
Received: July 30, 2019 25

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Metric Method for Long Life Semantic Applications

Eman K. Elsayed1 Naglaa E. Ghannam1*

1Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt

* Corresponding author’s Email: Naglaasaeed@azhar.edu.eg

Abstract: Ontology is the core of the semantic applications, so the quality of it has a direct proportion with

Ontology. It impacts directly on the long life of the semantic applications. There are different negative effects in the

design of Ontology' classes as Blob, Lazy Class, Large Class, and Singleton. These negative effects called bad

smells. However, detecting smells is not supported in any Ontology editors. This paper proposes a metric method

called ONTOPYTHO. It can detect classes’ smells automatically from Ontology models even if it is a Big Ontology.

We programed ONTOPYTHO via Python and SPARQL languages. We evaluated the proposed method

ONTOPYTHO by applying it on twelve publicly OWL Ontology projects. The detected smells appeared 117495

times in the twelve projects. The results showed that both the size and the number of classes of OWL Ontology has

no effect in the presence of the smells. The results also showed that 69.24% of the classes are lazy classes. This

means that big OWL Ontologies are not big in their nature, but because of theses lazy classes. The proposed method

is the first method that detects Lazy class smell in the design of big OWL Ontology. In our random sample of big

Ontologies, Lazy class smell appears approximately 99.8% of the smells.

Keywords: Semantic applications, Design smells, Ontology, Python.

1. Introduction

Over the last few years, semantic advances got

to be vital in numerous areas of computer science.

Semantic technologies have a wide range of

applications, including model transformations, cloud

security engineering, decision support, search and

semantic integration [1] - [5]. The most important

technology is the semantic web technology which

makes web content comprehensible for both humans

and machines. All semantic applications are based

on Ontology which presents the semantic structure

of the applications’ domains.

Ontology is the cornerstone of the semantic web,

so the quality of the Ontology impacts directly on

semantic web applications’ quality. The success of

any Ontology design depends on the availability of

the quality elements such as maintainability,

manageability, testability, and comprehensibility.

These elements are adversely affected by smells.

Ontological smells are those structures that reflect

analysed problems of OWL Ontologies causing

inconsistencies, bad reasoning performance and

many other quality problems [6]. While according to

[7], they defined Ontology smells as patterns that

appear evident but have no effect or not optimal in

practice. Smells have many other terms as design

defects, design flaws, pitfalls, and anti-patterns [8].

In this paper, we are interested in smells in

Ontologies’ classes. The class is the most vital

component of Ontology components. Without it,

there is no structure. There are different cases in

design Ontology’ classes, which have negative

effects as Blob, Lazy Class, Large Class, and

Singleton. These cases called bad smells on

Ontology. The Blob case is assigned when the class

has a great number of both attributes and operations

and almost control the system causing low cohesion

and a great probability for errors. Low cohesion

implies incompatible design and high complexity.

The Lazy class case is assigned when the class is

leaf and has no functionalities. It has a little number

or does not has any operations, it may be just a data

store. While large class indicates the case when the

class has a great number of operations or

Received: July 30, 2019 26

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

functionalities but not all the functionalities of the

system and has a little number of attributes. The

singleton case when the class has only one instance

and operation for retrieving this instance.

In large Ontologies systems, we need to measure

system components to control its complexity. On the

other hand, reasoners cannot deal with large

Ontologies or cannot detect all the smells as shown

by [7]. They cannot handle even all the errors

resulting from a timeout. According to [9], they

showed that reasoners of the Ontology verify the

design quality to get consistency systems. However,

reasoners verification against some structural smells

is not found. The proposed smell detection method

can detect structural smells without using the

reasoners and whatever the Ontology size.

Generally, Ontology is not big but sometimes

there are big Ontologies as GO (Gene Ontology).

The proposed approach can evaluate both small and

big Ontologies. According to [10], protégé needs at

least 4G of RAM to manipulate the GO Ontology.

Also, according to [11], they showed that using

Gowinda to detect unbiased enrichment in gene sets

from big datasets will cause Memory consumption.

As GO needs about 1.2 GB of RAM and maybe

increased according to the number of SNPs when be

analyzed using “Gowinda”. On the other hand,

according to [12], they found that there is a

correlation between the existence of smells and

memory problems.

According to [13], they classified the detection

strategies into three types which are software

metrics, design patterns, and predefined rules. The

proposed approach uses the software metrics

strategy. Software metrics play a vital role in

software development [14]. The quality of the

software is measured according to how much the

final software system matches its specification [14].

In software metrics techniques, the smells are

detected using metrics and their thresholds. The

proposed approach calculates the software design

metrics using simple protocol and RDF query

language (SPARQL) and Python programming

language. The greater the number of attributes and

operations the greater the design complexity and

greater low quality. Earlier studies [15] showed that

for avoiding software complexity and low quality,

we should measure and control system components.

The detection process of the design smell usually

involves finding the fragments of design which

violate these software metrics. The proposed

approach detects the smells in an automatic way and

the correction will be manual. Motivated by the

research, the major contributions of this paper are

five-fold:

 Assessing the correlation between smell’s

existence and memory consumption.

 Proposing an Ontology-Python

(ONTOPYTHO) approach for detecting

smells on OWL-light and big Ontologies.

 Describing the experimental evaluation of

the proposed approach in 12 OWL projects.

Showing how it detects 4 design smells

which appeared 117495 times on the OWL

Ontologies.

 Showing the benefits of using the Python

programming language for smell detection

in OWL Ontologies.

 Analyzing the correlation between the

detected smells and showing how Blob and

Large-class smells have a direct correlation.

The rest of this paper is organized as follows. In

the next section, we present the related work. The

details of the Ontology smells models are then

introduced in section 3. Section 4 presents the

proposed method of ONTOPYTHO. Section 5

presents the experimental evaluation of the proposed

approach aimed to detect the design smells on OWL

Ontologies. While section 6 presents the results and

discussion. And, finally, the concluding remarks and

future work are given along with scope for future

work in section 7.

2. Related works

Several techniques were proposed in the

literature for detecting and defining smells types in

software systems generally and some in Ontologies.

The automatic detection of smells is a good way to

keep the maintenance, easy the evolution tasks and

improves usability and software quality. There is a

fact said that the smells detection at the design level

reduces many codes of smells and maintenance

costs which is more general. According to [16] and

[17], they proposed using of Bayesian Belief

Networks to detect 3 smells which are Blob,

Functional Decomposition, and Spaghetti Code

using machine learning techniques. In [16] and [17],

they can work with missing data and provide an

abstract definition as a detection algorithm for every

smell. They detect smells but not in OWL

ontologies. The proposed method detects Lazy Class,

Large Class, and Blob in OWL Ontology systems.

On the other hand, reference [18] analyzed 30

releases of three different open-source systems

which are ArgoUML, Hibernate, and ANT. They

detected 29 smells, 13 of them are design’s smells

and 16 are lexical smells. They showed that lexical

smells can make, in some cases, classes with design

smells more fault-prone when both occur in classes

Received: July 30, 2019 27

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

of object-oriented systems. They proved that classes

containing design’ smells only are more change- and

fault-prone than classes with lexical smells only.

Reference [19] introduced the “Arcan” tool which is

written in Java 8 to detect architectural smells.

“Arcan” is used to support the automatic analysis of

software architecture through a graph representation

of data, providing support during the software

development and maintenance processes. They

detected 4 smells which are Cyclic Dependency in

classes, Cyclic Dependency in packages, Unstable

Dependency, Hub Like Dependency. In reference

[20], they introduced multi-objective genetic

programming (MOGP) to find the best metrics that

increase the detection of smells examples. They

evaluated their proposal on seven large open-source

systems and found that, on average, most of the

different three code-smells types were detected with

an average of 86% of precision and 91% of recall.

On the other hand, [21] proposed DÉCOR which

contains a consistent vocabulary about code-smell to

specify Smells. The descriptions of the smells are

then converted to detection rules. This approach has

detected only four design code-smells which are the

Blob, functional decomposition, spaghetti code, and

Swiss-army knife. They validated the detection

algorithms on XERCES v2.7.0, and discuss the

precision of these algorithms on 11 open source

systems.

Our proposed method detects "Blob, Lazy Class,

Large Class, and Singleton" design smells in big and

light OWL ontology.

Several techniques for detecting Ontology

smells can be divided into two main branches: Code

smells detection and design smells detection.

According to [22], they presented EvoOnt, a

software repository data exchange format which is

based on the Web Ontology Language (OWL).

EvoOnt includes software, release, and bug-related

information. They also introduced iSPARQL which

is a SPARQL-based

Semantic Web query engine containing

similarity joins. Together with EvoOnt, iSPARQL

can accomplish a sizable number of tasks sought in

software repository mining projects framework to

detect four smells in the code of the OWL

Ontologies. The detected smells were Alien spider,

God Class, Orphan method query and long

parameter list smells. Reference [23] Presented

OCEAN to detect code smells from the source-code

of the Ontology models and the production of

Ontological individuals that represent code smells.

OCEAN detected two code smells which are God

Class and Brain method. They also introduced a tool

called RESYS that makes the refactoring process

easily and linked semantically to their code smells.

While according to [24], they presented OntoUml to

detect semantic design smells. Their approach

focused on the design smells that cannot be detected

as modeling errors. They detected seven semantic

smells in the design of the OWL Ontologies.

According to [25], they detected nine smells in the

design of Ontology. They classified them into three

groups which are Logical smells, Non-logical smells

and Guidelines smells. But the detected smells are

existing in the inconsistent ontologies.

Recently, Ontologies have become a promising

way of building intelligent systems. Ontology and

Python have a wide range of applications. In the

semantic web, [26] used Ontology-Python for

making data integration and information discovery

for linked open data. They used graph theory to

enhance the features of the semantic data in

Ontologies and used the Python network package to

generate the graph objects. On the other hand, [27]

proposed architecture for linking the contents of the

media outlets semantically. This architecture was

implemented in Python using AllegroGraph which is

designed for storing RDF Triples and has a client

interface for Python. According to [28], they

handled Gene Ontology resources in Python to

retrieve the annotations of the GO.

Also, to perform gene enrichment analyses, and

to compute the semantic similarity between GO

terms. On the other hand, [29] presented research on

how the tweets are retrieved from tweeter through a

tweet script crawler which was built with Python

using the Ontology to classify the tweets. According

to [30], they used Python to link the Ontology to

various technologies for NLP tasks. They used the

“Owlready” which is a new Python OWL API

library to be used as a verbalizer. This verbalizer

will run on the Ontology to be used as domain

experts and linguists. While according to [31], they

created some Ontologies using the Crop as a domain

for these Ontologies. They implemented the

presented schema in Python using the “Owlready”

library to generate all Ontology components such as

classes and properties. They used Python also to

implement similarities techniques for finding the

alignments between the generated components of

the Ontologies. [32] used the “Gensim” Python

library and two-layer neural network algorithm

word2vec to extract the word’s semantic concept

from the Ontologies. They proposed a technique to

map the end user’s words which presented in the

natural languages to the corresponding concepts in

the Ontology. [33] Presented “OntoSenticNet”

which is a common-sense Ontology for sentiment

analysis. The “OntoSenticNet” is based on

Received: July 30, 2019 28

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

“SenticNet”; a semantic network of 100,000

concepts. They showed that using Python is better

more than RDF/XML as it provides easier support

for the integration of “OntoSenticNet” into real-

world applications.

In this paper the proposed approach uses Python

for detecting Ontology design smells automatically

through the ONTOPYTHO method.

3. Ontology smells models

This section presents the different Ontology

models of Class smells as Blob, Large class, Lazy

class, and Singleton. The simulation visualizes the

models using Protégé platform.

3.1 Blob smell model

Blob smell is characterized by a class that has a

great number of both attributes and operations and

has the most functionalities. Fig. 1 shows the OWL

Ontology model for presenting the Blob smell. We

can see class1 which has a great number of both

object properties (operations) and “datatype”

properties (attributes). Other classes just have a low

number of operations and all the range of their

operations is class1.

Figure. 1 The OWL ontology model for blob smell

3.2 Lazy class smell model

The Lazy class smell is a leaf class which has no

subclasses and has a little number of operations may

be zero. We can consider it a data class. Fig. 2

shows the OWL Ontology model for presenting the

Lazy class smell. It contains four classes (Class1,

Class2, Class3, and Class4). All the classes have

operations (object properties) while Class1 does not

has any operations, in addition to that, it is a leaf

class, so it is classified as a lazy class.

Figure. 1 The OWL ontology model for blob smell

Figure. 2 The OWL ontology representing the lazy class

smell

Figure. 3 The OWL ontology representing the large

class smell

3.3 Large class smell model

Large class smell characterized by a great

number of operations or functionalities and has a

little number of attributes or does not have any

attributes. Fig. 3 shows the OWL Ontology model of

the large class smell. The model contains 4 classes;

all of them have object properties. So, none of them

is a data class which implying that Blob smell is not

satisfied here. For that, the class here is classified as

a large class.

3.4 Singleton smell

Singleton smell is a design smell that restricts

the number of instances of the class to only one

instance. The class has only one instance and

operation for retrieving this instance. Fig. 4 shows

the OWL Ontology for presenting singleton class

smell. It contains (Class1) which has an object

property (nn:get_instance) and only one

instance(nn:Instance). The domain and the range of

the object property are the same which implies that

the operation will get the instances from the same

class (Class1) as in (1). While (2) implies that the

class has only one instance and (3) implies that the

operation will retrieve that instance.

Received: July 30, 2019 29

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Figure. 4 The OWL ontology representing the singleton

smell

nn:Class1--nn:get_instance(Domain>Range)→

nn:Class1 (1)

nn:Class1---has instance --- → nn: Instance (2)

nn:Class1---nn:get_instance--→nn:Instance (3)

4. The proposed detection method

“ONTOPYTHO”

This section presents the pseudo code of

“ONTOPYTHO” Algorithm 1; the proposed

Ontology smells detection Algorithm.

ONTOPYTHO is used to detect classes’ smells in

large OWL Ontologies. The proposed method is

based on the merging of Python programming

language and RDF query language (SPARQL).

Python is a high-level programming language which

is considered as an interpreter with dynamic

semantics. It reduces the cost of the program

maintenance, supports modules and packages, which

implies code reuse [34].

The proposed approach deals with the Ontology’

design, not the code or the converted Ontology. That

is to guarantee no missing information or parts of

the Ontology’ structure according to the conversion

or the code generation. Also, Python has “rdflib”

library to handle big Ontology as GO and give the

proposed approach the ability to evaluate it without

needing to manipulate it with Ontology editors. Also,

adding the proposed approach to any Python library

can improve the quality of the Ontologies before

using in the semantic web.

ONTOPYTHO (Ontology smells detection

Algorithm) uses SPARQL queries to calculate

Ontology metrics and to produce a report of the

detected smells and model analysis.

Algorithm 1. Class Smells detection’ algorithm

Input: OWL Ontology O, Threshold for attributes x and

operations y.

Output: a list of detected smells

1 Insert Ontology O,

2 Counter n is a number of classes in O;

3 For (C > =1 && C < = n):

4 A getNumOfAttributes;

5 P getNumOfOperations;

6 I getNumOfInstances;

7 ð getOperationValue;

8 run Blob query Q1;

9 if Blob classes > =1:

10 print “Blob detected”;

11 else print (" ");

12 run Lazy Class query Q2;

13 if Lazy Classes > =1:

14 print “ Lazy class detected”;

15 else print (" ");

16 run Large Class query Q3;

17 if Large Classes > =1:

18 print ("large class detected");

19 else print (" ");

20 run Singleton query Q4;

21 if Singleton classes > =1:

22 print (" singleton detected");

23 else print (" ");

24 End.

Received: July 30, 2019 30

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

The proposed approach pre-process is analyzing

and parsing OWL Ontology model. This process

uses Python libraries as “rdflib” library. Then

synchronously, the four SPARQL queries run. The

four SPARQL queries are:

 Blob detection SPARQL Query Q1.

 Lazy class detection SPARQL Query Q2.

 Large class detection SPARQL Query Q3.

 Singleton detection SPARQL Query Q4.

Finally, the visualization process displays the report

of the detected Smells in the OWL model.

4.1 Blob detection SPARQL query

Using SPARQL query Q1, we detect Blob smell

and retrieve Blob classes from the OWL Ontology.

The query code as shown in Algorithm 2. This query

returns the Blob classes by counting their number of

operations and their number of attributes. This

detection process has two restrictions. The first

restriction indicates that the number of operations

must excessed than "x". While the second restriction

indicates that the number of attributes must excessed

than y. Both "x" and "y" are the accepted threshold

which class should have. This query could be

general. So, according to developers’ accepted

thresholds, they can detect Blob classes.

Algorithm 2. (Q1. Blob detection SPARQL

Query)

➢ PREFIX rdf:<http://www.w3.org/1999/02/22-

rdf-syntax-ns#>

➢ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#>

➢ PREFIX owl:

<http://www.w3.org/2002/07/owl#>

➢ SELECT ?Blob_classes (count(?d)

as ?NO_Operations) (count(?A)

as ?No_Attributes)

➢ where{{?d a owl:ObjectProperty.

➢ ?d rdfs:domain ?Blob_classes} UNION

➢ {?A a owl:DatatypeProperty. ?A

rdfs:domain ?Blob_classes} }

➢ group by ?Blob_classes

having(?No_Operations>?x

&& ?No_Attributes>?y)

4.2 Lazy class detection SPARQL query

Using SPARQL query Q2, we detect the lazy

class smell as shown in Algorithm 3. The query

retrieves the Lazy classes defined by two restrictions.

The Filter part of the query presents the restrictions.

The restrictions indicate that Lazy classes have not

any operations and they have leaf classes.

Algorithm 3. (Q2: Lazy Class detection SPARQL

Query)

➢ SELECT distinct ?LazyClasses

➢ WHERE {?LazyClasses a owl:Class.

➢ Filter NOT EXISTS{{?h a

➢ owl:ObjectProperty.

➢ ?h rdfs:domain ?LazyClasses.} UNION{?subject

rdfs:subClassOf ?LazyClasses.} }}

➢ group by ?LazyClasses

4.3 Large class detection SPARQL query

Using SPARQL query Q3, we detect the large

class smells as shown in Algorithm 4. The query

retrieves the large classes. That is by counting

process of the number of operations “?No_Op”. The

restriction implies exceeding the number of

operations more than “y”. Where “y” is the accepted

threshold for the developers. Synchronously, the

Large classes might have datatype properties or not.

We concerned with the number of object properties.

Algorithm 4. (Q3. Large class detection SPARQL

Query)

➢ SELECT ?Large_classes (count(?d)

as ?No_Op)

➢ where{?d a owl:ObjectProperty.

➢ ?d rdfs:domain ?Large_classes.}

➢ group by ?Large_classes having(?No_Op>?y)

4.4 Singleton detection SPARQL query

The SPARQL query Q4 for detecting the

Singleton smell as shown in Algorithm 5. The query

Q4 retrieves the singleton classes under three

restrictions. We have two Filters. The first

restriction in the first Filter for indicating that both

the domain and the range of the operation are the

same. The second Filter indicates that the retrieved

instance is an instance of the same class that

contains the operation. The last restriction is for

indicating that the class has only one instance.

Received: July 30, 2019 31

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Algorithm 5. (Q4 Singleton detection SPARQL

Query)

➢ SELECT ?Sing_classes

➢ where{?d a owl:ObjectProperty.

➢ ?d rdfs:domain ?Sing_classes.

➢ ?r rdfs:range ?Sing_classes.

➢ filter (?d=?r).

➢ ?in rdf:type ?Sing_classes.

➢ filter exists {?o ?p ?d}.

➢ ?A a owl:DatatypeProperty.

➢ ?A rdfs:domain ?Sing_classes.}

➢ group by ?Sing_classes

➢ having(count(?A)=1)

5. Experimental evaluation

In this section, we assess how well the proposed

approach ONTOPYTHO can predict the quality of

OWL Ontology design. We assess our approach by

applying it on twelve popular OWL Ontologies

which are considered as big Ontologies. We

downloaded them from Github, [35], and [36]. The

size of the Ontologies includes all Ontology

components. Table 1 shows the OWL Ontologies

features. The random sample of twelve Ontologies

in different fields as lexicons, Chemistry, Biology,

Anatomy, Industry, and bioinformatics. The

research study includes the identification and

repeating of the smells across different domains and

different sizes.

Table 1. Description of OWL ontologies under analysis

OWL

Ontology

Projects

Size

MB
Classes Specification

dbpedia_20

15-10.owl
2.32 739

The DBpedia

datasets, each

release of this

Ontology

corresponds to a

new release of the

DBpedia data set

dbpedia_20

16-04.owl

2.36 754

dbpedia_20

16-10.owl
2.37 760

Gene

Ontology

(go.owl)

171 61714

An Ontology for

describing the

function of genes

and gene products

IFC2X3_Fin

al.owl
3.18 1149

Industry

Foundation Classes

IFC Ontology

Edam.owl 3.01 3379

EDAM is an

Ontology of

bioinformatics

types of data.

Gaz.owl 590 10144

Gazetteer, a

gazetteer

constructed on

Ontological

principles

chebi.owl 471 32288

Chemical Entities

of Biological

Interest. A

structured

classification of

molecular entities

of biological

interest.

Foodon.owl 7.21 6556

The core repository

for the food

Ontology project

hp-full.owl 95.3 47015

human-phenotype-

Ontology is for the

description of

human clinical

features

xao.owl 4.26 1735

Xenopus Anatomy

Ontology. Anatomy

and development of

the African clawed

frog.

Zfa.owl 8.27 3200

Zebrafish anatomy

and development

Ontology. A

structured

controlled

vocabulary of the

anatomy and

development of the

Zebrafish.

For explaining the proposed approach, we

display a part of the result of applied ONTOPYTHO

on the ‘dbpedia_2015-10.owl ‘in Fig. 5.

Figure. 5 The result of running ONTOPYTHO on

‘’dbpedia_2015-10’’ Ontology

6. Results and discussion

After applying ONTOPYTHO on the OWL

Ontologies in Table 1, we detected the smells as

presented in Table 2. The proposed approach

detected 3 smells which were appeared 117495

times. We can note that lazy class smell is the most

detected smell while Singleton smell has not been

detected. Both Blob and large class smells have a

little appearance in the Dbpedia versions. They

decreased in the new versions. The Lazy class smell

is the most appeared one. It increased more and

more in the new versions as in Fig. 6.

Received: July 30, 2019 32

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Table 3 summarizes the results we obtained for

the detection of 3 smells from our input 12 OWL

Ontologies. The integer value represents the number

of occurrences of the smells in the OWL Ontology.

The percentage is the ratio of this value according to

the total number of smells. We noted that the same

class can be affected by more than one smell. For

example, a class can be a large class and a blob class

simultaneously.

From Table 3, we can note that Lazy class smell

has the maximum ratio of smells which is 99.865%

while Blob smell has the minimum ratio which is

0.0374%. But is there any relation between the three

smells?

The analysis of the relation between class’

smells types means the determination of the relation

between Ontology’s concepts. So, we used a

statistical analysis package as SPSS (Statistical

Package for the Social Sciences) to analyze the

correlation (Pearson correlation coefficient) between

the three detected smells. We found that the highest

correlation is between Blob and Large Class’ smells

as the Pearson correlation coefficient between them

equals 0.889 i.e. there is a strong correlation

between them. This means that the presence of one

means the presence of the other by a large

percentage. While the correlation between Lazy

class smell and the Blob smell equals 0.276, and

between Lazy class and Large-class equals 0.221;

Table 2. Design smells per OWL ontologies

OWL Ontologies

Smells

B
lo

b

L
az

y
 C

la
ss

es

L
ar

g
e

C
la

ss
es

S
in

g
le

to
n

dbpedia_2015-10.owl 8 490 17 0

dbpedia_2016-04.owl 7 502 14 0

dbpedia_2016-10.owl 7 506 14 0

Gene Ontology (go.owl) 0 44155 0 0

IFC2X3_Final.owl 2 393 9 0

EDAM.owl 0 2742 10 0

gaz.owl 3 10023 7 0

chebi.owl 8 12052 18 0

foodon.owl 5 5500 13 0

hp-full.owl 4 36735 8 0

xao.owl 0 1515 4 0

zfa.owl 0 2724 0 0

Figure. 6 The appearance of the detected smells in the

Dbpedia OWL Ontologies versions

Received: July 30, 2019 33

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Table 3. Ontopytho results for the detection of 3 smells in

12 OWL ontologies

Class Smells

 Blob Lazy Class Large

Class

Total

Ratio

44

0.0374%

117337

99.865%

114

0.0970%

Table 4. The SPSS Pearson correlation coefficient

matrix between the class’ smells

 Blob Lazy

Class

Large

Class

Blob Pearson correlation

 Sig. (2-taild)

1

0.276

0.385

0.889

0

Lazy Pearson correlation

Class Sig. (2-taild)

0.276

0.385

1

0.221

0.489

Large Pearson correlation

Class Sig. (2-taild)

0.889

0

0.221

0.489

1

Figure. 7 The similarity between the means of “Blob

and Large-class” smells and differences between

them and “Lazy class” smell

which means that there is a low correlation between

them. This means that the presence of one does not

imply the presence of the other. The SPSS Pearson

correlation coefficient matrix is shown in Table 4.

Fig. 7 assessed the similarity between both the

means of Blob and Large-class smells like the result

of the correlation.

Now, we need to address if there is a relation

between the number of classes and the presence of

the smells. Table 5 illustrates the ratio between the

number of classes and smells in every OWL

Ontology.

From Table 5, although “gaz.owl” does not has

the maximum number of classes, but it has the

maximum ratio of smells 98.90% in the classes of it.

This leads us to the fact that the number of classes in

OWL Ontologies has no effect on smells presence.

Now we will ask, is there a relation between the size

of the Ontology and smells existence?

Table 5. The ratio of smells according to the classes of

OWL ontologies

OWL

Ontologies
Classes Smells ratio

dbpedia_2015-

10.owl

739 515 69.68%

dbpedia_2016-

04.owl

754 523 69.36%

dbpedia_2016-

10.owl

760 527 69.34%

Gene Ontology

(go.owl)

61714 44155 71.54%

IFC2X3_Final.owl
1149 404 35.16%

EDAM.owl
3379 2752 81.44%

gaz.owl
10144 10033 98.90%

chebi.owl
32288 12078 37.40%

foodon.owl
6556 5518 84.16%

hp-full.owl
47015 36747 78.16%

xao.owl
1735 1519 87.55%

zfa.owl 3200 2724 85.12%

Table 6. The SPSS Pearson correlation coefficient matrix

between the size of the ontologies and the smells

To answer this question, we analyzed the

correlation between them using SPSS as in Table 6.

We found that there is no relation between them as

the correlation coefficient is 0.283. So, the size of

the Ontologies has no effect on smells presence.

Comparing the proposed method

"ONTOPYTHO" to other techniques in section of

related works [16, 17, 19-25]. The results of

comparison are in Table 7. The related references

detected smells generally in software projects and

some of them in OWL Ontologies. References [22],

[24], and [25] just detected smells in OWL

ontologies. The comparison included the number of

evaluated software projects, the number of detected

smells, the software systems weather they were

OWL ontologies or not, and the number of

occurrences of smells.

 Size Lazy Class

Size Pearson Correlation

Sig. (2-taild)

1

0.283

0.373

Smells Pearson Correlation

Sig. (2-taild)

0.283

0.373

1

Received: July 30, 2019 34

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

Table 7. Comparison between the “ONTOPYTHO” and

other techniques
T

h
e

te
ch

n
iq

u
es

#
 s

o
ft

w
ar

e

p
ro

je
ct

s

#
 D

et
ec

te
d

S
m

el
ls

S
o

ft
w

ar
e

S
y

st
em

s

#
 o

cc
u

rr
en

ce
s

o
f

sm
el

ls

Bayesian Belief

Networks [16]
2 1 - 19

BDTEX [17] 2 3 - 46

Arcan [19] 8 4 - 1025

MOGP [20] 7 3 - 725

DÉCOR [21] 10 4 - 513

EvoOnt [22] 1 5 OWL 0

OCEAN[23] 4 3 - 445

OntoUml[24] 1 7 OWL 3612

OWL

catalogue [25]
0 11 OWL 0

ONTOPYTHO

Proposed

method

12 4 OWL 117495

Table 8. The shared detected smells using proposed

method and other techniques

The techniques # Blob # LazyClass

Bayesian Belief

Networks [16]

19 -

BDTEX [17] 13 -

DÉCOR [21] 44 -

EvoOnt [22] 9 -

OCEAN [23] 134 21

ONTOPYTHO

Proposed method

44 117337

We can note that the proposed method has the

greatest number of the evaluated projects and the

greatest number of occurrences of smells which are

12 projects and 117495 times. The proposed

method detected smells "Blob, Lazy Class, and

Large Class" which are not detected by any other

techniques. But there are some cases in the other

techniques which detected just Blob as in [16, 17,

21-23]. Lazy class was detected only in one case in

reference [23] as in Table 8. The proposed method

has the maximum number of Lazy Class smell

which is 117337 smells and of ratio 99.865%.

Strengths of the proposed method which does not

exist in the other techniques:

(1) The proposed method detected the smells Blob,

Lazy Class, and Large Class which are not

detected in OWL Ontologies using the other

techniques.

(2) The proposed method detects smells in big and

light OWL Ontologies.

(3) The proposed method improves semantic web

projects which are developed using Python

programing language.

(4) The proposed method is the first method

detected Lazy Class smell in OWL Ontology

design with a high percentage.

Finally, we recommend treating the detected

smells by using classification for large classes or

Blob and distributing the operations between the

other classes and delete the lazy classes. That leads

to minimize the Ontology’ size to be suitable to

manipulate it in any Ontology editors, save time,

and minimize storage.

7. Conclusion

Ontologies are assuming the crucial role in

Semantic Web vision. Improving the quality of

Ontology design implies high-quality semantic web

applications. We presented the ONTOPYTHO

approach to detect smells on OWL Ontologies. The

proposed approach is based on the metric method

via the Semantic Web query language SPARQL and

Python programming language. The proposed

approach provides the ability to improve the quality

of software systems represented in the OWL

Ontology format. We applied ONTOPYHO on

twelve OWL Ontologies. The proposed approach

presented the method for detecting four design

smells which are Blob, Large class, Lazy class, and

Singleton smells. We detected three design smells

which appeared 117495 times in the OWL

Ontologies. We found that there is a direct relation

between Blob and Large-class smells while there is

a reverse relation between them and the Lazy class

smell. Also, we found that both the size and the

number of classes of the OWL- Ontology has no

effect in the presence of the smells. The results

showed that 69.24% of the classes are lazy classes.

This means that big OWL Ontologies are not big in

their nature, but because of the existence of theses

lazy classes. So, detecting Lazy classes using

ONTOPYTHO approach and deleting them will

reduce the size of the ontologies. This consequently

will allow reasoner check, manipulation using any

ontology editor like protégé and solves the difficulty

of using SPARQL queries directly according to the

Ontology editor plugin. Also, when ONTOPYTHO

detects large Ontology’ classes, users can divide

these classes into subclasses. The proposed

approach provides the ability to measure the size

and complexity of the OWL Ontologies. Finally, the

strong correlation between large class and Blob

smells leads to solve Blob when solving large-class.

Received: July 30, 2019 35

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

In the Future works, we will insert the

ONTOPYTHO into Python as a library. Also, we

will insert all the detected semantic smells to

Ontology Catalog. Finally, we will analyze the

reasons of the relation between Blob and Large-

class smells in Ontology and how can we avoid

smells happen.

References

[1] S. A. Aljawarneh, A. Alawneh, and R. Jaradat,

“Cloud security engineering: Early stages of

SDLC”, Future Generation Computer Systems,

Vol.74, No.C, pp.385-392, 2017.

[2] W. Bartussek, T. Weiland, S. Meese, M. O.

Schurr, M. Leenen, A. Uciteli, S. Kropf, H.

Herre, C. Goller, P. Blohm. And W. Lauer,

“Ontology-based search for risk-relevant PMS

data”, In: Proc. of the 3rd Biennial South

African on Biomedical Engineering Conf.

(SAIBMEC), pp.1-4, 2018.

[3] G. De Giacomo, D. Lembo, M. Lenzerini, A.

Poggi, and R. Rosati, “Using Ontologies for

semantic data integration”, In: Flesca S., Greco

S., Masciari E., Saccà D. (eds) A

Comprehensive Guide Through the Italian

Database Research Over the Last 25 Years.

Studies in Big Data, Vol.31, pp.187-202, 2018.

[4] G. Kappel, E. Kapsammer, H. Kargl, G.

Kramler, T. Reiter, W. Retschitzegger, W.

Schwinger, and M. Wimmer, “Lifting

metamodels to Ontologies: A step to the

semantic integration of modeling languages”,

In: Proc. of International Conf. on Model

Driven Engineering Languages and Systems,

pp.528-542, 2006.

[5] P. Maurice, F. Dhombres, E. Blondiaux, S.

Friszer, L. Guilbaud, N. Lelong, B. Khoshnood,

J. Charlet, N. Perrot, E. Jauniaux, and D.

Jurkovic, “Towards Ontology-based decision

support systems for complex ultrasound

diagnosis in obstetrics and gynecology”,

Journal of Gynecology Obstetrics and Human

Reproduction, Vol.46, No.5, pp.423-429, 2017.

[6] O. Corcho, C. Roussey, O. Šváb-Zamazal, and

F. Scharffe, “SPARQL-DL queries for

Antipattern Detection”, In: Proc. of the 3rd

International Conf. on Ontology Patterns

WOP'12, Eva Blomqvist, Aldo Gangemi, Karl

Hammar, and Mari Carmen Suárez-Figueroa

(Eds.), CEUR-WS.org, Vol.929, pp.85-96,

2012.

[7] O. Corcho, C. Roussey, O. Šváb-Zamazal, F.

Scharffe, and S. Bernard, “Antipattern

detection in web Ontologies: an experiment

using SPARQL queries”, In: Proc. of the 12th

International Francophone Conf. on Extraction

and Knowledge Management, pp.263-268,

2012.

[8] K. Alkharabsheh, Y. Crespo, E. Manso, and J.

A. Taboada, “Software Design Smell

Detection: a systematic mapping study”,

Software Quality Journal, Vol.26, No.4, pp.1-

80, 2018.

[9] S. Staab and R. Studer, “Handbook on

Ontologies”, (2nd ed.), Springer Science &

Business Media, Springer-Verlag, Berlin,

Heidelberg, pp. 21-43, 2010.

[10] Protege setup for GO Eds,

http://wiki.geneOntology.org/index.php/Protege

_setup_for_GO_Eds (Accessed February 2019).

[11] R. Kofler and C. Schlötterer, “Gowinda:

unbiased analysis of gene set enrichment for

genome-wide association studies”,

Bioinformatics, Vol.28, No.15, pp.2084-2085,

2012.

[12] K. Jezek and R. Lipka, “Smells causing

memory bloat: A case study”, In: Proc. of the

24th International Conf. on Software Analysis,

Evolution and Reengineering (SANER), pp.306-

315, 2017.

[13] M. Misbhauddin and M. Alshayeb, “UML

model refactoring: a systematic literature

review”, Empirical Software Engineering,

Vol.20, No.1, pp.206-251, 2015.

[14] M. K. Gopal, “Design Quality Metrics on the

Package Maintainability and Reliability of

Open Source Software”, International Journal

of Intelligent Engineering and Systems, Vol.9,

No.4, pp. 195-204, 2016.

[15] M. Lanza and R Marinescu, “Object-oriented

metrics in practice: using software metrics to

characterize, evaluate, and improve the design

of object-oriented systems”, (1st ed.), Springer

Publishing Company, Incorporated, Springer-

Verlag, Berlin, Heidelberg, pp. 45-72, 2007.

[16] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and

H. Sahraoui, “A bayesian approach for the

detection of code and design smells”, In: Proc.

of the Ninth International Conf. on Quality

Software, pp.305-314, 2009.

[17] F. Khomh, S. Vaucher, Y.G. Guéhéneuc, and H.

Sahraoui, “BDTEX: A GQM-based Bayesian

approach for the detection of Smells”, Journal

of Systems and Software, Vol.84, No.4, pp.559-

572, 2011.

[18] L. Guerrouj, Z. Kermansaravi, V. Arnaoudova,

B. C. Fung, F. Khomh, G. Antoniol, and Y. G.

Guéhéneuc, “Investigating the relation between

lexical smells and change-and fault-proneness:

http://wiki.geneontology.org/index.php/Protege_setup_for_GO_Eds
http://wiki.geneontology.org/index.php/Protege_setup_for_GO_Eds

Received: July 30, 2019 36

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019 DOI: 10.22266/ijies2019.1231.03

an empirical study”, Software Quality Journal,

Vol.25, No.3, pp.641-670, 2017.

[19] F. A. Fontana, I. Pigazzini, R. Roveda, D.

Tamburri, M. Zanoni, and E. Di Nitto, “Arcan:

a tool for architectural smells detection”, In:

Proc. of International Conf. on Software

Architecture Workshops (ICSAW), pp. 282-285,

2017.

[20] U. Mansoor, M. Kessentini, S. Bechikh, and K.

Deb, “Code-smells detection using good and

bad software design examples”, Technical

Report, COIN Report Number 2014009, 2013.

[21] N. Moha, Y.G. Gueheneuc, L. Duchien, and A.

F. Le Meur, “Decor: A method for the

specification and detection of code and design

smells”, IEEE Transactions on Software

Engineering, Vol.36, No.1, pp.20-36, 2010.

[22] C. Kiefer, A. Bernstein, and J. Tappolet,

“Mining software repositories with isparol and

a software evolution Ontology” In: Proc. of the

Fourth International Workshop on Mining

Software Repositories, pp.10-10. 2007.

[23] L. P. da Silva Carvalho, R. L. Novais, L. do

Nascimento Salvador, and M. G. de Mendonça

Neto, “An Approach for Semantically-Enriched

Recommendation of Refactorings Based on the

Incidence of Code Smells”, In: Proc. of

International Conf. on Enterprise Information

Systems, pp.313-335, 2017.

[24] G. Guizzardi and T. P. Sales, “Detection,

simulation and elimination of semantic Smells

in Ontology-driven conceptual models”, In:

Proc. of International Conf. on Conceptual

Modeling, pp.363-376, 2014.

[25] C. Roussey, O. Corcho, and L. M. Vilches-

Blázquez, “A catalogue of OWL Ontology

Antipatterns”, In: Proc. of the fifth

international Conf. on Knowledge Capture,

pp.205-206, 2009.

[26] A. Akgün and S. Ayvaz, “An Approach for

Information Discovery Using Ontology In

Semantic Web Content”, In: Proc. of

International Conf. on Information Science and

System, pp.250-255, 2018.

[27] P. Bubna, S. Sharma, and S.K. Malik, “Linking

Online News Semantically Using NLP and

Semantic Web Technologies”, International

Journal of Computer Sciences and Engineering.

Vol.6, No.7, pp.589-598, 2018.

[28] C. Dessimoz and N. Škunca, “The Gene

Ontology Handbook”, (1st ed.), Humana Press.

Vol.1446, pp.15-24, 2017.

[29] S. F. Huang, C. J. Su, and M. B. V. Saballos,

“Social media big data analysis for global

sourcing realization”, In: Bhatia S., Mishra K.,

Tiwari S., Singh V. (eds) Advances in Computer

and Computational Sciences. Advances in

Intelligent Systems and Computing, Vol.554,

pp.251-256, 2018.

[30] C. M. Keet, M. Xakaza, and L. Khumalo,

“Verbalising OWL Ontologies in isiZulu with

Python”, In: Proc. of the 14th European

Semantic Web Conf. ESWC, pp.59-64. 2017.

[31] N. Chatterjee, N. Kaushik, D. Gupta, and R.

Bhatia, “Ontology merging: A practical

perspective”, In: Proc. of International Conf.

on Information and Communication

Technology for Intelligent Systems, pp.136-145,

2017.

[32] B. Zarei, S. Heil, and M. Gaedke, “Natural-

Language-Enabled End-User Tool Endowed

with Ontology-Based Development”, In: Proc.

of International Conf. on Web Engineering,

pp.473-476, 2018.

[33] M. Dragoni, S. Poria, and E. Cambria,

“OntoSenticNet: A commonsense Ontology for

sentiment analysis”, IEEE Intelligent Systems,

Vol.33, No.3, pp.77-85, 2018.

[34] What is Python? Executive Summary.

https://www.Python.org/doc/essays/blurb

(Accessed March 2019).

[35] Ontologies & RDF datasets. The OBO Foundry

http://www.obofoundry.org/ (Accessed

February 2019).

[36] The DBpedia. https://wiki.dbpedia.org/Datasets

(Accessed February 2019).

https://www.python.org/doc/essays/blurb
http://www.obofoundry.org/
https://wiki.dbpedia.org/Datasets

