
Received: June 9, 2019 287

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Automotive Rank Based ELM Using Iterative Decomposition

Archana Nagelli1* Ramesh Ragala1 Badarudeen Saleena1

1School of Computing Science and Engineering, VIT University-Chennai Campus, India

* Corresponding author’s Email: archana.nagelli@gmail.com

Abstract: Nowadays, the Extreme learning machine (ELM) is playing a key role in machine intelligence and big

data analytics due to its various advantages such as fast training rate, universal classification/regression and the

capability of approximation. The standard ELM uses the Moore–Penrose generalized pseudo-inverse for solving the

hidden layer activation matrix and also it identifies the output weights. Because of that, the standard ELM takes

more time to train the features from the dataset. In ELM, scalability also considered as a one of the major concern

while processing the large dataset. In order to overcome this concern, the Automotive Rank based ELM (AR-ELM)

is proposed to obtain an effective tensor decomposition for diminishing the training time. Besides, the Bayesian

approach is considered in this AR-ELM to remove the redundancy from the decomposed samples of the tensor. The

major objective of this proposed AR-ELM is to process the large amount of dataset without depending on memory

capacities. The recognition accuracy is improved by eliminating redundant information. The key idea of the AR-

ELM is to reduce the training time while processing the huge dataset. The implementation and simulation of the AR-

ELM is done in Spark Python 3.7. The performance of the AR-ELM is analysed in terms of accuracy, precision,

recall and training time. The proposed methodology is compared with three existing methodologies such as basic

ELM, ELM-TUCKER and ELM-PARAFAC. The recognition accuracy of the AR-ELM methodology with

Hardlims activation function is 0.8879 for letter recognition dataset, it is high when compared to the basic ELM,

ELM-TUCKER and ELM-PARAFAC that are 0.8102, 0.8375 and 0.834 respectively.

Keywords: Extreme learning machine, Scalability, Accuracy, Training time, Tensor decomposition.

1. Introduction

ELM is generally a single layer feed-forward

neural network (SLFN) with significant features

such as integrated solutions for regression, binary,

and multi-class classification. The ELM performs

effective classification in balanced datasets. But, the

ELM provides less sensitivity while processing the

imbalanced datasets [1]. The feed-forward neural

networks are the example for inductive learning.

This inductive learning is used to solve the major

issues such as overfitting, convergence speed, and

location of free parameters [2]. The issue over the

Artificial Neural Network (ANN) learning speed is

solved by developing the ELM in SLFN [3]. The

gradient-based methods adjust the network

parameters of hidden nodes to increase the learning

speed. Instead of using this, the weights and bias

values are generated randomly to increase the

learning speed [4]. The SLFN is transformed into a

linear system based on the random measurement of

weights and bias operation. This operation also used

for the output weight’s analytical determination by

using least-squares [5]. The ELM only updates the

output weights among the output layer and the

hidden layer. But, the values of the biases and input

weights of the hidden layer are generated in random

manner [6].

The learning speed of the ELM generalization

performance is higher than the SVM without tuning

any model parameters. Besides, the ELM has been

developed to solve the drawbacks of multilayer

feedforward neural networks [7]. The ELM has

various advantages such as unification of multi-

classification, fast learning speed, minimal human

intervention, ease of implementation and regression

[8, 9]. The ELM is computationally powerful single-

Received: June 9, 2019 288

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

hidden-layer feed-forward neural network, which is

widely utilized in the several real-world problems

due to its remarkable efficiency, simplicity, and

impressive generalization performance [10]. The

ELM utilized in various applications such as object

recognition [11], landmark recognition [12],

identification of refractive index for ionic liquids

[13], EEG signal classification [14], protein fold

recognition [15], intrusion detection system [16] etc.

The major contributions of this paper are stated as

follows:

• The tensor decomposition is effectively

performed by using two different

decomposition methods. One is tucker

decomposition and another one is

automotive rank selection. In

automotive rank selection, iterative low

rank approximation is used for further

decomposing of the tensor information.

• The iterative low rank approximation is

used for compressing the tensor

information to reduce the training time

of ELM.

• Besides, the testing accuracy of the

ELM is improved based on the

elimination of redundant information

from the decomposed values by using

the Bayesian approach.
This research work is organized as follows:

Section 2 provides the literature survey about the

ELM. The detailed description about the proposed

Automotive Rank based ELM is given in section 3.

Section 4 presents the results and discussion about

the proposed ELM methodology. Finally, the

conclusion is made in section 5.

2. Literature survey

X. Su, S. Zhang, Y. Yin, and W. Xiao, [17]

presented the combination of the multi-layer ELM

(ML-ELM) and the Principal Component Analysis

(PCA) method to develop a modified ML-ELM

algorithm for the prediction of permeability index of

the blast furnace. The prediction accuracy of the

modified ML-ELM is enhanced by solving the

multicollinearity problem which is present in the last

hidden layer of the ML-ELM algorithm. The

problem due to the multicollinearity is resolved by

using the PCA and it enhances the precision and

generalized performance. The bias and the weights

of every hidden layer and input layer are randomly

produced, respectively.

A. Mishra, A. Rajpal, and R. Bala, [18]

introduced the Bi-directional ELM (B-ELM) for

obtaining the watermarking of the JPEG images and

this B-ELM has the capacity of fast training with

less number of hidden neurons. The principle behind

the B-ELM is to optimize the two parameters which

is need in the hidden layer represented as (𝑎𝑖 , 𝑏𝑖).

Where, the weight vector is 𝑎𝑖 , and bias of the

hidden node is 𝑏𝑖 . The optimization of these two

parameters results in the decrease of residual error

of SLFNs as fast as possible. The feature extraction

performed using B-ELM is semi blind in nature.

J. Tang, C. Deng, and G.B. Huang [19]

presented the Hierarchical ELM (H-ELM) based

theories of multilayer perceptron. The training

architecture of the H-ELM is divided into two

separate phases such as unsupervised hierarchical

feature representation and supervised feature

classification. The high-level sparse features are

obtained by using the N-layer unsupervised learning.

The features are randomly perturbed during the

classification process and these features are used as

the input to the supervised ELM-based regression

for obtaining the final classification results. Here,

the features are not directly extracted by the H-ELM.

It uses the one more technique called 𝑙1 optimization

to establish the ELM encoder for extracting the

sparse and compact features from the input.

X. Li, W. Mao, and W. Jiang [20] introduced the

Multiple-Kernel Learning (MKL) ELM for learning

the optimal combination of multiple large-scale data

sets. In this MKL-ELM, two different formulations

of multiple-kernel classifiers are introduced. The

first formulation mainly depends on the convex

combination of the base kernels and second

formulation utilizes the convex combination of the

equivalent kernels. Additionally, the MKL-ELM

optimizes the regularization parameter at unified

framework along with the kernels. The optimization

of the regularization parameter creates the learning

system more automatic. The training time of the

MKL-ELM is high when compared to the single

kernel ELM and ELM.

N.K. Nair and S. Asharaf, [21] presented the

tensor decomposition based ELM by considering

two different decomposition methods such as

TUCKER and PARAFAC (parallel factor analysis).

The TUCKER decomposition is a generalized

version of the canonical decomposition. Here the

ELM is trained based on the factor matrices from

the ELM-PARAFAC and core tensor from the

ELM-TUCKER. The training time of the standard

ELM is more when compared to the ELM-TUCKER

Received: June 9, 2019 289

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Figure.1 Tucker decomposition of the tensor in the three ways case, the tucker decomposition

and ELM-PARAFAC. Because, the basic ELM

requires more time while processing the huge

dataset.

The existing ELM learning algorithm requires

more time to process the large dataset. Moreover,

some existing ELM researches carried out only one

stage decomposition. But, in this AR-ELM

methodology, two levels of decomposition have

been considered to reduce the tensor information.

Furthermore, the training time for processing the

huge dataset reduced by using the iterative low rank

approximation.

3. AR-ELM methodology for an effective

learning of tensors

The automotive rank based ELM is developed

for reducing the training time and increasing the

accuracy while processing the large dataset. The

AR-ELM has two different stages. In the first stage,

the HOSVD based tucker decomposition is

performed for decomposing the tensor into the core

tensor and multiple matrices. Then the automotive

rank selection is used in the second stage for the

further decomposition of the HOSVD decomposed

samples. The detailed explanation about the AR-

ELM is given below:

3.1 Tucker decomposition on tensors

The tucker decomposition typically decomposes

a tensor into the core tensor and multiple matrices.

The multiple matrices from the tucker

decomposition are related to the various core scaling

along with each node. So, the tucker decomposition

is considered as a high order PCA. Here, the Higher

Order generalization of Singular Value

Decomposition (HOSVD) is used as the

optimization method to compute the tucker

decomposition. The Tucker decomposition used in

the higher order sensors is shown in the following

Fig 1.

In the three ways case, the tucker decomposition

of 𝑥 ∈ ℝ𝐼×𝑗×𝑘 is expressed in the following Eq. (1).

𝑋 = 𝐺 × 𝐴1 × 𝐵2 × 𝐶3 =

∑ ∑ ∑ 𝐺𝑝𝑞𝑠𝑎𝑝 ⃘ 𝑏𝑞 ⃘𝑐𝑠 = [𝐺; 𝐴, 𝐵, 𝐶]𝑆
𝑠=1

𝑄
𝑞=1

𝑃
𝑝=1 (1)

Where, the factor matrices are 𝐴 ∈ ℝ𝐼×𝑃 , 𝐵 ∈
ℝ𝐽×𝑄 and 𝐶 ∈ ℝ𝐾×𝑆 . Then the core tensor is

represented as 𝐺 ∈ ℝ𝑃×𝑄×𝑆 and third order tensor is

represented as 𝑋 . This core tensor displays the

interaction level among the various components.

The decomposed values from the TUCKER

decomposition is applied to the automotive rank

selection to obtain the selective values from the set

of decomposed values.

3.2 Automotive rank selection

In automotive rank selection, two different

scenarios are developed for low-rank approximation

of 𝜃 by automatically selecting the gradual

decreasing ranks (i.e. , 𝑅1 > 𝑅2 >. .) . The two

different scenarios are Bayesian approach and

constant compression rate. The redundancy present

in the weight tensor is eliminated by using the

Bayesian approach based rank estimation.

Subsequently, the parameter reduction rate is

obtained by using the constant compression rate.

Received: June 9, 2019 290

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

3.2.1. Bayesian approach

Bayesian approach has two notations for the

ease of redundancy elimination such as extreme

rank and a weakened rank. The redundancy present

in the tensor is removed after decomposition at

extreme rank value. But, in the weakened rank only

a suitable amount of redundancy is kept in tensor.

Initially, the Global Analytic Solution of Empirical

Variational Bayesian Matrix Factorization (GAS of

EVBMF) is used in the Bayesian approach for

obtaining the value of extreme rank 𝑅𝑒𝑥𝑡𝑟 . The

weakened rank is identified after the estimation of

extreme rank. The matrix rank is automatically

calculated by using the Bayesian matrix in the GAS

of EVBMF. The utilized Bayesian interference gives

the suboptimal solution. The decomposition values

are applied to the unfoldings of the weight tensor

which is related to the channel dimensions. The

unfolding is performed in the iteration of 𝑘 + 1 over

the matrices of sizes 𝑅𝑖𝑛
𝑘 × 𝑑2𝑅𝑜𝑢𝑡

𝑘 and 𝑅𝑜𝑢𝑡
𝑘 ×

𝑑2𝑅𝑖𝑛
𝑘 .

The value of the weakened rank 𝑅𝑤𝑒𝑎𝑘 is

linearly based on extreme rank and it preserves a

high amount of redundancy in the decomposed

tensor. The fine tuning is enabled and a compression

step with better accuracy is achieved by fixing 𝑅 =
𝑅𝑤𝑒𝑎𝑘. The weakened rank is expressed in Eq. (2).

𝑅𝑤𝑒𝑎𝑘 = 𝑅𝑖𝑛𝑖𝑡 − 𝑤(𝑅𝑖𝑛𝑖𝑡 − 𝑅𝑒𝑥𝑡𝑟)
(2)

Where, the hyper parameter is denoted as

𝑤 (0 < 𝑤 < 1), which is called as weakening

factor and 𝑅𝑖𝑛𝑖𝑡 describes the initial rank value.

3.2.2. Constant compression rate

The parameter reduction rate is used for

selecting the tensor approximation rank. The rate of

parameter reduction is calculated in each

compression step. The speed-up of each

convolutional layer is controlled by selecting the

rank.

The following Eq. (3) is derived based on the

parameters in the decomposed layer (𝑅𝑖𝑛𝐶𝑖𝑛 +
𝑅𝑜𝑢𝑡𝑅𝑖𝑛𝑑2 + 𝑅𝑜𝑢𝑡𝐶𝑜𝑢𝑡) and also it assumes

multilinear rank form that is (𝛽𝑅, 𝑅), 𝛽 > 0.

𝑅 ≤
−

𝐶𝑖𝑛+𝛽𝐶𝑜𝑢𝑡
𝛽𝑑2 +√(𝐶𝑖𝑛+𝛽𝐶𝑜𝑢𝑡)

2

𝛽2𝑑2 +
4𝐶𝑖𝑛𝐶𝑜𝑢𝑡

𝛽𝛼

2
 (3)

Where, 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 are the input and output

channel respectively, and 𝛽 is the output weights.

The ranks are chosen according to the inequality

given in Eq. (3) for obtaining the times 𝛼 parameters

reduction by using the Tucker-2 tensor

approximation.

3.2.3. Iterative low rank approximation algorithm

The steps present in the low rank approximation

is given as follows:

1. At first, the layer is compressed with

weight tensor 𝜃 by solving the concern

over the minimization of the Frobenius

norm for given rank 𝑅 that is expressed

in Eq. (4).

𝑚𝑖𝑛
𝜃1

𝑅,..,𝜃𝑁
𝑅

‖𝜃 − 𝜃𝑅‖,

𝐹𝑓𝑎𝑐𝑡(𝜃𝑅) = (𝜃1
𝑅, . . , 𝜃𝑁

𝑅), (4)

Where, the tensor’s factorized form of

components is denoted as 𝜃1
𝑅 , . . , 𝜃𝑁

𝑅 . The weights of

the 𝑁 layers is defined in the initial layer when the

decomposition of initial layer during the

factorization of rank-𝑅.

2. The fine-tuned weights {𝜃𝑛
𝑅}𝑛=1

𝑁 of

decomposed layer is updated for further

compression. Specifically, the rank values

𝑅′ < 𝑅 solves the minimization problem

given in Eq. (5).

𝑚𝑖𝑛
𝜃1

𝑅′
,..,𝜃𝑁

𝑅′
‖𝐹𝑓𝑢𝑙𝑙(𝜃𝑓𝑎𝑐𝑡) − 𝜃𝑅′

‖,

𝜃𝑓𝑎𝑐𝑡 = (𝜃1
𝑅 , . . , 𝜃𝑁

𝑅) (5)

𝐹𝑓𝑎𝑐𝑡(𝜃𝑅′
) = (𝜃1

𝑅′
, . . , 𝜃𝑁

𝑅′
)

Where, the operators are represented as 𝐹𝑓𝑢𝑙𝑙 and

𝐹𝑓𝑎𝑐𝑡 , and the rank of factorized weights are

represented as 𝜃𝑓𝑎𝑐𝑡 . The updated weights of the

decomposed layer are 𝜃1
𝑅′

, . . , 𝜃𝑁
𝑅′

 that also defined

as factor matrices.

3. The loss function 𝑙 of the training data

{(𝑋𝑗, 𝑌𝑗)}
𝑗=1

𝐽
 is reduced at the fine tuning

step. Where, input sample is 𝑋𝑗 and related

target value is 𝑌𝑗 . The following

optimization problem Eq. (6) is used for fine

tuning process.

𝐿(𝜃) → 𝑚𝑖𝑛
𝜃𝜖⊝𝑓𝑎𝑐𝑡

𝑅
, 𝑠. 𝑡. 𝐿(𝜃) =

∑ 𝑙(𝑓𝑅(𝑋𝑗, 𝜃), 𝑌𝑗)𝐽
𝑗=1 (6)

Received: June 9, 2019 291

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Where, the compressed architecture is 𝑓𝑅 and

the set of all possible model parameters are ⊝𝑓𝑎𝑐𝑡
𝑅 .

This low rank approximation is used instead of

the compression and fine tuning steps with weight

approximation. Besides, the weight approximation is

occurred by automatically selecting ranks. If the

layers are not compressed, the optimization problem

of Eq. (4) is used else the Eq. (5) based layer

compression is used. The fine tuning step is similar

for all iterations.

Algorithm 1 – Iterative low rank approximation

Input: The original pre-trained model, 𝑀

Output: Compressed fine tuned model 𝑀∗

1. 𝑀∗ ← 𝑀

2. 𝐰𝐡𝐢𝐥𝐞 - the wanted compression rate is not

achieved or 𝐝𝐨 - when the automatically

selected ranks do not have stability

3. The rank (𝑅) are automatically choose for

the approximation of low rank tensor of

typical and fully connected weight tensors.

4. Additionally, the layer weights with its rank

𝑅 tensor approximations are replaced with

the compressed model from the 𝑀.

5. 𝑀∗ ←fine tuned model 𝑀̂.

6. 𝐞𝐧𝐝 𝐰𝐡𝐢𝐥𝐞

3.3 Automotive rank selection based ELM

The typical machine learning techniques are

failed to process a high amount of data. Besides,

those methods do not have the capacity to load the

entire memory at once. Because the data from the

real-time applications are extremely large. Thus the

standard ELM techniques cannot process the

immense data in efficient manner. Additionally, the

time consumption of the standard ELM is high due

to its calculation of computation of matrix Moore–

Penrose pseudoinverse.

In order to overcome the problem due to training

time, the AR-ELM technique has two levels of

decomposition process. In first level the

decomposition, has the tucker decomposition to

effectively decompose the tensor into a core tensor

and multiple matrices. In second level

decomposition, the Bayesian approach and

calculation of constant compression rate are used to

eliminate the redundancy from the compressed

values.

3.3.1. Implementation of automotive rank selection

based ELM

The following Fig 2 illustrates the process of the

automotive rank selection based ELM. In this

section, the working process of the training and

Figure.2 Automotive rank selection based ELM

Received: June 9, 2019 292

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

testing process is clearly described. Initially, the

tensor-based training dataset is given as the input to

the ELM. ELM receives three different inputs such

as training dataset samples, number of hidden

neurons (𝐿) and activation function (𝐺). From the

training dataset, the feature and label matrixes are

extracted. Then the input weights (𝑊) and biases

(𝑏) are randomly generated. Besides the output

matrix of the hidden layer is calculated by

considering various parameters such as input weight

matrix, biases, feature matrix and specified

activation function such sigmoid, tanh, hardlims,

tribas or sine. The Moore–Penrose inverse of the

hidden layer matrix is used for calculating the output

weights.

Similarly, the testing dataset is used for a testing

phase and in that testing phase the predictable labels

and feature matrix are obtained by processing the

testing dataset. In order to find the actual labels, the

target scores are computed in this testing phase. The

actual labels are compared with the expected labels

to obtain the overall accuracy.

The training algorithm developed in the

automotive rank selection based ELM is given

below:

Algorithm 2-Training algorithm for decomposition

based ELM

Input: Training dataset 𝑆 = [(𝑥𝑖 , 𝑡𝑖)|𝑥𝑖𝜖𝑅, 𝑖 =
1,2,3, … 𝑁] , 𝐿 - amount of hidden neurons of the

ELM and the 𝐺(𝑤, 𝑏, 𝑥)- output function of hidden

node.

Output: output weights and output matrix

1. Random allocation of input weights and

biases of ELM

2. Decomposition over the large of tensor

data and this data given as the input to

the ELM.

3. Calculation of hidden layer output

matrix 𝐻

4. Calculation of output weights (𝛽) using

the constant compression rate from the

iterative low rank approximation.

3.3.2. Decomposition technique on ELM

The measurement of decomposition of sensors

are carried out by using the HOSVD based tucker

decomposition and automotive rank selection. Here,

the Singular Value Decomposition (SVD) takes

place on each n-mode matricized component. The

tensor decomposition is written in the following Eq.

(7).

𝐴 = 𝑆 × 𝑈 × 2𝑉 × 𝑊 (7)

Where, 𝑆 belongs to the 𝑅𝐼×𝐽×𝐾 , 𝑈 belongs to

the 𝑅𝐼×𝐼 , 𝑉 belongs to the 𝑅𝐽×𝐽 and 𝑊 belongs to

the 𝑅𝐾×𝐾 . The 𝐼, 𝐽 and 𝐾 are the indices of the

tuned model M from the iterative low rank

approximation. This HOSVD is also applicable for

the higher order tensors and it is obtained by using

the SVD of each flattening matrices.

4. Results and discussion

The proposed ELM is implemented and

simulated in Spark python 3.7. The proposed ELM

implementation has two stages. In first stage, the

tucker decomposition utilized for decomposing the

tensors. The redundancy present in the tensor

decomposition values is eliminated by using the

iterative low-rank approximation. The performance

of the proposed ELM is analyzed in four different

parameters such as accuracy, precision, recall and

training time. Besides, this proposed methodology

has analyzed in different kind of datasets.

4.1 Dataset description

In this proposed ELM, there are six different

datasets are analysed such as MNIST handwritten

dataset, KDD Cup 1999 dataset, Statlog (Landsat

Satellite) dataset, Statlog (Shuttle) dataset, Letter

Recognition dataset and Mushroom dataset.

 a. MNIST handwritten dataset

The MNIST dataset is used for the digit

recognition process. This dataset has 42000 training

samples and 784 features along with labels.

 b. KDD Cup 1999 dataset

The KDD Cup 1999 dataset is an intrusion

detection dataset which contains 60000 training

samples and 41 features along with one label. The

label of the KDD Cup 1999 dataset specifies normal

or malicious attacks.

 c. Statlog (Landsat Satellite) dataset

This satellite dataset has multispectral values of

pixels of the satellite image. This dataset has 7

decision classes and 4435 samples with 36 attributes.

The various classes included in this statlog dataset

(Landsat) are grey soil, soil with vegetation stubble,

red soil, damp grey soil, mixture class (all types

present) and very damp grey soil.

Received: June 9, 2019 293

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

 d. Statlog (Shuttle) dataset

This shuttle dataset has 43500 training samples

with 9 attributes. The various classes included in

this shuttle dataset are Fpv Close, Fpv Open, Rad

Flow, Bpv Close, Bpv Open and Bypass.

 e. Letter Recognition dataset

The letter recognition dataset classifies huge

amount of pixel displays which belongs to one of

the 26 capital letters in the English alphabet. This

dataset has 20000 samples with 16 attributes.

 f. Mushroom dataset

The mushroom dataset contains descriptions of

23 species of grilled mushrooms of Lepiota and

Agaricus Family. This dataset has 8124 training

samples and 22 attributes.

4.2 Performance metrics

The performance of the proposed ELM is

analyzed by four different parameters such as

accuracy, precision, recall and training time (in

seconds).

Accuracy

Accuracy (ACC) is defined as the ratio of

correct predictions over the total amount of

iterations assessed in the ELM. The accuracy is

expressed in Eq. (8).

ACC =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (8)

Where, TP is true positive, TN is true negative,

FP is false positive and FN is false negative.

Precision

Precision (P) is defined as the measurement of

positive patterns which are correctly identified from

the total predicted patterns. The Eq. (9) describes the

precision.

P =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9)

Recall

Recall (R) is defined as the measure of the

positive patterns which are correctly classified by

the ELM. The following Eq. (10) specifies the

specificity.

R =
𝑇𝑃

𝑇𝑃+𝑇𝑁
 (10)

Table 1. Training time comparison for MNIST

handwritten dataset

Activation

function

Basic

ELM

[21]

ELM-

TUCKER

[21]

 ELM-

PARAFA

C [21]

AR-

EL

M

Sine 12332.

981

10643.794 10555.316 1042

3.46

Tribas 12296.

731

10474.998 10414.283 1036

9.13

Sigmoid 12298.

065

10484.763 10421.326 1039

8.45

7

Figure.3 Comparative analysis of training time for

MNIST handwritten dataset

4.2.1. Performance analysis of MNIST handwritten

dataset

The following Table 1 and Fig 3 provides the

comparative analysis of the MNIST handwritten

dataset for the AR-ELM with existing ELM

methods such as basic ELM [21], ELM-TUCKER

[21] and ELM-PARAFAC [21]. This MNIST

handwritten dataset is analyzed in three different

datasets such as sine, tribas and sigmoid.

Table 2 and Fig 3 shows that the AR-ELM

training time for MNIST handwritten dataset is less

when compared to the existing methods such as

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The training time of the Basic

ELM [21] is high than the other methods. Because,

the basic ELM takes more time for processing the

huge datasets. Besides, the AR-ELM training time is

lesser than the ELM-TUCKER [21] and ELM-

PARAFAC [21], due to its fine-tuning and higher

level of decomposition over the tensors.

The testing performance of the MNIST

handwritten dataset is shown in the Table 2. The

AR-ELM method has improved performance

interms of accuracy, precision and recall than the

other methods basic ELM [21], ELM-TUCKER [21]

and ELM-PARAFAC [21]. The AR-ELM has high

accuracy, because of its optimal learning rate.

Received: June 9, 2019 294

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Table 2. Comparison of testing performance for MNIST handwritten dataset

Activation

function

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

ACC P R ACC P R ACC P R ACC P R

Sine 0.0991 0.10 0.10 0.2154 0.21 0.22 0.227 0.22 0.23 0.248 0.25 0.262

Tribas 0.25011 0.23 0.25 0.4527 0.46 0.45 0.4780 0.48 0.48 0.4910 0.52 0.505

Sigmoid 0.8595 0.86 0.86 0.8732 0.88 0.87 0.8790 0.88 0.88 0.8812 0.91 0.89

Table 3. Training time comparison for KDD Cup 1999 dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

Tanh 14198.517 12258.568 12182.942 12102.56

Sigmoid 14190.885 12280.145 12165.450 12143.59

Hardlims 14185.134 11677.938 11592.199 11512.81

Tribas 14176.046 11669.836 11488.908 11412.68

Table 4. Comparison of testing performance for KDD Cup 1999 dataset

Activation

function

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC

[21]

AR-ELM

ACC P R ACC P R ACC P R ACC P R

Tanh 0.9954 0.99 0.98 0.9964 0.99 0.99 0.9964 0.99 0.99 0.9971 0.99 0.98

Sigmoid 0.9959 0.97 0.95 0.9959 0.99 0.99 0.9962 0.98 0.98 0.9968 0.99 0.99

Hardlims 0.9629 0.95 0.96 0.9976 0.97 0.97 0.9982 0.99 0.99 0.9989 0.99 0.99

Tribas 0.9968 0.98 0.97 0.9972 0.99 0.99 0.9987 0.98 0.99 0.9989 0.98 0.99

Figure.4 Comparative analysis of training time for KDD

Cup 1999 dataset

4.2.2. Performance analysis of KDD Cup 1999

dataset

The following Table 3 and Fig 4 provides the

comparative analysis of the KDD Cup 1999 dataset

for the AR-ELM with existing ELM methods such

as basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. These ELM methods are

developed in four different activation functions such

as sigmoid, tanh, hardlims and tribas.

The Table 3 and Fig 4 shows that the AR-ELM

training time for the KDD Cup 1999 dataset is less

when compared to the existing methods such as

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Due to the high amount of samples

of the KDDCup99 data (i.e., above 60000), the

training process of the ELM [21] takes more time.

Similarly, the training time of the ELM-TUCKER

[21] and ELM-PARAFAC [21] also higher than the

AR-ELM.

The testing performance of the KDD Cup 1999

dataset is shown in the Table 4. The AR-ELM

method has improved performance in terms of

accuracy, precision and recall than the other

methods basic ELM [21], ELM-TUCKER [21] and

ELM-PARAFAC [21]. The learning rate of the AR-

ELM makes the classification process more accurate

than the existing methods.

4.2.3. Performance analysis of satellite dataset

Table 5 and Fig 5 provides comparison of

training time (in seconds) for two different

activation functions such as hardlims and tribas.

This training time comparison is made for AR-ELM

with three different existing methodologies such as

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21].

Table 5. Training time comparison for satellite dataset

Activatio

n

function

Basic

ELM

[21]

ELM-

TUCKER

[21]

ELM-

PARAFA

C [21]

AR-

ELM

Hardlims 124.215 116.012 108.011 98.28

Tribas 124.228 102.624 98.927 91.05

Received: June 9, 2019 295

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Table 6. Comparison of testing performance for satellite dataset

Activation

function

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

ACC P R ACC P R ACC P R ACC P R

Hardlims 0.9825 0.96 0.94 0.9932 0.99 0.99 0.9982 0.99 0.98 0.9986 0.99 0.99

Tribas 0.9943 0.98 0.97 0.9976 0.99 0.98 0.9987 0.98 0.99 0.9989 0.99 0.99

Table 7. Training time comparison for shuttle dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

Tribas 6716.550 6376.865 6315.289 6286.254

Tanh 6725.434 6680.117 6617.240 6595.207

Hardlims 6706.932 6629.858 6584.301 6501.125

Table 8. Comparison of testing performance for shuttle dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC

[21]

AR-ELM

ACC P R ACC P R ACC P R ACC P R

Tribas 0.9568 0.95 0.94 0.9752 0.97 0.98 0.9787 0.98 0.97 0.9816 0.97 0.99

Tanh 0.9653 0.95 0.93 0.9812 0.97 0.98 0.9964 0.99 0.99 0.9972 0.99 0.99

Hardlims 0.9629 0.95 0.96 0.9676 0.96 0.97 0.9782 0.98 0.97 0.9941 0.99 0.98

Figure.5 Comparative analysis of training time for

satellite dataset

From the Table 5 and Fig 5 conclude that the

training time of the satellite dataset is less when

compared to the existing methods basic ELM [21],

ELM-TUCKER [21] and ELM-PARAFAC [21].

The training time of the basic ELM [21] is high,

because it spends more time in the hidden layer

output matrix computation. The fine tuning of the

parameters from the tensors helps to reduce the

training time of the AR-ELM than the existing

methods.

The testing performance of the satellite dataset is

shown in the Table 4. The AR-ELM method has

improved performance in terms of accuracy,

precision and recall than the other methods such as

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The testing accuracy of the AR-

ELM is improved due to its learning rate and

elimination of redundant information from the

decomposed tensor samples.

Figure.6 Comparative analysis of training time for shuttle

dataset

4.2.4. Performance analysis of shuttle dataset

The following Table 7 and Fig 6 provides the

comparative analysis of the shuttle dataset for the

AR-ELM training time with existing ELM methods

such as basic ELM [21], ELM-TUCKER [21] and

ELM-PARAFAC [21]. These ELM methods are

developed in four different activation functions such

as sigmoid, tanh, hardlims and tribas.

From the Table 7 and Fig 6 shows that the AR-

ELM training time for the shuttle dataset is less

when compared to the existing methods b basic

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Because, the AR-ELM has two

levels of tensor decomposition such as TUCKER

decomposition and low rank iterative approximation.

The testing performance of the shuttle dataset is

shown in the Table 8. The AR-ELM method has

improved performance in terms of accuracy,

Received: June 9, 2019 296

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Table 9. Training time comparison for Letter Recognition dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

Tribas 2502.307 2413.627 2210.872 2186.56

Tanh 2507.960 2401.842 2198.813 2095.27

Sigmoid 2504.618 2478.125 2173.671 1956.23

Hardlims 2501.627 2465.783 2178.354 1945.35

Table 10. Comparison of testing performance for Letter Recognition dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC

[21]

AR-ELM

ACC P R ACC P R ACC P R ACC P R

Tribas 0.6857 0.68 0.71 0.7832 0.78 0.80 0.8012 0.80 0.79 0.8572 0.85 0.82

Tanh 0.8590 0.85 0.73 0.9023 0.91 0.90 0.9254 0.92 0.91 0.9425 0.94 0.94

Sigmoid 0.8830 0.85 0.86 0.9034 0.90 0.92 0.9251 0.92 0.91 0.9456 0.93 0.93

Hardlims 0.8102 0.80 0.79 0.8375 0.83 0.83 0.834 0.84 0.83 0.8879 0.87 0.89

Table 11. Training time comparison for Mushroom dataset

Activation function Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC [21] AR-ELM

Tribas 412.883 388.762 385.128 356.48

Tanh 414.840 386.351 362.901 347.15

Sigmoid 413.797 381.147 376.561 338.451

Hardlims 412.699 382.347 378.903 319.58

Figure.7 Comparative analysis of training time for Letter

Recognition dataset

precision and recall than the other methods basic

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The elimination of redundant

information from the decomposed tensor samples is

leads to increase the testing accuracy.

4.2.5. Performance analysis of Letter Recognition

dataset

The following Table 9 and Fig 7 provides the

comparative analysis of the Letter Recognition

dataset for the AR-ELM with existing ELM

methods such as basic ELM [21], ELM-TUCKER

[21] and ELM-PARAFAC [21]. This Letter

Recognition dataset is analysed in four different

datasets such as tanh, tribas, hardlims and sigmoid.

The Table 9 and Fig 7 shows that the AR-ELM

training time for the Letter Recognition dataset is

less when compared to the existing methods basic

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. The training time of the basic

ELM [21] is high than the other methods. Because,

the basic ELM takes more time for processing the

huge datasets. Besides, the AR-ELM training time is

lesser than the ELM-TUCKER [21] and ELM-

PARAFAC [21], due to its fine tuning and higher

level of decomposition over the tensors.

The testing performance of the Letter

Recognition dataset is shown in the Table 10. The

AR-ELM method has improved performance in

terms of accuracy, precision and recall than the

other methods such basic ELM [21], ELM-

TUCKER [21] and ELM-PARAFAC [21]. The

learning rate of the AR-ELM improves the testing

accuracy during the recognition.

4.2.6. Performance analysis of Mushroom dataset

The Table 11 and Fig 8 provides comparison of

Mushroom dataset training time (in seconds) four

different datasets such as tanh, tribas, hardlims and

sigmoid. This training time comparison is made for

AR-ELM with three different existing

methodologies such as basic ELM [21], ELM-

TUCKER [21] and ELM-PARAFAC [21].

Received: June 9, 2019 297

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

Table 12. Comparison of testing performance for Mushroom dataset

Activation

function

Basic ELM [21] ELM-TUCKER [21] ELM-PARAFAC

[21]

AR-ELM

ACC P R ACC P R ACC P R ACC P R

Tribas 0.9621 0.96 0.96 0.9712 0.97 0.98 0.9787 0.97 0.97 0.9813 0.98 0.99

Tanh 0.9676 0.97 0.96 0.9812 0.97 0.98 0.9946 0.99 0.98 0.9956 0.99 0.99

Sigmoid 0.9619 0.95 0.96 0.9686 0.96 0.97 0.9782 0.98 0.97 0.9867 0.99 0.98

Hardlims 0.9629 0.96 0.96 0.9676 0.96 0.97 0.9782 0.98 0.97 0.9789 0.99 0.99

Figure.8 Comparative analysis of training time for

Mushroom dataset

Table 11 and Fig 8 conclude that the training

time of the Mushroom dataset is less when

compared to the existing methods such as basic

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Due to the high amount of samples

of the mushroom dataset, the training process of the

basic ELM [21] takes more time. Similarly, the

training time of the ELM-TUCKER [21] and ELM-

PARAFAC [21] also higher than the AR-ELM.

The testing performance of the Mushroom

dataset is shown in Table 12. The AR-ELM method

has improved performance in terms of accuracy,

precision and recall than the other methods basic

ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Generally, the mushroom dataset

has high amount of training samples as 8124 with 22

attributes. Hence, the testing accuracy is enhanced

due to the determination of the optimal learning rate.

The proposed AR-ELM was analysed in six

different datasets. From the analysis, concluded that

the AR-ELM gives better performance than the

basic ELM [21], ELM-TUCKER [21] and ELM-

PARAFAC [21]. Because, the existing ELM

approach performs only one level of tensor

decomposition to decrease the tensor information.

But in this AR-ELM better performance is achieved

by using two different stages. At first, the tensor was

decomposed by using the HOSVD based TUCKER.

Then the Bayesian approach and constant

compression rate used at second stage of AR-ELM.

The Bayesian approach was used for removing the

redundant information from the tensor and constant

compression rate was used to achieve parameter

reduction rate.

5. Conclusion

In this paper, an AR-ELM is introduced for a

better reduction in training time and improvement in

testing accuracy. This AR-ELM has two different

stages for obtaining better tensor decomposition and

eliminating the redundant information from the

decomposed samples. The HOSVD based TUCKER

decomposition is utilized in first stage to decompose

the tensor. In the second stage, the automotive rank

selection is used to eliminate the redundancy from

the decomposed samples by using the Bayesian

approach. Besides, output weights from the constant

compression rate is utilized for better training of the

ELM. The proposed AR-ELM is analyzed by using

six different datasets such as MNIST handwritten

dataset, KDD Cup 1999 dataset, Satellite dataset,

Shuttle dataset, Letter Recognition dataset and

Mushroom dataset. The AR-LVM is compared with

some of the existing methodologies such as basic

ELM, ELM-TUCKER and ELM-PARAFAC. The

AR-LVM shows better performance when compared

to the existing methodologies. The training time of

the AR-ELM methodology with Tribas activation

function is 356.48 for mushroom dataset, it is less

than the basic ELM, ELM-TUCKER and ELM-

PARAFAC that are 412.883, 388.762 and 385.128

respectively. In the future, the training time and

testing accuracy can be improved by increasing the

variety of matrix/tensor decompositions in the

compression step.

References

[1] X. Tang and L. Chen, “Artificial bee colony

optimization-based weighted extreme learning

machine for imbalanced data learning”, Cluster

Computing, pp.1-16, 2018.

[2] Chaturvedi, E. Ragusa, P. Gastaldo, R. Zunino,

and E. Cambria, “Bayesian network based

extreme learning machine for subjectivity

Received: June 9, 2019 298

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.29

detection”, Journal of The Franklin Institute,

Vol.355, No.4, pp.1780-1797, 2018.

[3] A. Samat, P. Gamba, P. Du, and J. Luo, “Active

extreme learning machines for quad-

polarimetric SAR imagery classification”,

International Journal of Applied Earth

Observation and Geoinformation, Vol.35,

pp.305-319, 2015.

[4] N. Liu and H. Wang, “Ensemble based extreme

learning machine”, IEEE Signal Processing

Letters, Vol.17, No.8, pp.754-757, 2010.

[5] R. Taormina and K.W. Chau, “Data-driven

input variable selection for rainfall–runoff

modeling using binary-coded particle swarm

optimization and Extreme Learning Machines”,

Journal of Hydrology, Vol.529, pp.1617-1632,

2015.

[6] G. Huang, S. Song, J. N. Gupta, and C. Wu,

“Semi-supervised and unsupervised extreme

learning machines”, IEEE Transactions on

Cybernetics, Vol.44, No.12, pp.2405-2417,

2014.

[7] S.X. Xia, F.R. Meng, B. Liu, and Y. Zhou, “A

kernel clustering-based possibilistic fuzzy

extreme learning machine for class imbalance

learning”, Cognitive Computation, Vol.7, No.1,

pp.74-85, 2015.

[8] Z. Liouane, T. Lemlouma, P. Roose, F. Weis,

and H. Messaoud, “An improved extreme

learning machine model for the prediction of

human scenarios in smart homes”, Applied

Intelligence, Vol. 48, No.8, pp.2017-2030,

2018.

[9] Q. Shen, X. Ban, R. Liu, and Y. Wang, “Decay-

weighted extreme learning machine for balance

and optimization learning”, Machine Vision

and Applications, Vol.28, No.7, pp.743-753,

2017.

[10] X. Tang and L. Chen, “A self-adaptive

evolutionary weighted extreme learning

machine for binary imbalance learning”,

Progress in Artificial Intelligence, Vol.7, No. 2,

pp.95-118, 2018.

[11] H. Liu, F. Li, X. Xu, and F. Sun, “Active object

recognition using hierarchical local-receptive-

field-based extreme learning machine”,

Memetic Computing, Vol.10, No.2, pp.233-241,

2018.

[12] J. Cao, Y. Zhao, X. Lai, M. E. H. Ong, C. Yin,

Z. X. Koh, and N. Liu, “Landmark recognition

with sparse representation classification and

extreme learning machine”, Journal of the

Franklin Institute, Vol.352, No.10, pp.4528-

4545, 2015.

[13] X. Kang, Y. Zhao, and J. Li, “Predicting

refractive index of ionic liquids based on the

extreme learning machine (ELM) intelligence

algorithm”, Journal of Molecular Liquids, Vol.

250, pp.44-49, 2018.

[14] Y. Song and J. Zhang, “Discriminating preictal

and interictal brain states in intracranial EEG

by sample entropy and extreme learning

machine”, Journal of neuroscience methods,

Vol.257, pp.45-54, 2016.

[15] W. Ibrahim and M.S. Abadeh, “Extracting

features from protein sequences to improve

deep extreme learning machine for protein fold

recognition”, Journal of theoretical biology,

Vol.421, pp.1-15, 2017.

[16] S. Roshan, Y. Miche, A. Akusok, and A.

Lendasse, “Adaptive and online network

intrusion detection system using clustering and

Extreme Learning Machines”, Journal of the

Franklin Institute, Vol.355, No.4, pp.1752-

1779, 2018.

[17] X. Su, S. Zhang, Y. Yin, and W. Xiao,

“Prediction model of permeability index for

blast furnace based on the improved multi-layer

extreme learning machine and wavelet

transform”, Journal of the Franklin Institute,

Vol.355, No.4, pp.1663-1691, 2018.

[18] A. Mishra, A. Rajpal, and R. Bala, “Bi-

directional extreme learning machine for semi-

blind watermarking of compressed images”,

Journal of Information Security and

Applications, Vol.38, pp.71-84, 2018.

[19] J. Tang, C. Deng, and G. B. Huang, “Extreme

learning machine for multilayer perceptron”,

IEEE Transactions on Neural Networks and

Learning Systems, Vol.27, No.4, pp.809-821,

2015.

[20] X. Li, W. Mao, and W. Jiang, “Multiple-kernel-

learning-based extreme learning machine for

classification design”, Neural Computing and

Applications, Vol.27, No.1, pp.175-184, 2016.

[21] N.K. Nair, and S. Asharaf, “Tensor

Decomposition Based Approach for Training

Extreme Learning Machines”, Big Data

Research, Vol.10, pp.8-20, 2017.

