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Abstract: Nowadays, the Extreme learning machine (ELM) is playing a key role in machine intelligence and big 

data analytics due to its various advantages such as fast training rate, universal classification/regression and the 

capability of approximation. The standard ELM uses the Moore–Penrose generalized pseudo-inverse for solving the 

hidden layer activation matrix and also it identifies the output weights. Because of that, the standard ELM takes 

more time to train the features from the dataset. In ELM, scalability also considered as a one of the major concern 

while processing the large dataset. In order to overcome this concern, the Automotive Rank based ELM (AR-ELM) 

is proposed to obtain an effective tensor decomposition for diminishing the training time. Besides, the Bayesian 

approach is considered in this AR-ELM to remove the redundancy from the decomposed samples of the tensor. The 

major objective of this proposed AR-ELM is to process the large amount of dataset without depending on memory 

capacities. The recognition accuracy is improved by eliminating redundant information. The key idea of the AR-

ELM is to reduce the training time while processing the huge dataset. The implementation and simulation of the AR-

ELM is done in Spark Python 3.7. The performance of the AR-ELM is analysed in terms of accuracy, precision, 

recall and training time. The proposed methodology is compared with three existing methodologies such as basic 

ELM, ELM-TUCKER and ELM-PARAFAC.  The recognition accuracy of the AR-ELM methodology with 

Hardlims activation function is 0.8879 for letter recognition dataset, it is high when compared to the basic ELM, 

ELM-TUCKER and ELM-PARAFAC that are 0.8102, 0.8375 and 0.834 respectively. 
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1. Introduction 

ELM is generally a single layer feed-forward 

neural network (SLFN) with significant features 

such as integrated solutions for regression, binary, 

and multi-class classification. The ELM performs 

effective classification in balanced datasets. But, the 

ELM provides less sensitivity while processing the 

imbalanced datasets [1]. The feed-forward neural 

networks are the example for inductive learning. 

This inductive learning is used to solve the major 

issues such as overfitting, convergence speed, and 

location of free parameters [2]. The issue over the 

Artificial Neural Network (ANN) learning speed is 

solved by developing the ELM in SLFN [3]. The 

gradient-based methods adjust the network 

parameters of hidden nodes to increase the learning 

speed. Instead of using this, the weights and bias 

values are generated randomly to increase the 

learning speed [4].  The SLFN is transformed into a 

linear system based on the random measurement of 

weights and bias operation. This operation also used 

for the output weight’s analytical determination by 

using least-squares [5]. The ELM only updates the 

output weights among the output layer and the 

hidden layer. But, the values of the biases and input 

weights of the hidden layer are generated in random 

manner [6]. 

The learning speed of the ELM generalization 

performance is higher than the SVM without tuning 

any model parameters. Besides, the ELM has been 

developed to solve the drawbacks of multilayer 

feedforward neural networks [7]. The ELM has 

various advantages such as unification of multi-

classification, fast learning speed, minimal human 

intervention, ease of implementation and regression 

[8, 9]. The ELM is computationally powerful single-
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hidden-layer feed-forward neural network, which is 

widely utilized in the several real-world problems 

due to its remarkable efficiency, simplicity, and 

impressive generalization performance [10]. The 

ELM utilized in various applications such as object 

recognition [11], landmark recognition [12], 

identification of refractive index for ionic liquids 

[13], EEG signal classification [14], protein fold 

recognition [15], intrusion detection system [16] etc. 

The major contributions of this paper are stated as 

follows: 

• The tensor decomposition is effectively 

performed by using two different 

decomposition methods. One is tucker 

decomposition and another one is 

automotive rank selection. In 

automotive rank selection, iterative low 

rank approximation is used for further 

decomposing of the tensor information. 

• The iterative low rank approximation is 

used for compressing the tensor 

information to reduce the training time 

of ELM. 

• Besides, the testing accuracy of the 

ELM is improved based on the 

elimination of redundant information 

from the decomposed values by using 

the Bayesian approach. 
This research work is organized as follows: 

Section 2 provides the literature survey about the 

ELM. The detailed description about the proposed 

Automotive Rank based ELM is given in section 3. 

Section 4 presents the results and discussion about 

the proposed ELM methodology. Finally, the 

conclusion is made in section 5. 

2. Literature survey 

X. Su, S. Zhang, Y. Yin, and W. Xiao, [17] 

presented the combination of the multi-layer ELM 

(ML-ELM) and the Principal Component Analysis 

(PCA) method to develop a modified ML-ELM 

algorithm for the prediction of permeability index of 

the blast furnace. The prediction accuracy of the 

modified ML-ELM is enhanced by solving the 

multicollinearity problem which is present in the last 

hidden layer of the ML-ELM algorithm. The 

problem due to the multicollinearity is resolved by 

using the PCA and it enhances the precision and 

generalized performance. The bias and the weights 

of every hidden layer and input layer are randomly 

produced, respectively. 

A. Mishra, A. Rajpal, and R. Bala, [18] 

introduced the Bi-directional ELM (B-ELM) for 

obtaining the watermarking of the JPEG images and 

this B-ELM has the capacity of fast training with 

less number of hidden neurons. The principle behind 

the B-ELM is to optimize the two parameters which 

is need in the hidden layer represented as (𝑎𝑖 , 𝑏𝑖). 

Where, the weight vector is 𝑎𝑖 , and bias of the 

hidden node is 𝑏𝑖 . The optimization of these two 

parameters results in the decrease of residual error 

of SLFNs as fast as possible. The feature extraction 

performed using B-ELM is semi blind in nature.  

J. Tang, C. Deng, and G.B. Huang [19] 

presented the Hierarchical ELM (H-ELM) based 

theories of multilayer perceptron. The training 

architecture of the H-ELM is divided into two 

separate phases such as unsupervised hierarchical 

feature representation and supervised feature 

classification. The high-level sparse features are 

obtained by using the N-layer unsupervised learning. 

The features are randomly perturbed during the 

classification process and these features are used as 

the input to the supervised ELM-based regression 

for obtaining the final classification results. Here, 

the features are not directly extracted by the H-ELM. 

It uses the one more technique called 𝑙1 optimization 

to establish the ELM encoder for extracting the 

sparse and compact features from the input.  

X. Li, W. Mao, and W. Jiang [20] introduced the 

Multiple-Kernel Learning (MKL) ELM for learning 

the optimal combination of multiple large-scale data 

sets. In this MKL-ELM, two different formulations 

of multiple-kernel classifiers are introduced. The 

first formulation mainly depends on the convex 

combination of the base kernels and second 

formulation utilizes the convex combination of the 

equivalent kernels. Additionally, the MKL-ELM 

optimizes the regularization parameter at unified 

framework along with the kernels. The optimization 

of the regularization parameter creates the learning 

system more automatic. The training time of the 

MKL-ELM is high when compared to the single 

kernel ELM and ELM. 

N.K. Nair and S. Asharaf, [21] presented the 

tensor decomposition based ELM by considering 

two different decomposition methods such as 

TUCKER and PARAFAC (parallel factor analysis). 

The TUCKER decomposition is a generalized 

version of the canonical decomposition. Here the 

ELM is trained based on the factor matrices from 

the ELM-PARAFAC and core tensor from the 

ELM-TUCKER.  The training time of the standard 

ELM is more when compared to the ELM-TUCKER 
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Figure.1 Tucker decomposition of the tensor in the three ways case, the tucker decomposition 

 

 

and ELM-PARAFAC. Because, the basic ELM 

requires more time while processing the huge 

dataset. 

The existing ELM learning algorithm requires 

more time to process the large dataset. Moreover, 

some existing ELM researches carried out only one 

stage decomposition. But, in this AR-ELM 

methodology, two levels of decomposition have 

been considered to reduce the tensor information. 

Furthermore, the training time for processing the 

huge dataset reduced by using the iterative low rank 

approximation.  

3. AR-ELM methodology for an effective 

learning of tensors 

The automotive rank based ELM is developed 

for reducing the training time and increasing the 

accuracy while processing the large dataset. The 

AR-ELM has two different stages. In the first stage, 

the HOSVD based tucker decomposition is 

performed for decomposing the tensor into the core 

tensor and multiple matrices. Then the automotive 

rank selection is used in the second stage for the 

further decomposition of the HOSVD decomposed 

samples. The detailed explanation about the AR-

ELM is given below: 

3.1 Tucker decomposition on tensors 

The tucker decomposition typically decomposes 

a tensor into the core tensor and multiple matrices. 

The multiple matrices from the tucker 

decomposition are related to the various core scaling 

along with each node. So, the tucker decomposition 

is considered as a high order PCA. Here, the Higher 

Order generalization of Singular Value 

Decomposition (HOSVD) is used as the 

optimization method to compute the tucker 

decomposition. The Tucker decomposition used in 

the higher order sensors is shown in the following 

Fig 1. 

In the three ways case, the tucker decomposition 

of 𝑥 ∈ ℝ𝐼×𝑗×𝑘 is expressed in the following Eq. (1). 

 

𝑋 = 𝐺 × 𝐴1 × 𝐵2 × 𝐶3 =

∑ ∑ ∑ 𝐺𝑝𝑞𝑠𝑎𝑝   ⃘ 𝑏𝑞   ⃘𝑐𝑠 = [𝐺; 𝐴, 𝐵, 𝐶]𝑆
𝑠=1

𝑄
𝑞=1

𝑃
𝑝=1     (1) 

 

Where, the factor matrices are 𝐴 ∈ ℝ𝐼×𝑃 , 𝐵 ∈
ℝ𝐽×𝑄  and 𝐶 ∈ ℝ𝐾×𝑆 . Then the core tensor is 

represented as 𝐺 ∈ ℝ𝑃×𝑄×𝑆 and third order tensor is 

represented as 𝑋 . This core tensor displays the 

interaction level among the various components. 

The decomposed values from the TUCKER 

decomposition is applied to the automotive rank 

selection to obtain the selective values from the set 

of decomposed values. 

3.2 Automotive rank selection 

In automotive rank selection, two different 

scenarios are developed for low-rank approximation 

of 𝜃  by automatically selecting the gradual 

decreasing ranks ( i.e. ,  𝑅1 > 𝑅2 >. . ) . The two 

different scenarios are Bayesian approach and 

constant compression rate. The redundancy present 

in the weight tensor is eliminated by using the 

Bayesian approach based rank estimation. 

Subsequently, the parameter reduction rate is 

obtained by using the constant compression rate. 
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3.2.1. Bayesian approach  

Bayesian approach has two notations for the 

ease of redundancy elimination such as extreme 

rank and a weakened rank. The redundancy present 

in the tensor is removed after decomposition at 

extreme rank value. But, in the weakened rank only 

a suitable amount of redundancy is kept in tensor. 

Initially, the Global Analytic Solution of Empirical 

Variational Bayesian Matrix Factorization (GAS of 

EVBMF) is used in the Bayesian approach for 

obtaining the value of extreme rank 𝑅𝑒𝑥𝑡𝑟 . The 

weakened rank is identified after the estimation of 

extreme rank. The matrix rank is automatically 

calculated by using the Bayesian matrix in the GAS 

of EVBMF. The utilized Bayesian interference gives 

the suboptimal solution. The decomposition values 

are applied to the unfoldings of the weight tensor 

which is related to the channel dimensions. The 

unfolding is performed in the iteration of 𝑘 + 1 over 

the matrices of sizes 𝑅𝑖𝑛
𝑘 × 𝑑2𝑅𝑜𝑢𝑡

𝑘  and 𝑅𝑜𝑢𝑡
𝑘 ×

𝑑2𝑅𝑖𝑛
𝑘 .  

The value of the weakened rank 𝑅𝑤𝑒𝑎𝑘  is 

linearly based on extreme rank and it preserves a 

high amount of redundancy in the decomposed 

tensor. The fine tuning is enabled and a compression 

step with better accuracy is achieved by fixing 𝑅 =
𝑅𝑤𝑒𝑎𝑘. The weakened rank is expressed in Eq. (2).  

 

𝑅𝑤𝑒𝑎𝑘 = 𝑅𝑖𝑛𝑖𝑡 − 𝑤(𝑅𝑖𝑛𝑖𝑡 −  𝑅𝑒𝑥𝑡𝑟 )                       
(2) 

 

Where, the hyper parameter is denoted as 

𝑤 ( 0 < 𝑤 < 1),  which is called as weakening 

factor and 𝑅𝑖𝑛𝑖𝑡 describes the initial rank value.  

3.2.2. Constant compression rate  

The parameter reduction rate is used for 

selecting the tensor approximation rank. The rate of 

parameter reduction is calculated in each 

compression step. The speed-up of each 

convolutional layer is controlled by selecting the 

rank.  

The following Eq. (3) is derived based on the 

parameters in the decomposed layer (𝑅𝑖𝑛𝐶𝑖𝑛 +
𝑅𝑜𝑢𝑡𝑅𝑖𝑛𝑑2 + 𝑅𝑜𝑢𝑡𝐶𝑜𝑢𝑡)  and also it assumes 

multilinear rank form that is (𝛽𝑅, 𝑅), 𝛽 > 0. 

 

𝑅 ≤
−

𝐶𝑖𝑛+𝛽𝐶𝑜𝑢𝑡
𝛽𝑑2 +√(𝐶𝑖𝑛+𝛽𝐶𝑜𝑢𝑡)

2

𝛽2𝑑2 +
4𝐶𝑖𝑛𝐶𝑜𝑢𝑡

𝛽𝛼

2
               (3) 

 

Where,  𝐶𝑖𝑛  and 𝐶𝑜𝑢𝑡  are the input and output 

channel respectively, and 𝛽 is the output weights. 

The ranks are chosen according to the inequality 

given in Eq. (3) for obtaining the times 𝛼 parameters 

reduction by using the Tucker-2 tensor 

approximation. 

3.2.3. Iterative low rank approximation algorithm  

The steps present in the low rank approximation 

is given as follows: 

1. At first, the layer is compressed with 

weight tensor 𝜃 by solving the concern 

over the minimization of the Frobenius 

norm for given rank 𝑅 that is expressed 

in Eq. (4). 

 

𝑚𝑖𝑛
𝜃1

𝑅,..,𝜃𝑁
𝑅

‖𝜃 − 𝜃𝑅‖, 

𝐹𝑓𝑎𝑐𝑡(𝜃𝑅) = (𝜃1
𝑅, . . , 𝜃𝑁

𝑅),                                    (4) 

 

Where, the tensor’s factorized form of 

components is denoted as 𝜃1
𝑅 , . . , 𝜃𝑁

𝑅 . The weights of 

the 𝑁 layers is defined in the initial layer when the 

decomposition of initial layer during the 

factorization of rank-𝑅. 

2. The fine-tuned weights {𝜃𝑛
𝑅}𝑛=1

𝑁 of 

decomposed layer is updated for further 

compression. Specifically, the rank values 

𝑅′ < 𝑅  solves the minimization problem 

given in Eq. (5). 

𝑚𝑖𝑛
𝜃1

𝑅′
,..,𝜃𝑁

𝑅′
‖𝐹𝑓𝑢𝑙𝑙(𝜃𝑓𝑎𝑐𝑡) − 𝜃𝑅′

‖, 

𝜃𝑓𝑎𝑐𝑡 = (𝜃1
𝑅 , . . , 𝜃𝑁

𝑅)                                              (5) 

 

𝐹𝑓𝑎𝑐𝑡(𝜃𝑅′
) = (𝜃1

𝑅′
, . . , 𝜃𝑁

𝑅′
)  

 

Where, the operators are represented as 𝐹𝑓𝑢𝑙𝑙 and 

𝐹𝑓𝑎𝑐𝑡 , and the rank of factorized weights are 

represented as 𝜃𝑓𝑎𝑐𝑡 . The updated weights of the 

decomposed layer are 𝜃1
𝑅′

, . . , 𝜃𝑁
𝑅′

 that also defined 

as factor matrices. 

3. The loss function 𝑙  of the training data 

{(𝑋𝑗, 𝑌𝑗)}
𝑗=1

𝐽
 is reduced at the fine tuning 

step. Where, input sample is 𝑋𝑗 and related 

target value is 𝑌𝑗 . The following 

optimization problem Eq. (6) is used for fine 

tuning process. 

 

𝐿(𝜃) → 𝑚𝑖𝑛
𝜃𝜖⊝𝑓𝑎𝑐𝑡

𝑅
,   𝑠. 𝑡. 𝐿(𝜃) =  

∑ 𝑙(𝑓𝑅(𝑋𝑗, 𝜃), 𝑌𝑗)𝐽
𝑗=1                                             (6) 
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Where, the compressed architecture is 𝑓𝑅  and 

the set of all possible model parameters are ⊝𝑓𝑎𝑐𝑡
𝑅 .  

This low rank approximation is used instead of 

the compression and fine tuning steps with weight 

approximation. Besides, the weight approximation is 

occurred by automatically selecting ranks. If the 

layers are not compressed, the optimization problem 

of Eq. (4) is used else the Eq. (5) based layer 

compression is used. The fine tuning step is similar 

for all iterations.  

Algorithm 1 – Iterative low rank approximation 

Input: The original pre-trained model, 𝑀 

Output: Compressed fine tuned model 𝑀∗ 

1. 𝑀∗ ← 𝑀 

2. 𝐰𝐡𝐢𝐥𝐞 - the wanted compression rate is not 

achieved or 𝐝𝐨 - when the automatically 

selected ranks do not have stability 

3. The rank (𝑅) are automatically choose for 

the approximation of low rank tensor of 

typical and fully connected weight tensors.  

4. Additionally, the layer weights with its rank 

𝑅  tensor approximations are replaced with 

the compressed model from the 𝑀. 

5. 𝑀∗ ←fine tuned model 𝑀̂. 

6. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞 

3.3  Automotive rank selection based ELM 

The typical machine learning techniques are 

failed to process a high amount of data. Besides, 

those methods do not have the capacity to load the 

entire memory at once. Because the data from the 

real-time applications are extremely large. Thus the 

standard ELM techniques cannot process the 

immense data in efficient manner. Additionally, the 

time consumption of the standard ELM is high due 

to its calculation of computation of matrix Moore–

Penrose pseudoinverse.  

In order to overcome the problem due to training 

time, the AR-ELM technique has two levels of 

decomposition process. In first level the 

decomposition, has the tucker decomposition to 

effectively decompose the tensor into a core tensor 

and multiple matrices. In second level 

decomposition, the Bayesian approach and 

calculation of constant compression rate are used to 

eliminate the redundancy from the compressed 

values.  

3.3.1. Implementation of automotive rank selection 

based ELM 

The following Fig 2 illustrates the process of the 

automotive rank selection based ELM. In this 

section, the working process of the training and 

 

Figure.2 Automotive rank selection based ELM 
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testing process is clearly described. Initially, the 

tensor-based training dataset is given as the input to 

the ELM. ELM receives three different inputs such 

as training dataset samples, number of hidden 

neurons (𝐿) and activation function (𝐺). From the 

training dataset, the feature and label matrixes are 

extracted. Then the input weights (𝑊)  and biases 

(𝑏)  are randomly generated. Besides the output 

matrix of the hidden layer is calculated by 

considering various parameters such as input weight 

matrix, biases, feature matrix and specified 

activation function such sigmoid, tanh, hardlims, 

tribas or sine. The Moore–Penrose inverse of the 

hidden layer matrix is used for calculating the output 

weights.  

Similarly, the testing dataset is used for a testing 

phase and in that testing phase the predictable labels 

and feature matrix are obtained by processing the 

testing dataset. In order to find the actual labels, the 

target scores are computed in this testing phase. The 

actual labels are compared with the expected labels 

to obtain the overall accuracy. 

The training algorithm developed in the 

automotive rank selection based ELM is given 

below: 

Algorithm 2-Training algorithm for decomposition 

based ELM 

Input: Training dataset 𝑆 = [(𝑥𝑖 , 𝑡𝑖)|𝑥𝑖𝜖𝑅, 𝑖 =
1,2,3, … 𝑁] , 𝐿 - amount of hidden neurons of the 

ELM and the 𝐺(𝑤, 𝑏, 𝑥)- output function of hidden 

node. 

Output: output weights and output matrix 

1. Random allocation of input weights and 

biases of ELM 

2. Decomposition over the large of tensor 

data and this data given as the input to 

the ELM. 

3. Calculation of hidden layer output 

matrix 𝐻 

4. Calculation of output weights (𝛽) using 

the constant compression rate from the 

iterative low rank approximation. 

3.3.2. Decomposition technique on ELM 

The measurement of decomposition of sensors 

are carried out by using the HOSVD based tucker 

decomposition and automotive rank selection. Here, 

the Singular Value Decomposition (SVD) takes 

place on each n-mode matricized component. The 

tensor decomposition is written in the following Eq. 

(7).  

 

𝐴 = 𝑆 × 𝑈 × 2𝑉 × 𝑊                                      (7) 

 

Where, 𝑆  belongs to the 𝑅𝐼×𝐽×𝐾 , 𝑈  belongs to 

the 𝑅𝐼×𝐼 , 𝑉  belongs to the 𝑅𝐽×𝐽  and 𝑊  belongs to 

the 𝑅𝐾×𝐾 .  The 𝐼, 𝐽  and 𝐾  are the indices of the 

tuned model M from the iterative low rank 

approximation. This HOSVD is also applicable for 

the higher order tensors and it is obtained by using 

the SVD of each flattening matrices.  

4. Results and discussion 

The proposed ELM is implemented and 

simulated in Spark python 3.7. The proposed ELM 

implementation has two stages. In first stage, the 

tucker decomposition utilized for decomposing the 

tensors. The redundancy present in the tensor 

decomposition values is eliminated by using the 

iterative low-rank approximation. The performance 

of the proposed ELM is analyzed in four different 

parameters such as accuracy, precision, recall and 

training time. Besides, this proposed methodology 

has analyzed in different kind of datasets. 

4.1 Dataset description 

In this proposed ELM, there are six different 

datasets are analysed such as MNIST handwritten 

dataset, KDD Cup 1999 dataset, Statlog (Landsat 

Satellite) dataset, Statlog (Shuttle) dataset, Letter 

Recognition dataset and Mushroom dataset.  

 a. MNIST handwritten dataset 

The MNIST dataset is used for the digit 

recognition process. This dataset has 42000 training 

samples and 784 features along with labels.  

 b. KDD Cup 1999 dataset 

The KDD Cup 1999 dataset is an intrusion 

detection dataset which contains 60000 training 

samples and 41 features along with one label. The 

label of the KDD Cup 1999 dataset specifies normal 

or malicious attacks. 

 c. Statlog (Landsat Satellite) dataset 

This satellite dataset has multispectral values of 

pixels of the satellite image. This dataset has 7 

decision classes and 4435 samples with 36 attributes. 

The various classes included in this statlog dataset 

(Landsat) are grey soil, soil with vegetation stubble, 

red soil, damp grey soil, mixture class (all types 

present) and very damp grey soil.  
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 d. Statlog (Shuttle) dataset 

This shuttle dataset has 43500 training samples 

with 9 attributes. The various classes included in 

this shuttle dataset are Fpv Close, Fpv Open, Rad 

Flow, Bpv Close, Bpv Open and Bypass. 

 e. Letter Recognition dataset 

The letter recognition dataset classifies huge 

amount of pixel displays which belongs to one of 

the 26 capital letters in the English alphabet. This 

dataset has 20000 samples with 16 attributes.  

 f. Mushroom dataset 

The mushroom dataset contains descriptions of 

23 species of grilled mushrooms of Lepiota and 

Agaricus Family. This dataset has 8124 training 

samples and 22 attributes.  

4.2  Performance metrics 

The performance of the proposed ELM is 

analyzed by four different parameters such as 

accuracy, precision, recall and training time (in 

seconds).  

Accuracy 

Accuracy (ACC) is defined as the ratio of 

correct predictions over the total amount of 

iterations assessed in the ELM. The accuracy is 

expressed in Eq. (8). 

 

ACC =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                       (8) 

 

Where, TP is true positive, TN is true negative, 

FP is false positive and FN is false negative. 

Precision 

Precision (P) is defined as the measurement of 

positive patterns which are correctly identified from 

the total predicted patterns. The Eq. (9) describes the 

precision.  

 

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (9) 

Recall  

Recall (R) is defined as the measure of the 

positive patterns which are correctly classified by 

the ELM. The following Eq. (10) specifies the 

specificity. 

 

R =
𝑇𝑃

𝑇𝑃+𝑇𝑁
                                                    (10) 

Table 1. Training time comparison for MNIST 

handwritten dataset 

Activation 

function  

Basic 

ELM 

[21] 

ELM-

TUCKER 

[21] 

   ELM-

PARAFA

C [21] 

AR-

EL

M 

Sine 12332.

981 

10643.794 10555.316 1042

3.46 

Tribas 12296.

731 

10474.998 10414.283 1036

9.13 

Sigmoid  12298.

065 

10484.763 10421.326 1039

8.45

7 

 

 
Figure.3 Comparative analysis of training time for 

MNIST handwritten dataset 

4.2.1. Performance analysis of MNIST handwritten 

dataset 

The following Table 1 and Fig 3 provides the 

comparative analysis of the MNIST handwritten 

dataset for the AR-ELM with existing ELM 

methods such as basic ELM [21], ELM-TUCKER 

[21] and ELM-PARAFAC [21]. This MNIST 

handwritten dataset is analyzed in three different 

datasets such as sine, tribas and sigmoid. 

Table 2 and Fig 3 shows that the AR-ELM 

training time for MNIST handwritten dataset is less 

when compared to the existing methods such as 

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The training time of the Basic 

ELM [21] is high than the other methods. Because, 

the basic ELM takes more time for processing the 

huge datasets. Besides, the AR-ELM training time is 

lesser than the ELM-TUCKER [21] and ELM-

PARAFAC [21], due to its fine-tuning and higher 

level of decomposition over the tensors. 

The testing performance of the MNIST 

handwritten dataset is shown in the Table 2. The 

AR-ELM method has improved performance 

interms of accuracy, precision and recall than the 

other methods basic ELM [21], ELM-TUCKER [21] 

and ELM-PARAFAC [21]. The AR-ELM has high 

accuracy, because of its optimal learning rate. 
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Table 2. Comparison of testing performance for MNIST handwritten dataset 

Activation 

function 

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Sine 0.0991 0.10 0.10 0.2154 0.21 0.22 0.227 0.22 0.23 0.248 0.25 0.262 

Tribas 0.25011 0.23 0.25 0.4527 0.46 0.45 0.4780 0.48 0.48 0.4910 0.52 0.505 

Sigmoid 0.8595 0.86 0.86 0.8732 0.88 0.87 0.8790 0.88 0.88 0.8812 0.91 0.89 

 
Table 3. Training time comparison for KDD Cup 1999 dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

Tanh 14198.517 12258.568 12182.942 12102.56 

Sigmoid 14190.885 12280.145 12165.450 12143.59 

Hardlims 14185.134 11677.938 11592.199 11512.81 

Tribas 14176.046 11669.836 11488.908 11412.68 

 
Table 4. Comparison of testing performance for KDD Cup 1999 dataset 

Activation 

function 

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC 

[21] 

AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Tanh 0.9954 0.99 0.98 0.9964 0.99 0.99 0.9964 0.99 0.99 0.9971 0.99 0.98 

Sigmoid 0.9959 0.97 0.95 0.9959 0.99 0.99 0.9962 0.98 0.98 0.9968 0.99 0.99 

Hardlims 0.9629 0.95 0.96 0.9976 0.97 0.97 0.9982 0.99 0.99 0.9989 0.99 0.99 

Tribas 0.9968 0.98 0.97 0.9972 0.99 0.99 0.9987 0.98 0.99 0.9989 0.98 0.99 

 

 

 
Figure.4 Comparative analysis of training time for KDD 

Cup 1999 dataset 

4.2.2. Performance analysis of KDD Cup 1999 

dataset 

The following Table 3 and Fig 4 provides the 

comparative analysis of the KDD Cup 1999 dataset 

for the AR-ELM with existing ELM methods such 

as basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. These ELM methods are 

developed in four different activation functions such 

as sigmoid, tanh, hardlims and tribas.  

The Table 3 and Fig 4 shows that the AR-ELM 

training time for the KDD Cup 1999 dataset is less 

when compared to the existing methods such as 

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Due to the high amount of samples 

of the KDDCup99 data (i.e., above 60000), the 

training process of the ELM [21] takes more time. 

Similarly, the training time of the ELM-TUCKER 

[21] and ELM-PARAFAC [21] also higher than the 

AR-ELM. 

The testing performance of the KDD Cup 1999 

dataset is shown in the Table 4. The AR-ELM 

method has improved performance in terms of 

accuracy, precision and recall than the other 

methods basic ELM [21], ELM-TUCKER [21] and 

ELM-PARAFAC [21]. The learning rate of the AR-

ELM makes the classification process more accurate 

than the existing methods. 

4.2.3. Performance analysis of satellite dataset 

Table 5 and Fig 5 provides comparison of 

training time (in seconds) for two different 

activation functions such as hardlims and tribas. 

This training time comparison is made for AR-ELM 

with three different existing methodologies such as 

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21].  

 

Table 5. Training time comparison for satellite dataset 

Activatio

n 

function 

Basic 

ELM 

[21] 

ELM-

TUCKER 

[21] 

ELM-

PARAFA

C [21] 

AR-

ELM 

Hardlims 124.215 116.012 108.011 98.28 

Tribas 124.228 102.624 98.927 91.05 
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Table 6. Comparison of testing performance for satellite dataset 

Activation 

function 

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Hardlims 0.9825 0.96 0.94 0.9932 0.99 0.99 0.9982 0.99 0.98 0.9986 0.99 0.99 

Tribas 0.9943 0.98 0.97 0.9976 0.99 0.98 0.9987 0.98 0.99 0.9989 0.99 0.99 

 
Table 7. Training time comparison for shuttle dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

Tribas 6716.550 6376.865 6315.289 6286.254 

Tanh 6725.434 6680.117 6617.240 6595.207 

Hardlims 6706.932 6629.858 6584.301 6501.125 

 
Table 8. Comparison of testing performance for shuttle dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC 

[21] 

AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Tribas 0.9568 0.95 0.94 0.9752 0.97 0.98 0.9787 0.98 0.97 0.9816 0.97 0.99 

Tanh 0.9653 0.95 0.93 0.9812 0.97 0.98 0.9964 0.99 0.99 0.9972 0.99 0.99 

Hardlims 0.9629 0.95 0.96 0.9676 0.96 0.97 0.9782 0.98 0.97 0.9941 0.99 0.98 

 

 

 
Figure.5 Comparative analysis of training time for 

satellite dataset 

 

From the Table 5 and Fig 5 conclude that the 

training time of the satellite dataset is less when 

compared to the existing methods basic ELM [21], 

ELM-TUCKER [21] and ELM-PARAFAC [21]. 

The training time of the basic ELM [21] is high, 

because it spends more time in the hidden layer 

output matrix computation. The fine tuning of the 

parameters from the tensors helps to reduce the 

training time of the AR-ELM than the existing 

methods. 

The testing performance of the satellite dataset is 

shown in the Table 4. The AR-ELM method has 

improved performance in terms of accuracy, 

precision and recall than the other methods such as 

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The testing accuracy of the AR-

ELM is improved due to its learning rate and 

elimination of redundant information from the 

decomposed tensor samples. 

 

 
Figure.6 Comparative analysis of training time for shuttle 

dataset 

4.2.4. Performance analysis of shuttle dataset 

The following Table 7 and Fig 6 provides the 

comparative analysis of the shuttle dataset for the 

AR-ELM training time with existing ELM methods 

such as basic ELM [21], ELM-TUCKER [21] and 

ELM-PARAFAC [21]. These ELM methods are 

developed in four different activation functions such 

as sigmoid, tanh, hardlims and tribas. 

From the Table 7 and Fig 6 shows that the AR-

ELM training time for the shuttle dataset is less 

when compared to the existing methods b basic 

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Because, the AR-ELM has two 

levels of tensor decomposition such as TUCKER 

decomposition and low rank iterative approximation.  

The testing performance of the shuttle dataset is 

shown in the Table 8. The AR-ELM method has 

improved performance in terms of accuracy, 
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Table 9. Training time comparison for Letter Recognition dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

Tribas 2502.307 2413.627 2210.872 2186.56 

Tanh 2507.960 2401.842 2198.813 2095.27 

Sigmoid 2504.618 2478.125 2173.671 1956.23 

Hardlims 2501.627 2465.783 2178.354 1945.35 

 
Table 10. Comparison of testing performance for Letter Recognition dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC 

[21] 

AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Tribas 0.6857 0.68 0.71 0.7832 0.78 0.80 0.8012 0.80 0.79 0.8572 0.85 0.82 

Tanh 0.8590 0.85 0.73 0.9023 0.91 0.90 0.9254 0.92 0.91 0.9425 0.94 0.94 

Sigmoid 0.8830 0.85 0.86 0.9034 0.90 0.92 0.9251 0.92 0.91 0.9456 0.93 0.93 

Hardlims 0.8102 0.80 0.79 0.8375 0.83 0.83 0.834 0.84 0.83 0.8879 0.87 0.89 

 
Table 11. Training time comparison for Mushroom dataset 

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM 

Tribas 412.883 388.762 385.128 356.48 

Tanh 414.840 386.351 362.901 347.15 

Sigmoid 413.797 381.147 376.561 338.451 

Hardlims 412.699 382.347 378.903 319.58 

 

 

 

Figure.7 Comparative analysis of training time for Letter 

Recognition dataset 

 

precision and recall than the other methods basic 

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The elimination of redundant 

information from the decomposed tensor samples is 

leads to increase the testing accuracy. 

4.2.5. Performance analysis of Letter Recognition 

dataset 

The following Table 9 and Fig 7 provides the 

comparative analysis of the Letter Recognition 

dataset for the AR-ELM with existing ELM 

methods such as basic ELM [21], ELM-TUCKER 

[21] and ELM-PARAFAC [21]. This Letter 

Recognition dataset is analysed in four different 

datasets such as tanh, tribas, hardlims and sigmoid.  

The Table 9 and Fig 7 shows that the AR-ELM 

training time for the Letter Recognition dataset is 

less when compared to the existing methods basic 

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The training time of the basic 

ELM [21] is high than the other methods. Because, 

the basic ELM takes more time for processing the 

huge datasets. Besides, the AR-ELM training time is 

lesser than the ELM-TUCKER [21] and ELM-

PARAFAC [21], due to its fine tuning and higher 

level of decomposition over the tensors. 

The testing performance of the Letter 

Recognition dataset is shown in the Table 10. The 

AR-ELM method has improved performance in 

terms of accuracy, precision and recall than the 

other methods such basic ELM [21], ELM-

TUCKER [21] and ELM-PARAFAC [21]. The 

learning rate of the AR-ELM improves the testing 

accuracy during the recognition. 

4.2.6. Performance analysis of Mushroom dataset 

The Table 11 and Fig 8 provides comparison of 

Mushroom dataset training time (in seconds) four 

different datasets such as tanh, tribas, hardlims and 

sigmoid. This training time comparison is made for 

AR-ELM with three different existing 

methodologies such as basic ELM [21], ELM-

TUCKER [21] and ELM-PARAFAC [21]. 
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Table 12. Comparison of testing performance for Mushroom dataset 

Activation 

function 

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC 

[21] 

AR-ELM 

ACC P R ACC P R ACC P R ACC P R 

Tribas 0.9621 0.96 0.96 0.9712 0.97 0.98 0.9787 0.97 0.97 0.9813 0.98 0.99 

Tanh 0.9676 0.97 0.96 0.9812 0.97 0.98 0.9946 0.99 0.98 0.9956 0.99 0.99 

Sigmoid 0.9619 0.95 0.96 0.9686 0.96 0.97 0.9782 0.98 0.97 0.9867 0.99 0.98 

Hardlims 0.9629 0.96 0.96 0.9676 0.96 0.97 0.9782 0.98 0.97 0.9789 0.99 0.99 

 

 

 
Figure.8 Comparative analysis of training time for 

Mushroom dataset 

 

Table 11 and Fig 8 conclude that the training 

time of the Mushroom dataset is less when 

compared to the existing methods such as basic 

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Due to the high amount of samples 

of the mushroom dataset, the training process of the 

basic ELM [21] takes more time. Similarly, the 

training time of the ELM-TUCKER [21] and ELM-

PARAFAC [21] also higher than the AR-ELM. 

The testing performance of the Mushroom 

dataset is shown in Table 12. The AR-ELM method 

has improved performance in terms of accuracy, 

precision and recall than the other methods basic 

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Generally, the mushroom dataset 

has high amount of training samples as 8124 with 22 

attributes. Hence, the testing accuracy is enhanced 

due to the determination of the optimal learning rate. 

The proposed AR-ELM was analysed in six 

different datasets. From the analysis, concluded that 

the AR-ELM gives better performance than the 

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Because, the existing ELM 

approach performs only one level of tensor 

decomposition to decrease the tensor information. 

But in this AR-ELM better performance is achieved 

by using two different stages. At first, the tensor was 

decomposed by using the HOSVD based TUCKER. 

Then the Bayesian approach and constant 

compression rate used at second stage of AR-ELM. 

The Bayesian approach was used for removing the 

redundant information from the tensor and constant 

compression rate was used to achieve parameter 

reduction rate. 

5. Conclusion  

In this paper, an AR-ELM is introduced for a 

better reduction in training time and improvement in 

testing accuracy. This AR-ELM has two different 

stages for obtaining better tensor decomposition and 

eliminating the redundant information from the 

decomposed samples. The HOSVD based TUCKER 

decomposition is utilized in first stage to decompose 

the tensor. In the second stage, the automotive rank 

selection is used to eliminate the redundancy from 

the decomposed samples by using the Bayesian 

approach. Besides, output weights from the constant 

compression rate is utilized for better training of the 

ELM. The proposed AR-ELM is analyzed by using 

six different datasets such as MNIST handwritten 

dataset, KDD Cup 1999 dataset, Satellite dataset, 

Shuttle dataset, Letter Recognition dataset and 

Mushroom dataset. The AR-LVM is compared with 

some of the existing methodologies such as basic 

ELM, ELM-TUCKER and ELM-PARAFAC. The 

AR-LVM shows better performance when compared 

to the existing methodologies. The training time of 

the AR-ELM methodology with Tribas activation 

function is 356.48 for mushroom dataset, it is less 

than the basic ELM, ELM-TUCKER and ELM-

PARAFAC that are 412.883, 388.762 and 385.128 

respectively.  In the future, the training time and 

testing accuracy can be improved by increasing the 

variety of matrix/tensor decompositions in the 

compression step. 
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