian D., Zhu F., Yan W., Fang X., Xiang W., Deng X., Wang G., Peng C. Heavy metal accumulation by panicled goldenrain tree (*Koelreuteria paniculata*) and common elaeocarpus (*Elaeocarpus decipens*) in abandoned mine soils in southern China // Journal of Environmental Sciences. 2009. V. 21. №3. P. 340-345.
- 5. Tomasevic M. Z., Vukmirovic Z, Rajsic S. M., Tasic M., Stevanovic B. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area // Chemosphere. 2005. V. 61. №6. P. 753-760.
- 6. Prasad M. N. V. Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants // Heavy metal stress in plants. Berlin-Heidelberg: Springer, 2004. P. 345-391.
- 7. Лапин П. И. Методика фенологических наблюдений в ботанических садах СССР. М., $1975.\ 27\ c.$
- 8. Карягин И. И. Флора Азербайджана. Т. 5. Rosaceae-Leguminosae. Баку: Изд-во АН Азербайджанской ССР, 1954. С. 248-265.

References:

- 1. Ali-zade, V. M., Shirvani, T. S., & Alirzaeva, E. G. (2011). Ustoichivost' rastenii k toksichnosti metallov i neftyanykh uglevodorodov. Podkhody k fitoremediatsii. Baku, Elm, 280. (in Russian).
- 2. Mironova, S. I., Ivanov, V. V., Gavrilyeva, L. D., Nazarova, G. V., & Petrov, A. A. (2012). Scientific bases of the choice of ways biological rekultivation of dump "Aykhal". *Uspekhi sovremennogo estestvoznaniya*, (11-1), 125-127.
- 3. Mammadova, A. (2008). Plant Bio-Indicators and Environmental Assessment. Baku, BSU, 2008. (in Azerbaijani).
- 4. Tian, D., Zhu, F., Yan, W., Xi, F., Xiang, W., Deng, X., Wang, G., & Peng, C. (2009). Heavy metal accumulation by panicled goldenrain tree (*Koelreuteria paniculata*) and common elaeocarpus (*Elaeocarpus decipens*) in abandoned mine soils in southern China. *Journal of Environmental Sciences*, 21(3), 340-345.

- 5. Tomašević, M., Vukmirović, Z., Rajšić, S., Tasić, M., & Stevanović, B. (2005). Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area. *Chemosphere*, 61(6), 753-760.
- 6. Prasad, M. N. V. (2004). Phytoremediation of metals and radionuclides in the environment: the case for natural hyperaccumulators, metal transporters, soil-amending chelators and transgenic plants. *In: Heavy metal stress in plants. Berlin, Heidelberg, Springer, 345-391*.
- 7. Lapin, P. I. (1975). Metodika fenologicheskikh nablyudenii v botanicheskikh sadakh SSSR. Moscow, 27. (in Russian).
- 8. Karyagin, I. I. (1954). Flora Azerbaidzhana. V. 5. Rosaceae-Leguminosae. Baku, Izd-vo AN Azerbaidzhanskoi SSR, 248-265. (in Russian).

Работа поступила в редакцию 11.01.2019 г. Принята к публикации 15.01.2019 г.

Ссылка для цитирования:

Гафарова Б. Т., Мамедова А. О. Исследование индикативных свойств *Medicago sativa* L. в условиях нефтяного загрязнения // Бюллетень науки и практики. 2019. Т. 5. №2. С. 19-25. https://doi.org/10.33619/2414-2948/39/03.

Cite as (APA):

Gafarova, B., & Mammadova, A. (2019). Indicative properties study of *Medicago sativa* L. culture under the oil-poluted condition. *Bulletin of Science and Practice*, 5(2), 19-25. https://doi.org/10.33619/2414-2948/39/03. (in Russian).