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Abstract: Ontology is the core of the semantic applications, so the quality of it has a direct proportion with 

Ontology. It impacts directly on the long life of the semantic applications. There are different negative effects in the 

design of Ontology' classes as Blob, Lazy Class, Large Class, and Singleton. These negative effects called bad 

smells. However, detecting smells is not supported in any Ontology editors. This paper proposes a metric method 

called ONTOPYTHO. It can detect classes’ smells automatically from Ontology models even if it is a Big Ontology. 

We programed ONTOPYTHO via Python and SPARQL languages. We evaluated the proposed method 

ONTOPYTHO by applying it on twelve publicly OWL Ontology projects. The detected smells appeared 117495 

times in the twelve projects. The results showed that both the size and the number of classes of OWL Ontology has 

no effect in the presence of the smells. The results also showed that 69.24% of the classes are lazy classes. This 

means that big OWL Ontologies are not big in their nature, but because of theses lazy classes. The proposed method 

is the first method that detects Lazy class smell in the design of big OWL Ontology.  In our random sample of big 

Ontologies, Lazy class smell appears approximately 99.8% of the smells. 

Keywords: Semantic applications, Design smells, Ontology, Python. 

 

 

1. Introduction 

Over the last few years, semantic advances got 

to be vital in numerous areas of computer science. 

Semantic technologies have a wide range of 

applications, including model transformations, cloud 

security engineering, decision support, search and 

semantic integration [1] - [5]. The most important 

technology is the semantic web technology which 

makes web content comprehensible for both humans 

and machines. All semantic applications are based 

on Ontology which presents the semantic structure 

of the applications’ domains.  

Ontology is the cornerstone of the semantic web, 

so the quality of the Ontology impacts directly on 

semantic web applications’ quality. The success of 

any Ontology design depends on the availability of 

the quality elements such as maintainability, 

manageability, testability, and comprehensibility. 

These elements are adversely affected by smells. 

Ontological smells are those structures that reflect 

analysed problems of OWL Ontologies causing 

inconsistencies, bad reasoning performance and 

many other quality problems [6]. While according to 

[7], they defined Ontology smells as patterns that 

appear evident but have no effect or not optimal in 

practice. Smells have many other terms as design 

defects, design flaws, pitfalls, and anti-patterns [8]. 

In this paper, we are interested in smells in 

Ontologies’ classes. The class is the most vital 

component of Ontology components. Without it, 

there is no structure. There are different cases in 

design Ontology’ classes, which have negative 

effects as Blob, Lazy Class, Large Class, and 

Singleton. These cases called bad smells on 

Ontology. The Blob case is assigned when the class 

has a great number of both attributes and operations 

and almost control the system causing low cohesion 

and a great probability for errors. Low cohesion 

implies incompatible design and high complexity. 

The Lazy class case is assigned when the class is 

leaf and has no functionalities. It has a little number 

or does not has any operations, it may be just a data 

store. While large class indicates the case when the 

class has a great number of operations or 
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functionalities but not all the functionalities of the 

system and has a little number of attributes. The 

singleton case when the class has only one instance 

and operation for retrieving this instance.  

In large Ontologies systems, we need to measure 

system components to control its complexity. On the 

other hand, reasoners cannot deal with large 

Ontologies or cannot detect all the smells as shown 

by [7]. They cannot handle even all the errors 

resulting from a timeout. According to [9], they 

showed that reasoners of the Ontology verify the 

design quality to get consistency systems. However, 

reasoners verification against some structural smells 

is not found. The proposed smell detection method 

can detect structural smells without using the 

reasoners and whatever the Ontology size.  

Generally, Ontology is not big but sometimes 

there are big Ontologies as GO (Gene Ontology). 

The proposed approach can evaluate both small and 

big Ontologies. According to [10], protégé needs at 

least 4G of RAM to manipulate the GO Ontology. 

Also, according to [11], they showed that using 

Gowinda to detect unbiased enrichment in gene sets 

from big datasets will cause Memory consumption. 

As GO needs about 1.2 GB of RAM and maybe 

increased according to the number of SNPs when be 

analyzed using “Gowinda”. On the other hand, 

according to [12], they found that there is a 

correlation between the existence of smells and 

memory problems.  

According to [13], they classified the detection 

strategies into three types which are software 

metrics, design patterns, and predefined rules. The 

proposed approach uses the software metrics 

strategy. Software metrics play a vital role in 

software development [14]. The quality of the 

software is measured according to how much the 

final software system matches its specification [14]. 

In software metrics techniques, the smells are 

detected using metrics and their thresholds. The 

proposed approach calculates the software design 

metrics using simple protocol and RDF query 

language (SPARQL) and Python programming 

language. The greater the number of attributes and 

operations the greater the design complexity and 

greater low quality. Earlier studies [15] showed that 

for avoiding software complexity and low quality, 

we should measure and control system components. 

The detection process of the design smell usually 

involves finding the fragments of design which 

violate these software metrics. The proposed 

approach detects the smells in an automatic way and 

the correction will be manual. Motivated by the 

research, the major contributions of this paper are 

five-fold: 

 Assessing the correlation between smell’s 

existence and memory consumption. 

 Proposing an Ontology-Python 

(ONTOPYTHO) approach for detecting 

smells on OWL-light and big Ontologies. 

 Describing the experimental evaluation of 

the proposed approach in 12 OWL projects. 

Showing how it detects 4 design smells 

which appeared 117495 times on the OWL 

Ontologies.  

 Showing the benefits of using the Python 

programming language for smell detection 

in OWL Ontologies. 

 Analyzing the correlation between the 

detected smells and showing how Blob and 

Large-class smells have a direct correlation. 

The rest of this paper is organized as follows. In 

the next section, we present the related work. The 

details of the Ontology smells models are then 

introduced in section 3. Section 4 presents the 

proposed method of ONTOPYTHO. Section 5 

presents the experimental evaluation of the proposed 

approach aimed to detect the design smells on OWL 

Ontologies. While section 6 presents the results and 

discussion. And, finally, the concluding remarks and 

future work are given along with scope for future 

work in section 7. 

2. Related works 

Several techniques were proposed in the 

literature for detecting and defining smells types in 

software systems generally and some in Ontologies. 

The automatic detection of smells is a good way to 

keep the maintenance, easy the evolution tasks and 

improves usability and software quality. There is a 

fact said that the smells detection at the design level 

reduces many codes of smells and maintenance 

costs which is more general. According to [16] and 

[17], they proposed using of Bayesian Belief 

Networks to detect 3 smells which are Blob, 

Functional Decomposition, and Spaghetti Code 

using machine learning techniques. In [16] and [17], 

they can work with missing data and provide an 

abstract definition as a detection algorithm for every 

smell. They detect smells but not in OWL 

ontologies. The proposed method detects Lazy Class, 

Large Class, and Blob in OWL Ontology systems.  

On the other hand, reference [18] analyzed 30 

releases of three different open-source systems 

which are ArgoUML, Hibernate, and ANT. They 

detected 29 smells, 13 of them are design’s smells 

and 16 are lexical smells. They showed that lexical 

smells can make, in some cases, classes with design 

smells more fault-prone when both occur in classes 
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of object-oriented systems. They proved that classes 

containing design’ smells only are more change- and 

fault-prone than classes with lexical smells only. 

Reference [19] introduced the “Arcan” tool which is 

written in Java 8 to detect architectural smells.  

“Arcan” is used to support the automatic analysis of 

software architecture through a graph representation 

of data, providing support during the software 

development and maintenance processes. They 

detected 4 smells which are Cyclic Dependency in 

classes, Cyclic Dependency in packages, Unstable 

Dependency, Hub Like Dependency. In reference 

[20], they introduced multi-objective genetic 

programming (MOGP) to find the best metrics that 

increase the detection of smells examples. They 

evaluated their proposal on seven large open-source 

systems and found that, on average, most of the 

different three code-smells types were detected with 

an average of 86% of precision and 91% of recall. 

On the other hand, [21] proposed DÉCOR which 

contains a consistent vocabulary about code-smell to 

specify Smells. The descriptions of the smells are 

then converted to detection rules. This approach has 

detected only four design code-smells which are the 

Blob, functional decomposition, spaghetti code, and 

Swiss-army knife.  They validated the detection 

algorithms on XERCES v2.7.0, and discuss the 

precision of these algorithms on 11 open source 

systems.  

Our proposed method detects "Blob, Lazy Class, 

Large Class, and Singleton" design smells in big and 

light OWL ontology.   

Several techniques for detecting Ontology 

smells can be divided into two main branches: Code 

smells detection and design smells detection. 

According to [22], they presented EvoOnt, a 

software repository data exchange format which is 

based on the Web Ontology Language (OWL). 

EvoOnt includes software, release, and bug-related 

information. They also introduced iSPARQL which 

is a SPARQL-based 

Semantic Web query engine containing 

similarity joins. Together with EvoOnt, iSPARQL 

can accomplish a sizable number of tasks sought in 

software repository mining projects framework to 

detect four smells in the code of the OWL 

Ontologies. The detected smells were Alien spider, 

God Class, Orphan method query and long 

parameter list smells.  Reference [23] Presented 

OCEAN to detect code smells from the source-code 

of the Ontology models and the production of 

Ontological individuals that represent code smells. 

OCEAN detected two code smells which are God 

Class and Brain method. They also introduced a tool 

called RESYS that makes the refactoring process 

easily and linked semantically to their code smells. 

While according to [24], they presented OntoUml to 

detect semantic design smells. Their approach 

focused on the design smells that cannot be detected 

as modeling errors. They detected seven semantic 

smells in the design of the OWL Ontologies. 

According to [25], they detected nine smells in the 

design of Ontology. They classified them into three 

groups which are Logical smells, Non-logical smells 

and Guidelines smells. But the detected smells are 

existing in the inconsistent ontologies.  

Recently, Ontologies have become a promising 

way of building intelligent systems. Ontology and 

Python have a wide range of applications. In the 

semantic web, [26] used Ontology-Python for 

making data integration and information discovery 

for linked open data. They used graph theory to 

enhance the features of the semantic data in 

Ontologies and used the Python network package to 

generate the graph objects. On the other hand, [27] 

proposed architecture for linking the contents of the 

media outlets semantically. This architecture was 

implemented in Python using AllegroGraph which is 

designed for storing RDF Triples and has a client 

interface for Python.  According to [28], they 

handled Gene Ontology resources in Python to 

retrieve the annotations of the GO.  

Also, to perform gene enrichment analyses, and 

to compute the semantic similarity between GO 

terms. On the other hand, [29] presented research on 

how the tweets are retrieved from tweeter through a 

tweet script crawler which was built with Python 

using the Ontology to classify the tweets. According 

to [30], they used Python to link the Ontology to 

various technologies for NLP tasks. They used the 

“Owlready” which is a new Python OWL API 

library to be used as a verbalizer. This verbalizer 

will run on the Ontology to be used as domain 

experts and linguists.  While according to [31], they 

created some Ontologies using the Crop as a domain 

for these Ontologies. They implemented the 

presented schema in Python using the “Owlready” 

library to generate all Ontology components such as 

classes and properties. They used Python also to 

implement similarities techniques for finding the 

alignments between the generated components of 

the Ontologies. [32] used the “Gensim” Python 

library and two-layer neural network algorithm 

word2vec to extract the word’s semantic concept 

from the Ontologies. They proposed a technique to 

map the end user’s words which presented in the 

natural languages to the corresponding concepts in 

the Ontology. [33] Presented “OntoSenticNet” 

which is a common-sense Ontology for sentiment 

analysis.  The “OntoSenticNet” is based on 
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“SenticNet”; a semantic network of 100,000 

concepts. They showed that using Python is better 

more than RDF/XML as it provides easier support 

for the integration of “OntoSenticNet” into real-

world applications. 

In this paper the proposed approach uses Python 

for detecting Ontology design smells automatically 

through the ONTOPYTHO method. 

3. Ontology smells models 

This section presents the different Ontology 

models of Class smells as Blob, Large class, Lazy 

class, and Singleton. The simulation visualizes the 

models using Protégé platform. 

3.1 Blob smell model 

Blob smell is characterized by a class that has a 

great number of both attributes and operations and 

has the most functionalities.  Fig. 1 shows the OWL 

Ontology model for presenting the Blob smell. We 

can see class1 which has a great number of both 

object properties (operations) and “datatype” 

properties (attributes). Other classes just have a low 

number of operations and all the range of their 

operations is class1. 

 
Figure. 1 The OWL ontology model for blob smell 

3.2 Lazy class smell model 

The Lazy class smell is a leaf class which has no 

subclasses and has a little number of operations may 

be zero. We can consider it a data class. Fig. 2 

shows the OWL Ontology model for presenting the 

Lazy class smell. It contains four classes (Class1, 

Class2, Class3, and Class4). All the classes have 

operations (object properties) while Class1 does not 

has any operations, in addition to that, it is a leaf 

class, so it is classified as a lazy class. 

 

 
Figure. 1 The OWL ontology model for blob smell 

 
Figure. 2 The OWL ontology representing the lazy class 

smell 

 

 
Figure. 3 The OWL ontology representing the large 

class smell 

3.3 Large class smell model 

Large class smell characterized by a great 

number of operations or functionalities and has a 

little number of attributes or does not have any 

attributes. Fig. 3 shows the OWL Ontology model of 

the large class smell. The model contains 4 classes; 

all of them have object properties. So, none of them 

is a data class which implying that Blob smell is not 

satisfied here. For that, the class here is classified as 

a large class. 

3.4 Singleton smell 

Singleton smell is a design smell that restricts 

the number of instances of the class to only one 

instance. The class has only one instance and 

operation for retrieving this instance. Fig. 4 shows 

the OWL Ontology for presenting singleton class 

smell. It contains (Class1) which has an object 

property (nn:get_instance) and only one 

instance(nn:Instance). The domain and the range of 

the object property are the same which implies that 

the operation will get the instances from the same 

class (Class1) as in (1). While (2) implies that the 

class has only one instance and (3) implies that the 

operation will retrieve that instance.  
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Figure. 4 The OWL ontology representing the singleton 

smell 

 

nn:Class1--nn:get_instance(Domain>Range)→ 

nn:Class1 (1) 

 

nn:Class1---has instance --- → nn: Instance     (2) 

 

nn:Class1---nn:get_instance--→nn:Instance     (3)  
 

4. The proposed detection method 

“ONTOPYTHO” 

This section presents the pseudo code of 

“ONTOPYTHO” Algorithm 1; the proposed 

Ontology smells detection Algorithm. 

ONTOPYTHO is used to detect classes’ smells in 

large OWL Ontologies. The proposed method is 

based on the merging of Python programming 

language and RDF query language (SPARQL). 

Python is a high-level programming language which 

is considered as an interpreter with dynamic 

semantics. It reduces the cost of the program 

maintenance, supports modules and packages, which 

implies code reuse [34].  

The proposed approach deals with the Ontology’ 

design, not the code or the converted Ontology. That 

is to guarantee no missing information or parts of 

the Ontology’ structure according to the conversion 

or the code generation. Also, Python has “rdflib” 

library to handle big Ontology as GO and give the 

proposed approach the ability to evaluate it without 

needing to manipulate it with Ontology editors. Also, 

adding the proposed approach to any Python library 

can improve the quality of the Ontologies before 

using in the semantic web.   

ONTOPYTHO (Ontology smells detection 

Algorithm) uses SPARQL queries to calculate 

Ontology metrics and to produce a report of the 

detected smells and model analysis. 

 

Algorithm 1. Class Smells detection’ algorithm 

Input: OWL Ontology O, Threshold for attributes x and 

operations y.   

Output: a list of detected smells 

 

1      Insert Ontology O,  

2      Counter n is a number of classes in O; 

3      For (C > =1 && C < = n): 

4           A            getNumOfAttributes; 

5           P             getNumOfOperations; 

6           I              getNumOfInstances; 

7           ð             getOperationValue;  

8           run Blob query Q1;     

9                  if Blob classes > =1:           

10                            print “Blob detected”; 

11               else print (" "); 

12          run Lazy Class query Q2;     

13                if Lazy Classes > =1: 

14                           print “ Lazy class detected”; 

15               else print (" "); 

16          run Large Class query Q3; 

17                 if Large Classes > =1:  

18                           print ("large class detected"); 

19              else print (" "); 

20         run Singleton query Q4; 

21                if Singleton classes > =1: 

22                        print (" singleton detected"); 

23               else print (" "); 

24               End.  
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The proposed approach pre-process is analyzing 

and parsing OWL Ontology model. This process 

uses Python libraries as “rdflib” library. Then 

synchronously, the four SPARQL queries run. The 

four SPARQL queries are: 

 Blob detection SPARQL Query Q1. 

 Lazy class detection SPARQL Query Q2. 

 Large class detection SPARQL Query Q3. 

 Singleton detection SPARQL Query Q4. 

Finally, the visualization process displays the report 

of the detected Smells in the OWL model. 

4.1 Blob detection SPARQL query 

Using SPARQL query Q1, we detect Blob smell 

and retrieve Blob classes from the OWL Ontology. 

The query code as shown in Algorithm 2. This query 

returns the Blob classes by counting their number of 

operations and their number of attributes. This 

detection process has two restrictions. The first 

restriction indicates that the number of operations 

must excessed than "x". While the second restriction 

indicates that the number of attributes must excessed 

than y. Both "x" and "y" are the accepted threshold 

which class should have. This query could be 

general. So, according to developers’ accepted 

thresholds, they can detect Blob classes. 

 

Algorithm 2. (Q1. Blob detection SPARQL 

Query) 

➢ PREFIX rdf:<http://www.w3.org/1999/02/22-

rdf-syntax-ns#> 

➢ PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#> 

➢ PREFIX owl: 

<http://www.w3.org/2002/07/owl#> 

➢ SELECT  ?Blob_classes (count(?d) 

as ?NO_Operations) (count(?A) 

as ?No_Attributes)  

➢ where{{?d a owl:ObjectProperty. 

➢ ?d rdfs:domain ?Blob_classes} UNION  

➢ {?A a owl:DatatypeProperty. ?A 

rdfs:domain ?Blob_classes} } 

➢ group by ?Blob_classes 

having(?No_Operations>?x 

&& ?No_Attributes>?y) 

4.2 Lazy class detection SPARQL query 

Using SPARQL query Q2, we detect the lazy 

class smell as shown in Algorithm 3. The query 

retrieves the Lazy classes defined by two restrictions. 

The Filter part of the query presents the restrictions. 

The restrictions indicate that Lazy classes have not 

any operations and they have leaf classes.  

 
Algorithm 3. (Q2: Lazy Class detection SPARQL 

Query) 

➢ SELECT  distinct  ?LazyClasses  

➢ WHERE  {?LazyClasses a owl:Class. 

➢ Filter NOT  EXISTS{{?h a   

➢ owl:ObjectProperty. 

➢ ?h rdfs:domain ?LazyClasses.} UNION{?subject 

rdfs:subClassOf ?LazyClasses.} }} 

➢ group by ?LazyClasses 

 

4.3 Large class detection SPARQL query 

Using SPARQL query Q3, we detect the large 

class smells as shown in Algorithm 4. The query 

retrieves the large classes. That is by counting 

process of the number of operations “?No_Op”. The 

restriction implies exceeding the number of 

operations more than “y”. Where “y” is the accepted 

threshold for the developers. Synchronously, the 

Large classes might have datatype properties or not. 

We concerned with the number of object properties.  

 
Algorithm 4. (Q3. Large class detection SPARQL 

Query) 

➢ SELECT ?Large_classes (count(?d)  

as ?No_Op) 

➢ where{?d a owl:ObjectProperty. 

➢ ?d rdfs:domain ?Large_classes.} 

➢ group by ?Large_classes having(?No_Op>?y) 

 

4.4 Singleton detection SPARQL query 

The SPARQL query Q4 for detecting the 

Singleton smell as shown in Algorithm 5. The query 

Q4 retrieves the singleton classes under three 

restrictions. We have two Filters. The first 

restriction in the first Filter for indicating that both 

the domain and the range of the operation are the 

same. The second Filter indicates that the retrieved 

instance is an instance of the same class that 

contains the operation. The last restriction is for 

indicating that the class has only one instance.  
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Algorithm 5. (Q4 Singleton detection SPARQL 

Query) 

➢ SELECT ?Sing_classes    

➢ where{?d a owl:ObjectProperty. 

➢ ?d rdfs:domain ?Sing_classes. 

➢ ?r rdfs:range ?Sing_classes. 

➢ filter  (?d=?r). 

➢ ?in rdf:type ?Sing_classes. 

➢ filter exists {?o ?p ?d}. 

➢ ?A a owl:DatatypeProperty.  

➢ ?A rdfs:domain ?Sing_classes.} 

➢ group by ?Sing_classes 

➢ having(count(?A)=1) 

5. Experimental evaluation 

In this section, we assess how well the proposed 

approach ONTOPYTHO can predict the quality of 

OWL Ontology design. We assess our approach by 

applying it on twelve popular OWL Ontologies 

which are considered as big Ontologies. We 

downloaded them from Github, [35], and [36]. The 

size of the Ontologies includes all Ontology 

components. Table 1 shows the OWL Ontologies 

features. The random sample of twelve Ontologies 

in different fields as lexicons, Chemistry, Biology, 

Anatomy, Industry, and bioinformatics. The 

research study includes the identification and 

repeating of the smells across different domains and 

different sizes. 

 
Table 1. Description of OWL ontologies under analysis 

OWL 

Ontology 

Projects 

Size 

MB 
Classes Specification 

dbpedia_20

15-10.owl 
2.32 739 

The DBpedia 

datasets, each 

release of this 

Ontology 

corresponds to a 

new release of the 

DBpedia data set  

 

dbpedia_20

16-04.owl 

2.36 754 

dbpedia_20

16-10.owl 
2.37 760 

Gene 

Ontology 

(go.owl) 

171 61714 

An Ontology for 

describing the 

function of genes 

and gene products 

IFC2X3_Fin

al.owl 
3.18 1149 

Industry 

Foundation Classes 

IFC Ontology  

Edam.owl 3.01 3379 

EDAM is an 

Ontology of 

bioinformatics 

types of data. 

Gaz.owl 590  10144 

Gazetteer, a 

gazetteer 

constructed on 

Ontological 

principles 

chebi.owl 471 32288 

Chemical Entities 

of Biological 

Interest. A 

structured 

classification of 

molecular entities 

of biological 

interest. 

Foodon.owl 7.21 6556 

The core repository 

for the food 

Ontology project 

hp-full.owl 95.3  47015 

human-phenotype-

Ontology is for the 

description of 

human clinical 

features 

xao.owl 4.26 1735 

Xenopus Anatomy 

Ontology. Anatomy 

and development of 

the African clawed 

frog. 

Zfa.owl 8.27 3200 

Zebrafish anatomy 

and development 

Ontology. A 

structured 

controlled 

vocabulary of the 

anatomy and 

development of the 

Zebrafish. 

 

For explaining the proposed approach, we 

display a part of the result of applied ONTOPYTHO 

on the ‘dbpedia_2015-10.owl ‘in Fig. 5. 
 

 
Figure. 5 The result of running ONTOPYTHO on 

‘’dbpedia_2015-10’’ Ontology 

6. Results and discussion 

After applying ONTOPYTHO on the OWL 

Ontologies in Table 1, we detected the smells as 

presented in Table 2. The proposed approach 

detected 3 smells which were appeared 117495 

times. We can note that lazy class smell is the most 

detected smell while Singleton smell has not been 

detected. Both Blob and large class smells have a 

little appearance in the Dbpedia versions. They 

decreased in the new versions. The Lazy class smell 

is the most appeared one.  It increased more and 

more in the new versions as in Fig. 6.  
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Table 3 summarizes the results we obtained for 

the detection of 3 smells from our input 12 OWL 

Ontologies. The integer value represents the number 

of occurrences of the smells in the OWL Ontology. 

The percentage is the ratio of this value according to 

the total number of smells. We noted that the same 

class can be affected by more than one smell. For 

example, a class can be a large class and a blob class 

simultaneously. 

From Table 3, we can note that Lazy class smell 

has the maximum ratio of smells which is 99.865% 

while Blob smell has the minimum ratio which is 

0.0374%. But is there any relation between the three 

smells?  

The analysis of the relation between class’ 

smells types means the determination of the relation 

between Ontology’s concepts. So, we used a 

statistical analysis package as SPSS (Statistical 

Package for the Social Sciences) to analyze the 

correlation (Pearson correlation coefficient) between 

the three detected smells. We found that the highest 

correlation is between Blob and Large Class’ smells 

as the Pearson correlation coefficient between them 

equals 0.889 i.e. there is a strong correlation 

between them. This means that the presence of one 

means the presence of the other by a large 

percentage. While the correlation between Lazy 

class smell and the Blob smell equals 0.276, and 

between Lazy class and Large-class equals 0.221; 

 

Table 2. Design smells per OWL ontologies 

OWL Ontologies 

Smells 

B
lo

b
 

 

L
az

y
 C

la
ss

es
 

L
ar

g
e 

C
la

ss
es

 

S
in

g
le

to
n
 

dbpedia_2015-10.owl 8 490 17 0 

dbpedia_2016-04.owl 7 502 14 0 

dbpedia_2016-10.owl 7 506 14 0 

Gene Ontology (go.owl) 0 44155 0 0 

IFC2X3_Final.owl 2 393 9 0 

EDAM.owl 0 2742 10 0 

gaz.owl 3 10023 7 0 

chebi.owl 8 12052 18 0 

foodon.owl 5 5500 13 0 

hp-full.owl 4 36735 8 0 

xao.owl 0 1515 4 0 

zfa.owl 0 2724 0 0 

 

 

 

Figure. 6 The appearance of the detected smells in the 

Dbpedia OWL Ontologies versions 
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Table 3. Ontopytho results for the detection of 3 smells in 

12 OWL ontologies 

Class Smells 

 Blob Lazy Class Large 

Class 

Total 

Ratio 

44 

0.0374% 

117337 

99.865% 

114 

0.0970% 

 

Table 4. The SPSS Pearson correlation coefficient 

matrix between the class’ smells 

 Blob Lazy 

Class 

Large 

Class 

Blob   Pearson correlation 

            Sig. (2-taild)              

1 

 

0.276 

0.385 

0.889 

0 

Lazy  Pearson correlation 

Class    Sig. (2-taild)              

0.276 

0.385 

1 

 

0.221 

0.489 

Large Pearson correlation 

Class    Sig. (2-taild)               

0.889 

0 

0.221 

0.489 

1 

 

 

 
Figure. 7 The similarity between the means of “Blob 

and Large-class” smells and differences between 

them and “Lazy class” smell 

 

which means that there is a low correlation between 

them. This means that the presence of one does not 

imply the presence of the other. The SPSS Pearson 

correlation coefficient matrix is shown in Table 4.  

Fig. 7 assessed the similarity between both the 

means of Blob and Large-class smells like the result 

of the correlation. 

Now, we need to address if there is a relation 

between the number of classes and the presence of 

the smells. Table 5 illustrates the ratio between the 

number of classes and smells in every OWL 

Ontology. 

From Table 5, although “gaz.owl” does not has 

the maximum number of classes, but it has the 

maximum ratio of smells 98.90% in the classes of it. 

This leads us to the fact that the number of classes in 

OWL Ontologies has no effect on smells presence.   

Now we will ask, is there a relation between the size 

of the Ontology and smells existence? 

 

Table 5. The ratio of smells according to the classes of 

OWL ontologies 

OWL 

Ontologies 
Classes Smells ratio 

dbpedia_2015-

10.owl 

739 515 69.68% 

dbpedia_2016-

04.owl 

754 523 69.36% 

dbpedia_2016-

10.owl 

760 527 69.34% 

Gene Ontology 

(go.owl) 

61714 44155 71.54% 

IFC2X3_Final.owl 
1149 404 35.16% 

EDAM.owl 
3379 2752 81.44% 

gaz.owl 
10144 10033 98.90% 

chebi.owl 
32288 12078 37.40% 

foodon.owl 
6556 5518 84.16% 

hp-full.owl 
47015 36747 78.16% 

xao.owl 
1735 1519 87.55% 

zfa.owl 3200 2724 85.12% 

 
Table 6. The SPSS Pearson correlation coefficient matrix 

between the size of the ontologies and the smells 

 

To answer this question, we analyzed the 

correlation between them using SPSS as in Table 6. 

We found that there is no relation between them as 

the correlation coefficient is 0.283. So, the size of 

the Ontologies has no effect on smells presence.  

Comparing the proposed method 

"ONTOPYTHO" to other techniques in section of 

related works [16, 17, 19-25]. The results of 

comparison are in Table 7.   The related references 

detected smells generally in software projects and 

some of them in OWL Ontologies. References [22], 

[24], and [25] just detected smells in OWL 

ontologies.  The comparison included the number of 

evaluated software projects, the number of detected 

smells, the software systems weather they were 

OWL ontologies or not, and the number of 

occurrences of smells. 

 

 Size Lazy Class 

Size Pearson Correlation            

Sig. (2-taild)                      

1 

 

0.283 

0.373 

Smells Pearson Correlation 

Sig. (2-taild) 

0.283 

0.373 

1 
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Table 7. Comparison between the “ONTOPYTHO” and 

other techniques 
T

h
e 

te
ch

n
iq

u
es

 

#
 s

o
ft

w
ar

e 

p
ro

je
ct

s 

#
 D

et
ec

te
d

 

S
m

el
ls

 

S
o

ft
w

ar
e 

S
y

st
em

s 

#
 o

cc
u

rr
en

ce
s 

o
f 

sm
el

ls
 

Bayesian Belief 

Networks [16] 
2     1  - 19 

BDTEX [17] 2     3  - 46 

Arcan  [19] 8     4 - 1025 

MOGP [20] 7     3 - 725 

DÉCOR [21] 10     4  - 513 

EvoOnt [22] 1     5  OWL 0 

OCEAN[23] 4     3  - 445 

OntoUml[24] 1     7 OWL 3612 

OWL 

catalogue  [25] 
0    11 OWL 0 

ONTOPYTHO 

Proposed 

method 

12    4 OWL 117495 

  
Table 8. The shared detected smells using proposed 

method and other techniques 

The techniques #  Blob # LazyClass 

Bayesian Belief 

Networks  [16] 

19 - 

BDTEX  [17] 13 - 

DÉCOR  [21] 44 - 

EvoOnt  [22] 9 - 

OCEAN  [23] 134 21 

ONTOPYTHO 

Proposed method 

44 117337 

 

We can note that the proposed method has the 

greatest number of the evaluated projects and the 

greatest number of occurrences of smells which are 

12 projects and 117495 times.  The proposed 

method detected smells "Blob, Lazy Class, and 

Large Class" which are not detected by any other 

techniques.  But there are some cases in the other 

techniques which detected just Blob as in [16, 17, 

21-23]. Lazy class was detected only in one case in 

reference [23] as in Table 8. The proposed method 

has the maximum number of Lazy Class smell 

which is 117337 smells and of ratio 99.865%.  

 

Strengths of the proposed method which does not 

exist in the other techniques: 

(1) The proposed method detected the smells Blob, 

Lazy Class, and Large Class which are not 

detected in OWL Ontologies using the other 

techniques. 

(2) The proposed method detects smells in big and 

light OWL Ontologies. 

(3) The proposed method improves semantic web 

projects which are developed using Python 

programing language. 

(4) The proposed method is the first method 

detected Lazy Class smell in OWL Ontology 

design with a high percentage. 

 

Finally, we recommend treating the detected 

smells by using classification for large classes or 

Blob and distributing the operations between the 

other classes and delete the lazy classes. That leads 

to minimize the Ontology’ size to be suitable to 

manipulate it in any Ontology editors, save time, 

and minimize storage.  

7. Conclusion 

Ontologies are assuming the crucial role in 

Semantic Web vision. Improving the quality of 

Ontology design implies high-quality semantic web 

applications. We presented the ONTOPYTHO 

approach to detect smells on OWL Ontologies. The 

proposed approach is based on the metric method 

via the Semantic Web query language SPARQL and 

Python programming language. The proposed 

approach provides the ability to improve the quality 

of software systems represented in the OWL 

Ontology format. We applied ONTOPYHO on 

twelve OWL Ontologies.  The proposed approach 

presented the method for detecting four design 

smells which are Blob, Large class, Lazy class, and 

Singleton smells. We detected three design smells 

which appeared 117495 times in the OWL 

Ontologies. We found that there is a direct relation 

between Blob and Large-class smells while there is 

a reverse relation between them and the Lazy class 

smell. Also, we found that both the size and the 

number of classes of the OWL- Ontology has no 

effect in the presence of the smells. The results 

showed that 69.24% of the classes are lazy classes. 

This means that big OWL Ontologies are not big in 

their nature, but because of the existence of theses 

lazy classes. So, detecting Lazy classes using 

ONTOPYTHO approach and deleting them will 

reduce the size of the ontologies. This consequently 

will allow reasoner check, manipulation using any 

ontology editor like protégé and solves the difficulty 

of using SPARQL queries directly according to the 

Ontology editor plugin. Also, when ONTOPYTHO 

detects large Ontology’ classes, users can divide 

these classes into subclasses. The proposed 

approach provides the ability to measure the size 

and complexity of the OWL Ontologies. Finally, the 

strong correlation between large class and Blob 

smells leads to solve Blob when solving large-class.  
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In the Future works, we will insert the 

ONTOPYTHO into Python as a library. Also, we 

will insert all the detected semantic smells to 

Ontology Catalog. Finally, we will analyze the 

reasons of the relation between Blob and Large-

class smells in Ontology and how can we avoid 

smells happen. 

References 

[1] S. A. Aljawarneh, A. Alawneh, and R. Jaradat, 

“Cloud security engineering: Early stages of 

SDLC”, Future Generation Computer Systems, 

Vol.74, No.C, pp.385-392, 2017. 

[2] W. Bartussek, T. Weiland, S. Meese, M. O. 

Schurr, M. Leenen, A. Uciteli, S. Kropf, H. 

Herre, C. Goller, P. Blohm. And W. Lauer, 

“Ontology-based search for risk-relevant PMS 

data”, In: Proc. of the 3rd Biennial South 

African on Biomedical Engineering Conf. 

(SAIBMEC), pp.1-4, 2018. 

[3] G. De Giacomo, D. Lembo, M. Lenzerini, A. 

Poggi, and R. Rosati, “Using Ontologies for 

semantic data integration”, In: Flesca S., Greco 

S., Masciari E., Saccà D. (eds) A 

Comprehensive Guide Through the Italian 

Database Research Over the Last 25 Years. 

Studies in Big Data, Vol.31, pp.187-202, 2018.  

[4] G. Kappel, E. Kapsammer, H. Kargl, G. 

Kramler, T. Reiter, W. Retschitzegger, W. 

Schwinger, and M. Wimmer, “Lifting 

metamodels to Ontologies: A step to the 

semantic integration of modeling languages”, 

In: Proc. of International Conf. on Model 

Driven Engineering Languages and Systems, 

pp.528-542, 2006.  

[5] P. Maurice, F. Dhombres, E. Blondiaux, S. 

Friszer, L. Guilbaud, N. Lelong, B. Khoshnood, 

J. Charlet, N. Perrot, E. Jauniaux, and D. 

Jurkovic, “Towards Ontology-based decision 

support systems for complex ultrasound 

diagnosis in obstetrics and gynecology”, 

Journal of Gynecology Obstetrics and Human 

Reproduction, Vol.46, No.5, pp.423-429, 2017. 

[6] O. Corcho, C. Roussey, O. Šváb-Zamazal, and 

F. Scharffe, “SPARQL-DL queries for 

Antipattern Detection”, In: Proc. of the 3rd 

International Conf. on Ontology Patterns 

WOP'12, Eva Blomqvist, Aldo Gangemi, Karl 

Hammar, and Mari Carmen Suárez-Figueroa 

(Eds.), CEUR-WS.org, Vol.929, pp.85-96, 

2012. 

[7] O. Corcho, C. Roussey, O. Šváb-Zamazal, F. 

Scharffe, and S. Bernard, “Antipattern 

detection in web Ontologies: an experiment 

using SPARQL queries”, In: Proc. of the 12th 

International Francophone Conf. on Extraction 

and Knowledge Management, pp.263-268, 

2012. 

[8] K. Alkharabsheh, Y. Crespo, E. Manso, and J. 

A. Taboada, “Software Design Smell 

Detection: a systematic mapping study”, 

Software Quality Journal, Vol.26, No.4, pp.1-

80, 2018. 

[9] S. Staab and R. Studer, “Handbook on 

Ontologies”, (2nd ed.), Springer Science & 

Business Media, Springer-Verlag, Berlin, 

Heidelberg, pp. 21-43, 2010. 

[10] Protege setup for GO Eds, 

http://wiki.geneOntology.org/index.php/Protege

_setup_for_GO_Eds (Accessed February 2019). 

[11] R. Kofler and C. Schlötterer, “Gowinda: 

unbiased analysis of gene set enrichment for 

genome-wide association studies”, 

Bioinformatics, Vol.28, No.15, pp.2084-2085, 

2012. 

[12] K. Jezek and R. Lipka, “Smells causing 

memory bloat: A case study”, In: Proc. of the 

24th International Conf. on Software Analysis, 

Evolution and Reengineering (SANER), pp.306-

315, 2017. 

[13] M. Misbhauddin and M. Alshayeb, “UML 

model refactoring: a systematic literature 

review”, Empirical Software Engineering, 

Vol.20, No.1, pp.206-251, 2015. 

[14] M. K. Gopal, “Design Quality Metrics on the 

Package Maintainability and Reliability of 

Open Source Software”, International Journal 

of Intelligent Engineering and Systems, Vol.9, 

No.4, pp. 195-204, 2016. 

[15] M. Lanza and R Marinescu, “Object-oriented 

metrics in practice: using software metrics to 

characterize, evaluate, and improve the design 

of object-oriented systems”, (1st ed.), Springer 

Publishing Company, Incorporated, Springer-

Verlag, Berlin, Heidelberg, pp. 45-72, 2007. 

[16] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and 

H. Sahraoui, “A bayesian approach for the 

detection of code and design smells”, In: Proc. 

of the Ninth International Conf. on Quality 

Software, pp.305-314, 2009. 

[17] F. Khomh, S. Vaucher, Y.G. Guéhéneuc, and H. 

Sahraoui, “BDTEX: A GQM-based Bayesian 

approach for the detection of Smells”, Journal 

of Systems and Software, Vol.84, No.4, pp.559-

572, 2011. 

[18] L. Guerrouj, Z. Kermansaravi, V. Arnaoudova, 

B. C. Fung, F. Khomh, G. Antoniol, and Y. G. 

Guéhéneuc, “Investigating the relation between 

lexical smells and change-and fault-proneness: 

http://wiki.geneontology.org/index.php/Protege_setup_for_GO_Eds
http://wiki.geneontology.org/index.php/Protege_setup_for_GO_Eds


Received:  July 30, 2019                                                                                                                                                      36 

International Journal of Intelligent Engineering and Systems, Vol.12, No.6, 2019           DOI: 10.22266/ijies2019.1231.03 

 

an empirical study”, Software Quality Journal, 

Vol.25, No.3, pp.641-670, 2017. 

[19] F. A. Fontana, I. Pigazzini, R. Roveda, D. 

Tamburri, M. Zanoni, and E. Di Nitto, “Arcan: 

a tool for architectural smells detection”, In: 

Proc. of International Conf. on Software 

Architecture Workshops (ICSAW), pp. 282-285, 

2017. 

[20] U. Mansoor, M. Kessentini, S. Bechikh, and K. 

Deb, “Code-smells detection using good and 

bad software design examples”, Technical 

Report, COIN Report Number 2014009, 2013. 

[21] N. Moha, Y.G. Gueheneuc, L. Duchien, and A. 

F. Le Meur, “Decor: A method for the 

specification and detection of code and design 

smells”, IEEE Transactions on Software 

Engineering, Vol.36, No.1, pp.20-36, 2010.  

[22] C. Kiefer, A. Bernstein, and J. Tappolet, 

“Mining software repositories with isparol and 

a software evolution Ontology” In: Proc. of the 

Fourth International Workshop on Mining 

Software Repositories, pp.10-10.  2007. 

[23] L. P. da Silva Carvalho, R. L. Novais, L. do 

Nascimento Salvador, and M. G. de Mendonça 

Neto, “An Approach for Semantically-Enriched 

Recommendation of Refactorings Based on the 

Incidence of Code Smells”, In: Proc. of 

International Conf. on Enterprise Information 

Systems, pp.313-335, 2017. 

[24] G. Guizzardi and T. P. Sales, “Detection, 

simulation and elimination of semantic Smells 

in Ontology-driven conceptual models”, In: 

Proc. of International Conf. on Conceptual 

Modeling, pp.363-376, 2014. 

[25] C. Roussey, O. Corcho, and L. M. Vilches-

Blázquez, “A catalogue of OWL Ontology 

Antipatterns”, In: Proc. of the fifth 

international Conf. on Knowledge Capture, 

pp.205-206, 2009. 

[26] A. Akgün and S. Ayvaz, “An Approach for 

Information Discovery Using Ontology In 

Semantic Web Content”, In: Proc. of 

International Conf. on Information Science and 

System, pp.250-255, 2018. 

[27] P. Bubna, S. Sharma, and S.K. Malik, “Linking 

Online News Semantically Using NLP and 

Semantic Web Technologies”, International 

Journal of Computer Sciences and Engineering. 

Vol.6, No.7, pp.589-598, 2018. 

[28] C. Dessimoz and N. Škunca, “The Gene 

Ontology Handbook”, (1st ed.), Humana Press. 

Vol.1446, pp.15-24, 2017. 

[29] S. F. Huang, C. J. Su, and M. B. V. Saballos, 

“Social media big data analysis for global 

sourcing realization”, In: Bhatia S., Mishra K., 

Tiwari S., Singh V. (eds) Advances in Computer 

and Computational Sciences. Advances in 

Intelligent Systems and Computing, Vol.554, 

pp.251-256, 2018. 

[30] C. M. Keet, M. Xakaza, and L. Khumalo, 

“Verbalising OWL Ontologies in isiZulu with 

Python”, In: Proc. of the 14th European 

Semantic Web Conf. ESWC, pp.59-64. 2017.  

[31] N. Chatterjee, N. Kaushik, D. Gupta, and R. 

Bhatia, “Ontology merging: A practical 

perspective”, In: Proc. of International Conf. 

on Information and Communication 

Technology for Intelligent Systems, pp.136-145, 

2017. 

[32] B. Zarei, S. Heil, and M. Gaedke, “Natural-

Language-Enabled End-User Tool Endowed 

with Ontology-Based Development”, In: Proc. 

of International Conf. on Web Engineering, 

pp.473-476, 2018. 

[33] M. Dragoni, S. Poria, and E. Cambria, 

“OntoSenticNet: A commonsense Ontology for 

sentiment analysis”, IEEE Intelligent Systems, 

Vol.33, No.3, pp.77-85, 2018. 

[34] What is Python? Executive Summary. 

https://www.Python.org/doc/essays/blurb 

(Accessed March 2019). 

[35] Ontologies & RDF datasets. The OBO Foundry 

http://www.obofoundry.org/ (Accessed 

February 2019). 

[36] The DBpedia. https://wiki.dbpedia.org/Datasets 

(Accessed  February 2019). 

 

 

https://www.python.org/doc/essays/blurb
http://www.obofoundry.org/
https://wiki.dbpedia.org/Datasets

