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Abstract: Existing methods, such as Graph Edit Distance (GED) and Cosine measure, still have drawback in 

obtaining similarity of parallel relationships by neglecting the control-flow patterns, i.e. AND, OR, and XOR. Since 

AND > OR > XOR, the similarity value of AND versus OR is greater than XOR versus OR and AND versus XOR. 

This paper proposes two new similarity methods, Tree Declarative Pattern Edit Distance (TPED) and Cosine-Tree 

Declarative Pattern (Cosine-TDP). They provides value to the control-flow pattern so the value of similarity can be 

seen more differently. The new methods utilize tree model of the declarative pattern. The results show that the 

proposed methods are better at differentiating parallel relationships than the existing methods, GED and Cosine 

measure. In obtaining AND versus OR, XOR versus OR, and AND versus XOR, TPED obtained 0.821, 0.811, and 

0.78 while Consine-TDP obtained 0.834, 0.826, and 0.693. Meanwhile, GED obtained 1 for all parallel relationships 

whereas Cosine measure obtained 0.02, 0.08, and 0.04.  

Keywords: Cosine-tree declarative pattern, Parallel business process, Tree declarative pattern edit distance, 

Weighted-linear temporal logic, Weighted-tree declarative pattern. 

 

 

1. Introduction 

Business process models are graphical 

representations of activity workflows [1, 2] that can 

be represented by two types of relationships, which 

are sequence relationships and parallel relationships. 

There are several control-flow patterns [3] to depict 

operators of parallel relationships, i.e. AND, OR, 

and XOR [4, 5]. The control-flow patterns can be 

modeled in different ways depend on the kinds of 

the graphical representations. The first 

representation, imperative model [6], uses specific 

operators to express parallel relationships. For 

example, in Business Process Modeling Notation 

(BPMN) [7, 8], AND, OR, and XOR are denoted by 

three gateways, i.e. +, O, and X respectively. There 

are other imperative model besides BPMN, i.e. Petri 

Nets [9], Yet Another Workflow Language (YAWL) 

[10], and Event-Driven Process Chains (EPC) [11]. 

The second representation, declarative model [12], 

uses rules to declare the operators of parallel 

relationships. One of declarative model, Linear 

Temporal Logic (LTL) [13–16], constructs the rules 

by combining temporal operators, such as <> and _O, 

with logical operators, e.g. ^ and V. For examples, to 

construct sequence relationship, LTL uses operator 

_O. Further, to construct AND, OR, and XOR 

relationship, LTL uses operators <> ^, <> V, and 

_O V respectively. 

Business process models can be compared to 

evaluate its structure [17, 18] and behavior [19, 20] 

that have similar functions [21]. The comparison is 

called a business process similarity [22]. In 

calculating similarity between process models, 

structural [23], behavioral [23], or semantic 

similarity can be applied [24]. In several previous 

works, behavioral similarity was calculated using 

Jaccard similarity coefficient and Transition 

Adjacency Relations (TARs). TARs were used to 

calculate the similarity in behavioral relationships 

between two models, while Jaccard similarity 

coefficient was used to compare the values of 

similar labels, transitions, and edges. Another 
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method of measuring structural similarity uses 

Graph Edit Distance (GED). GED calculates the 

number of edits in the nodes and edges needed to 

transform one process model into another process 

model divided by the total number of nodes in the 

two process models. 

Existing similarity methods, such as GED, 

Cosine, Jaccard, and TARs have several drawbacks. 

Firstly, they are unable to differentiate between the 

operators of parallel relationships. Secondly, when 

using some imperative similarity measures (i.e. the 

Cosine measure [25] and GED [23]) to compare two 

imperative models with the different operators of 

parallel relationships (i.e. the model containing 

XOR relation versus the model containing AND 

relation), the similarity result might be identical 

although the models have different operators of 

parallel relationships. The inability in differentiating 

the operators of parallel relationships is caused by 

only considering labels, nodes, and edges, not 

control-flow patterns. 

In this research, we propose novel similarity 

methods that are able to differentiate the  operators 

of parallel relationships: AND versus OR, OR 

versus XOR, and AND versus XOR by assigning 

weight of the control-flow patterns and edges on the 

declarative model [16]. The weight of edges is based 

on the probability of occurrences of the activities. 

The weighted declarative model is named Weighted-

Tree Declarative Pattern (W-TDP). This research 

uses declarative model, i.e. Linear Temporal Logic 

(LTL), because the combination of its operators can 

be derived into logic table as a basis of our proposed 

weighted control-flow patterns calculation. Then, 

the declarative models are transformed into tree 

model [26] to describe activity workflows in a more 

structured way.  

The contributions of this research are: 

(1) Discovering process model based on W-TDP, 

which are tree models of Weighted-Linear Temporal 

Logic (W-LTL). 

(2) Proposing two novel similarity methods based 

on W-TDP. The proposed similarity methods are: 

(a) Tree Declarative Pattern Edit Distance (TPED), a 

modification of GED to measure structural 

similarity; and (b) Cosine-Tree Declarative Pattern 

Similarity (Cosine-TDP), a modification of the 

Cosine measure to calculate behavioral similarity. 

(3) TPED and Cosine-TDP are able to differentiate 

the similarity of the operators of parallel 

relationships, i.e. AND, OR, and XOR. This 

statement is verified in section 4. 

(4) Proposing the weight of the control-flow 

pattern which are based on logic table as a basis of 

our proposed similarity methods. 

(5) To prove that TPED and Cosine-TDP are able 

to differentiate the operators of parallel relationships 

compared to the existing method (GED and Cosine 

measure). 

The paper is organized as follows. The existing 

methods and other related works are discussed in 

Section 2. The proposed methods are discussed in 

Section 3. Then, we discuss the experiment results 

in Section 4. Finally, the conclusion of this work is 

presented in Section 5. 

2. Literature review 

2.1 Existing similarity methods 

Several previous works have investigated 

similarity methods. One of the works [27] compared 

the performance of Transition Adjacency Relations 

(TARs) (see Eq. (1)) and Naive Algorithm to 

calculate behavioral similarity. The TARs were 

obtained from the relationships between activities, 

as described in Definition 1. The value of behavioral 

similarity was obtained from the order of the process 

in the model using Naive Algorithm. The TARs 

similarity was obtained by comparing the similar 

fragment between two business process models and 

was then divided by the total number of activities in 

the process order.  . 

 

Definition 1. Transition Adjacency Relations 

(TAR). Let 𝐺 =  (𝑁, 𝐸) be a graph model with a set 

of nodes 𝑁 = {𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑥} and a set of edges 

E =  {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥}. We can say 𝑒1 and 𝑒2 are in 

a Transition Adjacency Relation (TAR), shown as 

𝑒1  
𝑇𝐴𝑅
⇒   𝑒2 iff there is a flow of a sequence 𝑓𝑠, where 

𝑟1  is executed, and 𝑓𝑠   
𝑟1
→ 𝑓𝑠’ , such that 𝑟2  is 

executed at 𝑓𝑠’.  
 

The equation to compute the TARs similarity value 

is shown in Eq. (1). 

 

𝑇𝐴𝑅𝑠 𝑆𝑖𝑚 =
(𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑇𝐴𝑅𝑠𝑒𝑡)2

𝑇𝐴𝑅𝑠𝑒𝑡1 .  𝑇𝐴𝑅𝑠𝑒𝑡2
  (1) 

 

where 𝑇𝐴𝑅𝑠𝑒𝑡 is the similar fragment between first 

and second model. For example, we have two graph 

process models as shown in Fig. 1. Graph model 1 

has TARset {AB, BC, BF, CE, FE} and Graph 

model 2 has TARset {AB, BC, BD, CE, DE}. TARs 

similarity value between graph model 1 and graph 

model 2 is 32/25  = 0.36. We can see that the 

amount of similar fragment TARset between two 

process models is 3, which are {AB, BC, CE} and 
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(b) 

Figure. 1 Example of two graph process models: (a) 

Graph model 1 and (b) Graph model 2 

 

the amount of TARset in graph model 1 and 2 is 5 

each. From the example above, we can see that 

TARs similarity does not differentiate the operators 

of parallel relationship. 

Another previous work, [28, 29], attempted to 

extract similar fragments based on similarity 

measures from a scalable process model. Jaccard 

similarity (see Eq. (2)) and TARs were used to 

obtain the structural similarity value and the 

behavioral similarity value respectively. As shown 

in Definition 2, the Jaccard coefficient value was 

obtained from the similarity between aspects such as 

the number of nodes transitions in the model divided 

by all aspects contained in the two models under 

comparison. 

 

Definition 2. Jaccard coefficient. Given 𝑥 as nodes 

and 𝑦 as edges of a graph model. 𝑥1, 𝑦1 ∈ 𝐺1; 𝑥2, 𝑦2 

∈ 𝐺2 , where 𝐺1  is the first graph model and 𝐺2  is 

the second graph model, Jaccard similarity is 

defined as: 

 

𝐽 (𝑥, 𝑦) = {

∑(𝑥1 ∩ 𝑥2)+∑(𝑦1 ∩ 𝑦2)

∑(𝑥1 ∪ 𝑥2)+∑(𝑦1 ∪ 𝑦2)
  𝑖𝑓 𝑥 ∪ 𝑦 ≠ ∅ 

1      𝑖𝑓 𝑥 ∪ 𝑦 = ∅
 (2) 

 

where  

𝑥 is node,  

𝑦 is edge, 

𝑥1  ∩  𝑥2 is the similar set of nodes from two models, 

𝑦1  ∩  𝑦2 is the similar set of edges from two models, 

𝑥1  ∪  𝑥2 is the union of all nodes, and  

𝑦1  ∪  𝑦2 is the union of all edges. 

 

From the example above, we can see that Jaccard 

similarity only consider the same set of nodes and 

edges from two models, but does not differentiate 

the operators of parallel relationship. 

The other similarity metric, used on the structure 

of the process model, is Graph Edit Distance (GED) 

(see Eq. (3)) [23]. As defined in Definition 3, GED 

measures the minimal number of edit operations 

between two models. The three types of measures in 

GED are: node insertion or deletion, edge insertion 

or deletion, and node label substitution (see Eq. (4)-

(6)). The final result of GED similarity which is 

presented in Eq. (3) is obtained by subtracting 1 

from the average number of node insertions or 

deletions, edge insertions or deletions, and node 

label substitutions. 

 

Definition 3. Graph Edit Distance (GED). Let 𝐺1 
and 𝐺2 be the first and the second business process 

model respectively. The similarity of Graph Edit 

Distance 𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) is denoted as:  

𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) =

𝑚𝑖𝑛(𝑥1,…, 𝑥𝑘)∈𝑃(𝐺1,𝐺2) ∑ 𝑐(𝑥1)
𝑘
𝑖=1 , where 𝑃(𝐺1,𝐺2) is 

the set of edits needed to transform 𝐺1 into 𝐺2 and 

𝑐(𝑥) ≥ 0 is the cost of GED to perform operation 𝑥. 

 

The equations to compute the value of GED 

similarity are shown in Eq. (3) to Eq. (6): 

 

𝑆𝑖𝑚𝐺𝐸𝐷(𝐺1, 𝐺2) =   1 − 𝑎𝑣𝑔(𝑠𝑛𝑣, 𝑠𝑒𝑣, 𝑠𝑏𝑣)  (3) 

 

𝑠𝑛𝑣 =
|𝑠𝑛|

|𝑁1|+|𝑁2|
     (4) 

 

𝑠𝑒𝑣 =
|𝑠𝑒|

|𝐸1|+|𝐸2|
     (5) 

 

𝑠𝑏𝑣 =
2.∑(𝑛,𝑚)∈𝑀 1−𝑆𝑖𝑚(𝑛,𝑚)

|𝑁1|+|𝑁2|−|𝑠𝑛|
     (6) 

 

where  

𝑠𝑛𝑣  is the average number of node insertions or 

deletions, 

𝑠𝑒𝑣  is the average number of edge insertions or 

deletions, 

𝑠𝑏𝑣  is the average number of node label 

substitutions, 

|𝑠𝑛| is the number of node insertions or deletions, 

|𝑠𝑒| is the number of edge insertions or deletions, 
|𝑁1| is the number of nodes in 𝐺1, 
|𝑁2| is the number of nodes in 𝐺2, 
|𝐸1| is the number of node edges in 𝐺1, and 

|𝐸2| is the number of node edges in 𝐺2. 
 

From the example above, we can see that GED 

similarity only consider the number of nodes and 

edges from two models, but does not differentiate 

the operators of parallel relationship. 

Another similarity metric, the Cosine measure in 

Eq. (7), has been used to measure behavioral 

similarity. In [25], the Cosine measure was used to 
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calculate the behavioral similarity between two 

graph models using two vectors: the activity vector 

and the transition vector. As described in Definition 

4, the Cosine measure is the measurement of two-

non zero vectors. 

 

Definition 4. Cosine measure. Let 𝐴 and �⃗⃗� be the 

two vector attributes, 𝐴𝑖 and 𝐵𝑖 are the components 

of 𝐴 and �⃗⃗� respectively. The Cosine measure cos 𝜃 

is formulated as: 

 

Sim cos𝜃 = 
𝐴.𝐵

||𝐴||||𝐵||
= 

∑𝐴𝑖.𝐵𝑖

√∑𝐴𝑖
2∑𝐵𝑖

2
  (7) 

 

where 𝐴𝑖  is the component of activity in model A 

and  𝐵𝑖 is the component of activity in model B. 

 

From the example above, we can see that Cosine 

similarity only consider the component of activity 

from two models, but does not differentiate the 

operators of parallel relationships. 

2.2 Control-flow patterns in linear temporal 

logic (LTL) 

Linear Temporal Logic (LTL) is an official 

language to describe various temporal logics that 

refers to time [16]. In Definition 5, it is shown that 

LTL is constructed  from the atomic proposition, 

logical, also temporal capital operators. This 

research adopts LTL to describe business process 

model to discover model pattern by using LTL. The 

previous research has constructed control-flow 

patterns derived from the declarative model.  

 

Definition 5. Linear Temporal Logic (LTL). Let 

𝜏 ∈ LTL; 𝜑 is the name of activities; 𝛼,𝛽 ∈ the order 

of activities; 

𝜏 |= ○𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 = 1,  

𝜏 |= □𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 ≥ 0,  

𝜏 |= ◊𝜑 iff 𝜏 |𝛼|= 𝜑 for all 𝛼 = 1, and  

𝜏 |= 𝜑1U𝜑2 iff 𝜏 |𝛼|= 𝛿 for all 𝛼 ≥ 0 && 𝜏 |𝛽|= 𝜑 

for all 0 ≤𝛽< 𝛼 

 

To describe the relation between activities, 

control-flow patterns are converted to LTL. To 

convert the control-flow patterns, several rules are 

used as shown in Table 1. To construct a sequence, 

we use the operators -> and _O. The operators -> and 

_O are placed in front of next activity. For example, 

activity B occured after executing activity A. 

Therefore, activity B acts as next activity. Then, the 

operators -> and _O are placed in front of B. 

To construct AND relation, we use the operators 

->, <> and ^. In AND SPLIT relation, the operators 

<> is used once before split and operators ^ is used as 

separator between next activities. Lastly, the 

operators -> and _O are used in AND JOIN relation 

to merge split and executing activity after split. For 

example, activities B, C, and D are executed 

concurrently in split relation from activity A and are 

merged in activity E. Therefore, the operators -> 

and <> are placed before split activities (B, C, and 

D) and the operators ^ is placed to seperate B, C, 

and D. Lastly, to merged the split relation, operators 

-> and _O are placed before activity E. 

To construct XOR relation, we use the operators 

->, _O and V. In XOR SPLIT relation, the operator 

_O is used once before split and operators V is used as 

separator between next activities. Lastly, the 

operators -> and _O are used in XOR JOIN relation 

to merge split and executing activity after split. For 

example, activities B, C, and D are chosen in XOR 

Split relation from activity A and are merged in 

activity E. Therefore, the operators -> and _O are 

placed before split activities (B, C, and D) and the 

operators V is placed to seperate B, C, and D. Lastly, 

to merged the split relation, operators -> and _O are 

placed before activity E. 

 
Table 1. LTL control-flow patterns 

Control  

flow Patterns 

LTL Description 

Sequence 

relation 
A->_O(B) 

A and B occur 

sequentially. 

AND Split 

relation 
A-><>((B^C^D)) 

AND Split 

occurs 

concurrently 

in B, C, and D 

after A. 

AND Join 

relation 

<>((B^C^D))-> 
_O(E) 

AND Join 

occurs 

concurrently 

in B, C, and D 

before E. 

XOR Split 

relation 
A->_O((BVCVD)) 

XOR Split 

occurs in B, C, 

and D after A. 

XOR Join 

relation 

_O((BVCVD))-> 
_O(E) 

XOR Join 

occurs in B, C, 

and D before 

E. 

OR Split 

relation 
A-><>((BVCVD)) 

OR Split 

occurs in B, C, 

and D after A. 

OR Join 

relation 

<>((BVCVD))-> 
_O(E) 

OR Join 

occurs in B, C, 

and D before 

executing E. 
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To construct OR relation, we use the operators 

->, <> and V. In OR SPLIT relation, the operators 

<> is used once before split and operators V is used 

as separator between next activities. Lastly, the 

operators -> and _O are used in OR JOIN relation to 

merge split and executing activity after split. For 

example, activities B, C, and D are chosen two 

among three in split relation from activity A and are 

merged in activity E. Therefore, the operators -> 

and <> are placed before split activities (B, C, and 

D) and the operators V is placed to seperate B, C, 

and D. Lastly, to merged the split relation, operators 

-> and _O are placed before activity E. 

2.3 Tree model 

Formally, a given tree model 𝑇  has a set of 

nodes 𝑁 = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑥}  and a set of edges 

𝐸 = {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥−1} . Based on [16], the first 

step is choosing the first W-LTL, which is the 

control-flow pattern that contains the first activity. 

Start_Act(act) contains the first activity of the 

process model. Then, the W-LTL is split into parts 

of W-LTL (pW-LTL) separated by commas. For 

example A -> _O((B V C V D)) can be split as 

[A, ->, _O, (, (, B, V, C, V, D, ), )]. The tree model 

is built after all of the pW-LTL have been processed. 

An open parenthesis is intended to construct a child 

of a node and a closing parenthesis is intended to put 

back the pointer position to the parent of that node. 

Other logical operators, i.e. X, V, ^, and ->, as nodes 

of W-LTL are used to construct XOR, OR, AND, 

and sequence relations respectively. The detail 

algorithm to construct Weighted-Tree Declarative 

Pattern (W-TDP) is shown in section 3 in Table 4. 

3. The proposed method 

The methodology to conduct the research is 

depicted in Fig. 2. It consists of three steps: 

constructing the weighted declarative pattern, 

constructing the weighted-tree model, and 

conducting the similarity analyses using the 

proposed methods. 

 

 

 

 

 

 

 

 

 

 
Figure. 2 The proposed methods 

3.1 Weighted-linear temporal logic (W-LTL) 

declarative patterns 

Each relation between activities is assigned by 

weight value. Weight 𝑤 is assigned to calculate the 

probability of occurences of activities. The example 

of calculating 𝑤-value is shown in Table 2. The 𝑤-

value is used as a basis to construct W-LTL. The W-

LTL is constructed based on the graph model by 

using the algorithm as shown in Table 3. The input 

to construct W-LTL is a dataset of graph process 

model. In this paper, the graph process model is 

shown in Fig. 4. Then the W-LTL is shown in Table 

8. If the graph model contains NEXT relation, then 

the constructed W-LTL is defined as A -> _O 
(activity  Bw ). Weight 𝑤  is assigned besides 

activity  Bw . If the graph model contains 

ANDSPLIT relation, then the constructed W-LTL is 

defined as A-><>((activity Bw^Cw^Dw)).  
 

Table 2. Assigning weight value to activity relation 

Relation Trace examples 𝑤-value 

Sequence 

Type 

[A]-[B]-[C] 

10x 

Occurences of [A]-

[B] = 10 

Outgoing edge of [A] 

= 10 

𝑤-value of [A]-[B] = 

10/10 = 1 

Occurences of [B]-

[C] = 10 

Outgoing edge of [B] 

= 10 

𝑤-value of [B]-[C] = 

10/10 = 1 

Split 

Type 

[A]-[B] 7x 

[A]-[C] 3x 

Occurences of [A]-

[B] = 7 

Outgoing edge of [A] 

= 10 

𝑤-value of [A]-[B] = 

7/10 = 0.7 

Occurences of [A]-

[C] = 3 

Outgoing edge of [A] 

= 10 

𝑤-value of [A]-[C] = 

3/10 = 0.3 

Join Type [B]-[D] 7x 

[C]-[D] 3x 

Occurences of [B]-

[D] = 7 

Incoming edge of 

[D] = 10 

𝑤-value of [B]-[D] = 

7/10 = 0.7 

Occurences of [C]-

[D] = 3 

Incoming edge of 

[D] = 10 

𝑤-value of [C]-[D] = 

3/10 = 0.3 
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Table 3. Algorithm for W-LTL Declarative Pattern 

Input :Dataset of graph process model G (the 

example can be seen in Fig. 4) 

Output :W-LTL y (the example can be seen in 

Table 8) 
For each data in the dataset: 

If the relation of the data is NEXT 

          Add weight 𝑤 to the W-LTL 

            Print activity A -> _O (activity Bw) 

If the relation of the data is ANDSPLIT 

      For each data in the dataset: 

             Add all ANDSPLIT relation to ands 

      For each data in dataset ands: 

            Search all weight values in ANDSPLIT 

            Print activity A-><>((activity 
Bw^Cw^Dw)) 

If the relation of the data is ANDJOIN 

     For each data in the dataset: 

            Add all ANDJOIN relation to andj 

     For each data in dataset andj: 

           Search all weight values in ANDJOIN  

           Print activity <>((activity  
Bw^Cw^Dw))->_O(E) 

If the relation of the data is XORSPLIT 

        For each data in the dataset: 

             Add all XORSPLIT relation to xors 

        For each data in dataset xors: 

            Search all weight values in XORSPLIT 

            Print activity A->_O((activity 
BwVCwVDw)) 

If the relation of the data is XORJOIN 

      For each data in the dataset: 

           Add all XORJOIN relation to xorj 

      For each data in dataset xorj: 

          Search all weight values in XORJOIN 

          Print activity _O((activity 
B𝑤VC𝑤VD𝑤))->_O(E) 

If the relation of the data is ORSPLIT 

      For each data in the dataset: 

            Add all ORSPLIT relation to ors 

      For each data in dataset ors: 

           Search all weight values in ORSPLIT 

  Print activity A-><>((activity 
BwVCwVDw)) 

If the relation of the data is ORJOIN 

     For each data in the dataset: 

            Add all ORJOIN relation to orj 

     For each data in dataset orj: 

           Search all weight values in ORJOIN 

           Print activity <>((activity 
BwVCwVDw))->_O(E) 

 

Weight 𝑤  is assigned besides 

activity Bw, Cw, and Dw. If the graph model 

contains ANDJOIN relation, then the constructed 

W-LTL is defined as <>((activity 
 

Table 4. Algorithm for Weighted-Tree Declarative 

Pattern  

Input :W-LTL y 

Output :W-TDP z 

Algorithm W-TDP 

While W-LTL are being modeled : 

Split W-LTL into pW-LTL as part of W-LTL 

separated by comma 

For pW-LTL in W-LTL : 

If pW-LTL is “(” 

Then make child of node, pointer is in the 

child of node  

Else if pW-LTL is “)”  

Then place the pointer position in the parent 

of node 

Else if pW-LTL is “O” 

Then create “O”, bracket next to this part is 

skipped 

Else if pW-LTL is “<>” 

Then create “<>”, bracket beside is skipped 

Else if pW-LTL is “V” 

If node is “O” 

Then create node “X” 

Else If node is “<>” 

Then create node “V” 

Else if pW-LTL is “^” or “->” 

If node is “X” or “V” 

Then make child node and fill in the node 

with “->” or “^” 

Child node of “X” or “V” become child 

node of “->” or “^”     

Else  

Fill in the node name with pW-LTL 

("ActNode˄𝑤-value"), pointer at parent 

 
Bw ^ Cw ^ Dw ))->_O(E). Weight 𝑤  is assigned 

besides activity Bw, Cw, and Dw. If the graph 

model contains XORSPLIT relation, then the 

constructed W-LTL is defined as A-
>_O((activity Bw V Cw V Dw )). Weight 𝑤  is 

assigned besides activity Bw, Cw, and Dw. If 

the graph model contains XORJOIN relation, then 

the constructed W-LTL is defined as 

_O((activity B𝑤VC𝑤VD𝑤))->_O(E). Weight 

𝑤 is assigned besides activity Bw, Cw, and Dw. 

If the graph model contains ORSPLIT relation, then 

the constructed W-LTL is defined as A-
><>((activity Bw V Cw V Dw )). Weight 𝑤  is 

assigned besides activity Bw, Cw, and Dw. If 

the graph model contains ORJOIN relation, then the 

constructed W-LTL is defined as <>((activity 
Bw V Cw V Dw ))->_O(E). Weight 𝑤  is assigned 

besides activity Bw, Cw, and Dw. 
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3.2 Building a weighted-Tree declarative pattern 

(W-TDP) model 

Given W-TDP z of order 𝑛 with a set of nodes 

𝑁 = {𝑛1, 𝑛2, 𝑛3, … , 𝑛𝑥} , and a set of edges E=
{𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑥−1} , and weights 𝑤 =
{𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑥−1}. The tree model is built based 

on all discovered patterns in W-LTL. The first W-

LTL to be processed is the control-flow pattern that 

has Start_Act(act) as the first activity to be 

executed. Then, the W-LTL is split into parts of W-

LTL (pW-LTL) as explained in Subsection 2.3. To 

construct the W-TDP model, Table 4 is used as the 

modification result from the algorithm in [16] by 

inserting the weight after ActNode. The 𝑤-values 

from the declarative pattern are inserted into the tree 

model by adding operator ‘˄’ before the 𝑤 -values 

in the declarative template. For example, 
Initializing Game ->_O (Collecting 
Company Expenditure Data Every Month 
₁.₀₀) becomes Initializing Game ->_O 
(Collecting Company Expenditure Data 
Every Month˄₁.₀₀) as shown in the last line. 

3.3 The proposed execution probability 𝒑(𝒆) 

As shown in Definition 6, this paper proposes 

execution probability 𝑝(𝑒) to weigh the control-flow 

pattern in the proposed TPED and Cosine-TDP 

similarity. 

 

Definition 6. Execution probability p(e). Let 𝑝(𝑒) 
be the execution probability of activities in the 

relations and 𝑒 is the control-flow patterns. 𝑝(𝑒) is 

¼ iff e = <> and ^; 𝑝(𝑒) is ½ iff e = <> and V; 𝑝(𝑒) 
is ¾ iff e = _O and X; 

 

The value of 𝑝(𝑒) is derived from truth table as 

shown in Table 5. We use uppercase letters to 

represent variables (in this context, we use A, B, and 

C). The variables are always said to have truth value. 

It is said that we have 2𝑛 possible truth combination 

from 𝑛 set of variables. Because we have 3 variables, 

then the possible truth combinations are 23 = 8. 
Next, we assign truth value (either True (T) or False 

(F)) to AND Logic, OR Logic, XOR Logic, and 

Implication Logic. AND Logic has True (T) value 

as long as these 3 variables are all True (T). 

However, OR Logic has True (T) value as long as 

there is at least one True (T) among those 3 

variables. Next, XOR Logic has True value where 

there is exactly one True value among 3 variables. 

We assign value rate to give score to relatonships 

types and rank them ascendingly. Value rate is the 

possibility of True (T) value based on the truth table. 

Table 5. The truth table logic and the proposed 𝑝(𝑒) 

Variables <> ^  
AND 

<> V  

OR 

_O V 
XOR  

Sequence 
(A→B)→C 

A B C -> _O  

F F F F F F F 

F F T F T T T 

F T F F T T F 

T F F F T T T 

F T T F T F T 

T F T F T F T 

T T F F T F F 

T T T T T F T 

Value Rate 3 1.714 1 0.6 

𝑟𝑎𝑛𝑘 1 2 3 4 

𝑝(𝑒) = 

𝑟𝑎𝑛𝑘/𝑛 
1/4 

2/4 = 

½ 
3/4 4/4 = 1 

𝑛 is the number of relationship types (Sequence, AND, 

OR, and XOR) 

 

Then, we give the execution probability value 𝑝(𝑒) 
=  𝑟𝑎𝑛𝑘/𝑛, where 𝑟𝑎𝑛𝑘 is the rank of the value rate 

and 𝑛  is the number of relationships that this 

research used (Sequence, AND, OR, and XOR). 

The first example is Start_Act(act) -> <> 
(A ^ B ^ C), where Start_Act(act) is the 

first activity and A, B, and C occur concurrently in 

AND relationship seperated by “^”. The LTL rules 

used in this relationship are <> and ^. For AND 

relationship type, rule “^” is used to assign True 

value. True value is based on AND Logic, where all 

variables have to be True (consider the yellow 

shades). Hence, the value rate is the number of True 

from the selected combination divided by True 

value in AND Logic. Therefore, the value rate of 

AND relationship type is 3/1 =  3. 
The second example is Start_Act(act) -> <> 

(A V B V C), where Start_Act(act) is the 

first activity and A, B, and/or C occur in OR 

relationship seperated by “V”. The LTL rules used in 

this relationship are <> and V. For OR relationshp 

type, the true value is based on OR Logic, where 

there should be at least one True among 3 variables 

(consider the shades area). Hence, the value rate is 

the number of True from the selected combination 

divided by True value in OR Logic. Therefore the 

value rate of OR relationship type is 12/7. 
The third example is Start_Act(act) -> _O 

(A V B V C), where Start_Act(act) is the 

first activity and A, B, or C occur in XOR 

relationship seperated by “V”. The LTL rules used in 

this relationship are _O and V. The rule of XOR is 

the combination of OR (V) and Sequence (_O). 

Therefore, we choose exactly one True value among 

3 variables (consider the green shades). Hence, the 
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value rate is the number of True from the selected 

combination divided by True value in XOR Logic. 

Therefore the value rate of OR relationship type is 

3/3 =  1. 

The last example is Start_Act(act->_O(A)-
>_O(B)->_O(C), where Start_Act(act) is the 

first activity and A, B, and C occur sequentially. The 

LTL rule used in this relationship is _O, where there 

is next activity executed sequentially. All variables 

have to be true (consider the yellow shades) and 

divided by True value in Implication logic. Hence, 

the value rate is 3/5 =  0.6. 

3.4 Similarity analysis 

In this research, we propose two similarity 

methods: Tree Declarative Pattern Edit Distance 

(TPED) to calculate structural similarity and Cosine-

Tree Declarative Pattern (Cosine-TDP) to calculate 

behavioral similarity. As described in Definition 7, 

TPED is a modification of GED and is used to 

differentiate the types of nodes and edges in the 

declarative pattern contained in W-TDPs. TPED are 

the absolute value of |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅ )| . 

Meanwhile, as defined in Definition 8, Cosine-TDP is 

a modification of the Cosine measure and is used to 

compare the occurrence probability of activities 

between W-TDPs. 𝑝(𝑒) is added to give weight to the 

control-flow patterns contained in two models. The 

proposed algorithm for computing the similarity 

between W-TDPs is shown in Table 6. 
 

Definition 7. Tree Declarative Pattern Edit 

Distance (TPED). Let 𝑀𝑥  = (𝑁1 , 𝐸1 , 𝑤1 ,  𝑝(𝑒)1  ) 

and 𝑀𝑦 = (𝑁2, 𝐸2 , 𝑤2, 𝑝(𝑒)2) be the first and the 

second weighted-tree Declarative Pattern model 

respectively. Let 𝑝(𝑒) be the execution probability 

to weigh the relationships. The similarity of Tree 

Declarative Pattern Edit Distance 

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥,𝑀𝑦)  is denoted as: 

𝑚𝑖𝑛((𝑠1,…, 𝑠𝑘),(𝑝(𝑒)1,…,𝑝(𝑒)𝑘))∈𝑃(𝑀𝑥,𝑀𝑦) ∑ 𝑐(𝑠1)
𝑘
𝑖=1 , 

where 𝑃(𝑀𝑥,𝑀𝑦)  is the set of edits needed to 

transform 𝑀𝑥  into 𝑀𝑦  and 𝑐(𝑥) ≥ 0  is the cost of 

TPED to perform operation s. 
 

The equations to compute TPED are shown in Eq. (8) 

to Eq. (11): 

 

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦) = |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅ )|  (8) 

 

𝑛𝑠̅̅ ̅ =
|𝑛𝑖|+𝑝(𝑒)𝑥+𝑝(𝑒)𝑦

|𝑁𝑥|+|𝑁𝑦|
                       (9) 

 

𝑒𝑠̅̅̅ =  
|𝑒𝑖|

|𝐸𝑥|+|𝐸𝑦|
     (10) 

 

𝑛𝑏̅̅̅̅ =  
2.∑(

𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
)

|𝑁𝑥|+|𝑁𝑦|−(|𝑛𝑖|+𝑝(𝑒)𝑥+𝑝(𝑒)𝑦)
              (11) 

 

where 

𝑛𝑠̅̅ ̅  is the average number of node insertions or 

deletions in W-TDPs, 

𝑒𝑠̅̅̅  is the average number of edge insertions or 

deletions in W-TDPs,  

𝑛𝑏̅̅̅̅  is the average number of nodes label substitution 

in W-TDPs, 

|𝑛𝑖| is the number of node insertions or deletions in 

W-TDPs, 

𝑝(𝑒)𝑥 is the exection probability 𝑝(𝑒) to weigh the 

control-flow patterns in Model Mx,  
𝑝(𝑒)𝑦 is the exection probability 𝑝(𝑒) to weigh the 

control-flow patterns in Model My, 

|𝑁𝑥|  is the number of nodes in the first W-TDP 

model, 
|𝑁𝑦| is the number of nodes in the second W-TDP 

model, 

|𝑒𝑖| is the number of node insertions or deletions in 

W-TDPs, 

|𝐸𝑥|  is the number of nodes in the first W-TDP 

model, 

|𝐸𝑦| is the number of nodes in the second W-TDP 

model, and 
𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
 is 

|𝑝(𝑒)𝑥 − 𝑝(𝑒)𝑦|

max (𝑝(𝑒)𝑥  ,   𝑝(𝑒)𝑦)
. 

 

Definition 8. Cosine-Tree Declarative Pattern 

(Cosine-TDP). Let 𝑀𝑥  = (𝑁1 , 𝐸1 , 𝑤1 , 𝑝(𝑒)1  ) and 

𝑀𝑦 = (𝑁2, 𝐸2, 𝑤2, 𝑝(𝑒)2) be the first and the second 

weighted-tree declarative pattern model respectively. 

Let 𝑝(𝑒) be the execution probability to weigh the 

relationships. The similarity of Cosine-Tree 

Declarative Pattern (Cosine-TDP) is denoted as: 

 𝑝(𝑒)1𝑁1 . 𝑝(𝑒)2𝑁2 + 𝑝(𝑒)1𝑝(𝑒)2 −
(𝑝(𝑒)1−𝑝(𝑒)2) = ||𝑝(𝑒)1𝑁1 + 𝑝(𝑒)1||.||𝑝(𝑒)2𝑁2 +
𝑝(𝑒)2||𝑐𝑜𝑠 𝜃. 

 

The equation to compute Cosine-TDP is shown in 

Eq. (12): 

 

𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥,𝑀𝑦) = 

 
(∑ 𝑝(𝑒)𝑖,𝑥 .  𝑤𝑎𝑡𝑖,𝑥  .  𝑝

(𝑒)𝑖,𝑦 .  𝑤𝑎𝑡𝑖,𝑦)+(
∑𝑝(𝑒)𝑖,𝑥 .  𝑝(𝑒)𝑖,𝑦)−𝑒𝑑𝑖𝑡

√∑(𝑝(𝑒)𝑖,𝑥
2
 + (𝑝(𝑒)𝑖,𝑥(𝑤𝑎𝑡𝑖,𝑥))

2) .  ∑(𝑝(𝑒)𝑖,𝑦
2 +(𝑝(𝑒)𝑖,𝑦(𝑤𝑎𝑡𝑖,𝑦))

2)
   

(12) 

 

Where 
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Table 6. Algorithm of the proposed similarity methods 

Input: Weighted-Tree Declarative Pattern Model W-TDP 

Output: 

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥 , 𝑀𝑦), 𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥 , 𝑀𝑦), 𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥, 𝑀𝑦) 

Algorithm 𝑆𝑖𝑚(𝑀𝑥, 𝑀𝑦) 

Foreach W-TDPx, W-TDPy  do 

Compute  𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦) for structural similarity 

Compute  𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥, 𝑀𝑦) for behavioral 

similarity 

Compute  𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥, 𝑀𝑦) for structural similarity  

end for 

 

𝑤𝑎𝑡𝑥 is the weight of an activity in Model Mx,  

𝑤𝑎𝑡𝑦 is the weight of an activity in Model M𝑦, and 

𝑒𝑑𝑖𝑡 is |𝑝(𝑒)𝑥  −  𝑝(𝑒)𝑦|. 

 

The equation to compute the overall similarity 

between W-TDPs is shown in Eq. (13): 

 

𝑆𝑖𝑚𝑎𝑙𝑙(𝑀𝑥,𝑀𝑦) =  𝛼𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝑥,𝑀𝑦) +

(1 − 𝛼)𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀𝑥, 𝑀𝑦)   (13) 

 

where 𝛼  is the threshold (here, we used 0.5 as a 

threshold because we use two similarity metrics for 

similarity analyses: structural similarity and 

behavioral similarity, therefore the total similarity 

value is the addition of two similarities divided by 

2). 

4. Results and discussion 

This research was aimed at getting more 

accurate similarity measures between W-TDPs. The 

proposed methods were evaluated in a retail 

business process. Fig. 3 shows the real-life complex 

retail graph model, which has 23 activities as 

mentioned in Table 7. 

Referring to Table 7, the activities in the process 

are: initializing game, collecting company 

expenditure data every month, updating product 

configuration data, choosing supplier, restocking 

automatically, receiving items automatically, adding 

items automatically, calculating market share, 

recording items purchase journal, selling items 

based on market share, delivering items 

automatically, calculating EOQ, calculating supplier 

selection, calculating ROP, calculating optimal price, 

recording items sales journal, making maximum 

round checks, calculating the highest profit item, 

calculating the highest income item, calculating 

ROA, calculating ROI, calculating ROE, and 

displaying dashboard. 

 

Table 7. Activities in event log and their aliases 

Activities Aliases Activities Aliases 

Initializing 

game 

A Calculating 

supplier 

selection 

M 

Collecting 

company 

expenditure 

data every 

month 

B Calculating 

ROP 

N 

Updating 

product 

configuration 

data 

C Calculating 

optimal price 

O 

Choosing 

supplier 

D Recording items 

sales journal 

P 

Restocking 

automatically  

E Making 

maximum round 

checks 

Q 

Receiving items 

automatically 

F Calculating the 

highest profit 

item 

R 

Adding items 

automatically 

G Calculating the 

highest income 

item 

S 

Calculating 

market share 

H Calculating 

ROA 

T 

Recording 

items purchase 

journal 

I Calculating ROI U 

Selling items 

based on 

market share 

J Calculating 

ROE 

V 

Delivering 

items 

automatically 

K Displaying 

dashboard 

W 

Calculating 

EOQ 

L  

 

In real-life complex retail graph model, there is 

General Ledger department which is used as 

analysis material. The General Ledger department 

consists of the following activities: ‘Delivering 

items automatically (symbolized as K)’, 

‘Calculating supplier selection (symbolized as L)’, 

‘Calculating optimal price (symbolized as M)’, 

‘Calculating ROP (symbolized as N)’, ‘Calculating 

EOQ (symbolized as O)’, and ‘Recording items 

sales journal (symbolized as P)’. Suppose that we 

have three types of general ledger part containing 

AND relation, OR relation, and XOR relation as 

shown in Fig. 4. 

After discovering the graph model, the W-LTL 

declarative pattern was constructed. Table 8 shows 

the results of composing the W-LTL declarative 

pattern and Table 9 shows the result of composing 

the tree model from the W-LTL declarative pattern. 
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Figure. 3 Real-life complex retail graph model 

 

 

 

 

 

 

 

 

 

 
   (a)                       (b)                                                 (c) 

Figure. 4 General ledger part: (a) AND relations (b) OR relations, and (c) XOR relations 

 

Table 8. Results of composing the W-LTL Declarative Pattern of general ledger 

AND Split Relation | 

AND Join Relation 

K -><> ((N₀.₂₆ ^ O₀.₂₂ ^ L₀.₁₇ ^ M₀.₃₅)) 
<> ((M₀.₃₅ ^ L₀.₁₃ ^ N₀.₁₇ ^ O₀.₃₅)) ->_O (P) 

OR Split Relation | 

OR Join Relation 

K -><> ((L₀.₂₃ V M₀.₂₇ V N₀.₂₇ V O₀.₂₃)) 
<> ((O₀.₃₅ V N₀.₁₉ V L₀.₂₃ V M₀.₂₃)) -> _O (P) 

XOR Split Relation | 

XOR Join Relation 

K ->_O ((L₀.₁₀ V N₀.₃₀ V O₀.₂₀ V M₀.₄₀)) 
_O ((L₀.₁₀ V M₀.₄₀ V N₀.₃₀ V O₀.₂₀)) ->_O (P) 

 
Table 9. Results of composing the Weighted-Tree Declarative Pattern model of General Ledger 

AND Split | AND Join OR Split | OR Join  XOR Split | XOR Join  

 

 

 

 

 

 

 

 

 

 

 

Elements: 

{->K, ->^, ^N, ^O, ^L, ^M, ->P} 

 

 

 

 

 

 

 

 

 

 

 

Elements: 

{->K, ->V, VL, VM, VN, VO, ->P} 

 

 

 

 

 

 

 

 

 

 

 

Elements:  

{->K, ->X, XL, XN, XO, XM, ->P} 

Element values: 

{1, ¼, 0.26, 0.22, 0.17, 0.35, 1} 

Element values: 

{1, ½, 0.23, 0.27, 0.27, 0.23, 1} 

Element values: 

{1, ¾, 0.1, 0.3, 0.2, 0.4, 1} 

We assigned the value of ->^, ->X, and ->V with the proposed constraint 𝑝(𝑒) as declared in Table 5. 



Received:  July 27, 2019                                                                                                                                                    246 

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019           DOI: 10.22266/ijies2019.1231.23 

 

The proposed similarity methods were validated 

by comparing the similarity results of structural 

similarity (the proposed TPED in Eq. (8)-(11)), 

behavioral similarity (the proposed Cosine-TDP in 

Eq. (12), and overall similarity using Eq. (13), to 

those of several existing methods, based on General 

Ledger part. 

4.1 Structural similarity 

We compare each W-TDPs in Table 9 (tree 

model containing AND relation versus OR relation, 

OR relation versus XOR relation, and AND relation 

versus XOR relation) by inputting the elements into 

the proposed structural similarity method, TPED. 

The calculation example below is to show the 

calculation result of W-TDP in AND relation versus 

OR relation in structural aspect based on Eq. (8) to 

Eq. (11). 

 

𝑛𝑠̅̅ ̅ =
|𝑛𝑖| + 𝑝(𝑒)𝑥 + 𝑝(𝑒)𝑦

|𝑁𝑥| + |𝑁𝑦|
=  
1 +

1

4
+
1

2

8 + 8
= 0.109 

𝑒𝑠̅̅̅ =  
|𝑒𝑖|

|𝐸𝑥| + |𝐸𝑦|
=  

0

7 + 7
= 0 

𝑛𝑏̅̅̅̅ =  
2. ∑ (

𝑒𝑑𝑖𝑡

𝑚𝑎𝑥
)

|𝑁𝑥| + |𝑁𝑦| − (|𝑛𝑖| + 𝑝(𝑒)𝑥 + 𝑝(𝑒)𝑦)

=  
2.

1
2−
1
4
1

2

8 + 8 − 1.75
= 0.0702 

𝑆𝑖𝑚𝑇𝑃𝐸𝐷(𝑀AND, 𝑀OR) = |1 − (𝑛𝑠̅̅ ̅ + 𝑒𝑠̅̅̅ + 𝑛𝑏̅̅̅̅ )|

= |1 − (0.109 + 0 + 0.0702)|
= 0.821 

4.2 Behavioral similarity 

The next step is to compute behavioral 

similarity using the proposed method, Cosine-TDP. 

The calculation example below is to show the 

calculation result of W-TDP in AND relation versus 

OR relation in behavioral aspect. We compare each 

element and element value between W-TDP in AND 

relation and OR relation based on Eq. (12).  

 

𝑺𝒊𝒎𝑪𝒐𝒔𝒊𝒏𝒆−𝑻𝑫𝑷(𝑴𝑨𝑵𝑫,𝑴𝑶𝑹) = 

(1𝑥1)+(1𝑥1)+(
1

4
 𝑥 
1

2
)−(

1

2
−
1

4
)

√(12+12+(
1

4
)2+(

0.26

4
)
2
+..+(

0.35

4
)
2
)(12+12+(

1

2
)2+(

0.23

2
)2+..+(

0.23

2
)
2
)

  

𝑆𝑖𝑚𝐶𝑜𝑠𝑖𝑛𝑒−𝑇𝐷𝑃(𝑀𝐴𝑁𝐷,𝑀𝑂𝑅) = 0.834 
 

As shown in Table 10, it was proved that the 

proposed methods are able to produce better results 

in differentiating the operators of parallel 

relationships. Meanwhile, the existing methods gave 

the same result (Jaccard, TARs, and GED). The 

existing Cosine measure produced the lowest value 

for AND versus OR relations, followed by AND 

versus XOR relations. OR versus XOR relations had 

the highest value. However, the proposed methods 

were able to produce a better similarity result (see 

the justification in Table 5) compared to the existing 

methods. AND versus OR relations had the highest 

value, followed by OR versus XOR and AND 

versus XOR. Based on Table 5, AND relation has 

the highest value rate followed by OR relation. 

Meanwhile XOR relation has the lowest value rate. 

Therefore, matching two model containing AND 

versus OR is greater than OR versus XOR and 

greater than AND versus XOR. 

5. Conclusion 

Two new similarity methods to calculate 

structural similarity and behavioral similarity were 

proposed and evaluated in this paper: Tree 

Declarative Pattern Edit Distance (TPED) and 

Cosine-Tree Declarative Pattern (Cosine-TDP). 

They are based on Weighted-Tree Declarative 

Pattern models (W-TDP) using Weighted-Linear 

Temporal Logic (W-LTL). The proposed similarity 

methods were evaluated by comparing their results 

with the existing methods Graph Edit Distance 

(GED) and Cosine measure, which were applied to a 

complex graph model.  

Since AND > OR > XOR, the similarity value of 

AND versus OR is greater than that of XOR versus 

OR and AND versus XOR, while the similarity 

value of XOR versus OR lies between AND versus 

OR and AND versus XOR, and that of AND versus 

XOR is the lowest. The proposed methods, TPED 

and Cosine-TDP, were able to differentiate between 

AND, OR, and XOR relations more accurately 

compared to the existing methods. For structural 

similarity, the results of the proposed method 

(TPED) were 0.821, 0.811, and 0.78 for AND 

versus OR, XOR versus OR, and AND versus XOR, 

respectively, while the result of the existing method 

(GED) is 1 for all relations. For behavioral 

similarity, the results of the proposed method were 

0.834, 0.826, and 0.693, while the results of the 

existing methods were 0.02, 0.08, and 0.04 for AND 

versus OR, XOR versus OR, and AND versus XOR, 

respectively. Lastly, the results of overall similarity 

of the proposed methods were 0.828, 0.819, and 

0.737, while the overall results of the existing 

methods were 0.51, 0.54, and 0.52 for AND versus 

OR, XOR versus OR, and AND versus XOR, 

respectively.  
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Table 10. Result of comparison between the proposed methods and existing methods 

Operators of Parallel 

Relation 

Existing Methods Proposed Methods 

Jaccard 

[28], [29] 

TARs 

[27] 

Cosine 

[25] 

GED 

[23] 

TPED Cosine-TDP Overall Similarity 

AND versus AND 1 1 1 1 1 1   1 

OR versus OR 1 1 1 1 1 1 1 

XOR versus XOR 1 1 1 1 1 1 1 

AND versus OR 1 1 0.02 1 0.821 0.834 0.828 

OR versus XOR 1 1 0.08 1 0.811 0.826 0.819 

AND versus XOR 1 1 0.04 1 0.78 0.693 0.737 

 

It can be concluded that the proposed methods 

are able to give better result in differentiating the 

operators of parallel relationships (AND > OR > 

XOR). Meanwhile, the existing methods give result 

where OR > XOR > AND. 
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