
Received: April 19, 2019 161

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

Semantic Web Query Join Optimization Using Modified Grey Wolf Optimization

Algorithm

Rubin Thottupurathu Jose1* Sojan Lal Poulose2

1School of Computer Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
2Mar-Baselious Institute of Technology and Science, Kothamangalam, Kerala, India

* Corresponding author’s Email: rubinthottupuram@amaljyothi.ac.in

Abstract: Presently, the distributed Resource Description Framework (RDF) partition the data across several

computer nodes. In that, many existing RDF systems results in expensive query evaluation and high start-up cost. To

address these issues, a new optimization algorithm: modified Grey Wolf Optimization (GWO) has been developed in

this research paper. In conventional GWO algorithm, after finding the best values of 𝐺𝛼 ,𝐺𝛽 and 𝐺𝛿 , stopping criteria

is accomplished. In modified GWO algorithm, after finding the best values of 𝐺𝛼 ,𝐺𝛽 and 𝐺𝛿 , the alpha 𝛼 value once

again encircles the possible solutions for obtaining an optimal solution. In RDF data, query optimization is a

challenging task, which has been effectively handled by modified GWO algorithm. In the experimental phase,

modified GWO showed good performance in terms of execution time and memory usage as compared to the existing

methodologies: Partial Evaluation and Centralized Assembly (PECA), Partial Evaluation and Distributed Assembly

(PEDA), RDF-3X, Graph-Based SPARQL Query Engine (gStore), and Legato on Lehigh University Benchmark

(LUBM) 10000 and DOREMUS 2017 datasets. Compared to these existing systems, the proposed system reduced

the execution time around 2-5 minutes, and improves the precision, recall, and f-measure around 2-7%.

Keywords: Grey wolf optimization, Lehigh university benchmark dataset, resource description framework,

structural query language, web query optimization.

1. Introduction

In recent decades, the large quantity of available

data sources makes the data representation and

classification as a complex process, so it is essential

to represent the data in a semantically structured

way that mainly relied on the RDF data model [1].

Presently, the data representation in RDF data model

constantly growing in size, so querying and storing

the RDF graphs becomes a very challenging task [2,

3]. Several approaches developed for increasing the

efficiency of query retrieval. Most of the present

approaches use map SPARQL queries and database

management systems to structural query language

for query retrieval [4, 5]. In addition, a few more

approaches like RDF-3x, Jena, sesame, etc.

developed for single node machines in the

distributed environment [6]. These existing methods

increase the storage space and delivers parallel

query execution capabilities for managing the huge

datasets [7]. The distributed environmental system

utilizes a few Hadoop techniques: S2RDF, sempala

on top of impala, rya on top of apache accumulo,

SPARQLGX on top of apache spark, etc. [8]. These

existing Hadoop systems optimized for a specific

query pattern that may marginally improve the

query performance.

So, there is a need for distributed RDF store with

better performance on an extensive range of query

types without renouncing a rapid loading phase.

Generally, the computational time of the query

depends on the optimization algorithm and query

path. The size of the query path increases with the

size of queries, so it consumes less time to optimize

the query path [9, 10]. Presently, numerous soft

computing methodologies utilized to reduce the time

consumption and query path optimization. In this

research study, an effective methodology developed

Received: April 19, 2019 162

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

for improving the performance of semantic web

query join optimization. At first, the input data were

collected from the datasets: LUBM 10000 and

DOREMUS 2017. Then, the distributed query graph

developed on the collected data and successively

calculate the cost function. At last, the modified

GWO algorithm was developed for solving the

engineering optimization issues. The modified

GWO algorithm attempts to solve the optimization

issues, due to the multipurpose property. In

modified GWO algorithm, after finding the best

values of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿, the alpha 𝛼 again encircles

the possible solutions for obtaining an optimal

solution. This process effectively diminishes the

computational time of the developed system

compared to GWO algorithm.

This research paper is arranged as follows.

Several papers on semantic web query join

optimization are reviewed in section 2. Detailed

explanation about the proposed methodology is

given in section 3. Section 4 illustrates about the

quantitative and comparative analysis of proposed

methodology. The conclusion is done in section 5.

2. Literature review

The researchers in semantic web query join

optimization developed numerous methodologies. In

this literature review section, a brief discussion of

some important contributions to the existing

literatures is presented.

P. Peng, L. Zou, M.T. Özsu, L. Chen, and D.

Zhao, [11] presented a new technique for processing

the SPARQL queries over a huge RDF graph in a

distributed environment by adopting the “partial

evaluation and assembly” system. At first, the

developed technique simultaneously evaluates the

queries on each graph fragment for identifying the

local partial matches. In the second step, these local

partial matches assembled for computing the

crossing matches. In this research work, two

dissimilar assembly strategies (centralized assembly

and distributed assembly) were developed in order

to minimize the edges and vertices in the

intermediate results. The developed methodology

effectively preservers the inter-connected RDF

repositories as a virtually integrated distributed

database. A few RDF repositories provide SPARQL

endpoints and others may not have query capability.

In real-time applications, queries in the same time

usually overlapped.

R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,

Y. Ebrahim, and M. Sahli, [12] developed an AdPart

distributed RDF system for addressing the short-

comings of existing works. Initially, AdPart

distributed RDF system used lightweight portioning

on the input data for distributing the triples by

hashing on the subjects. Besides, locality-aware

query optimizer was used on the AdPart distributed

RDF system for minimizing the data communication.

As a result, the communication cost of future

queries reduced. The experimental result confirmed

that the developed AdPart distributed RDF system

works faster than all existing systems. In this

research work, it was very hard to select and execute

the queries by a single worker.

E.G. Kalayci, T.E. Kalayci, and D. Birant, [13]

presented an effective system to optimize the

SPARQL queries with dissimilar graph shapes. In

this research paper, ant colony optimisation

algorithm was used to re-order the triple patterns

that effectively decreases the execution time of

SPARQL queries. This system mainly focused on

in-memory models of RDF data, and optimized the

SPARQL queries in terms of max-min ant system,

elitist ant system and other ant system algorithms.

The experimental outcome confirmed that this

methodology delivered better performance in terms

of execution time. In large datasets like LUBM, the

developed algorithm includes two major concerns;

additional computational load and the problem-

specific inapplicability.

P. Peng, L. Zou, and Z. Qin, [14] developed a

new hybrid query: SPARQL-Keyword (SK) for

improving the performance of key word search and

SPARQL. In this research, the developed query was

integrated with the structural and distance based

index for answering the SK queries effectively.

Usually, the structural index works based on

frequent start patterns in RDF data. Likewise, the

distance based index works based on shortest path

trees of selected pivots in the RDF graph. Here, the

experiments were conducted on three large real RDF

graphs and the outcomes demonstrate the efficiency

of SK query. The keyword mapping consumed more

time, because the inverted index keywords were

hard to retrieve from the storage. In such

circumstances, it was difficult for SK method to

reduce the execution item.

L. Zou, M.T. Özsu, L. Chen, X. Shen, R. Huang,

and D. Zhao [15] developed a new method (gStore)

to answer SPARQL queries efficiently. In developed

system, the RDF data were stored in large graph for

representing SPARQL query as query graph. In

addition, an index with pruning rule was developed

to achieve scalable and effective query processing.

Also, an effective maintenance approach was used

for handling online updates over RDF repositories.

The experiment result shows that the efficiency of

developed system was better related to the existing

Received: April 19, 2019 163

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

systems. The developed system lag with the concern

towards handling the missing attribute values in the

dataset.

M. Achichi, Z. Bellahsene, M.B. Ellefi, and K.

Todorov, [16] developed a new system for semantic

web query join optimization. The developed system

includes four major phases: pre-processing, instant

profiling, vector representation and post-processing.

Initially, data cleaning process was carried-out for

removing the irrelevant data. Then, the instant

profiling was used to represent each resource for the

comparison task. To reduce the false positives rate,

instant vector representation compares the resources.

Finally, post-processing phase was carried-out by

using key ranking methodology and hierarchical

clustering for disambiguating highly not identical

instances. The major disadvantage of the developed

system was the creation of post-processing phase

that decreases the system performance in light of

recall, precision, and f-measure.

A new optimization algorithm (modified GWO)

has been developed for improving the performance

of semantic web distributed RDF and to overcome

the above-mentioned problems.

Figure.1 Work flow of proposed methodology

3. Proposed methodology

In semantic web query optimization, the

modified GWO comprises of four major phases such

as; data collection, triple store, cost value

computation and query optimization using modified

GWO. Fig. 1 represents the block diagram of the

proposed methodology. The detailed explanation

about the proposed methodology is given below.

3.1 Dataset description

At first, the input data is collected from LUBM

10000 and DOREMUS 2017 datasets. LUBM 10000

dataset is developed for facilitating the estimation of

semantic web repositories in a systematic and

standard way. The benchmark dataset evaluates the

performance of repositories on the basis of

extensional queries over a huge dataset, which

promises a single realistic ontology. The LUBM

10000 dataset contains a repeatable synthetic data,

customizable synthetic data, a university domain

ontology, a set of test queries and numerous

performance measures. The number of triples in

LUBM 10000 dataset is 1,334,481,197, RDF N3 file

size is 153,256,699, and the number of entities is

217,006,852. The other components of LUBM

10000 dataset are given below,

Ontology: The benchmark ontology is called as

Univ-bench: Web Ontology Language (OWL)

version.

Data generator: It generates synthetic data over

Univ-bench ontology. The generated data are

customizable and repeatable that allows users to

specify the starting index of universities.

Test queries: Currently, the benchmark comprises

of fourteen test queries. The file contains all queries

in SPARQL 1.0 syntax format, which is separated

by blank lines for identifying the comments. In

LUBM 10000 dataset, the visualization of the

queries in SVG and JPG format.

Test module: It comprises of both query test and

data loading test with configurable test plans.

 In addition, DOREMUS 2017 comprises of two

important sections: Heterogeneities (HT) and False

Positive Trap (FPT).

HT: It comprises of two datasets (BnF-1 and PP-1),

containing 238 instances. It includes dissimilar types

of HTs, which are collected from different degree of

description, differences in spelling, multilingualism,

and differences in catalogues.

FPT: It includes two datasets (BnF-2 and PP-2) that

contains 75 instances each.

Received: April 19, 2019 164

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

3.2 Detailed explanation about SPARQL and

query graph

After the data collection, distributed query graph

is built for semantic queries with edges, nodes and

properties to represent and store data. Generally,

RDF data utilize in several applications, where the

RDF tuples data are very suitable for semantic web

query join optimization. In a few circumstances, the

data table increases rapidly if the number of tuples

data are high. Whereas, the complex queries have

more connection operations that degrade the query

execution performance. The connections in RDF is

explained below in the form of the query graph and

SPARQL. In SPARQL query, the query engine

starts with constructing a representation that is

named as query graph. Each query triple pattern is

turned into a node of the query graph. The two

nodes connect only if the related triple patterns share

a common variable or there is a FILTER condition

related to the two triple patterns.

Theoretically, the query graph node analyses the

datasets based on variable bindings, and the edges

related to the join possibilities in the query.

Additionally, the query graph node defines the query

graph of SPARQL related to traditional query graph

from relational query optimization, where the nodes

are interconnected and joins predicates from the

edges. In addition, SPARQL query is also

represented as a graph structure, which is called as

SPARQL graph. The query nodes state the query

variables, where the triple patterns form edges

between the nodes. The SPARQL uses W3C

standard in order to extract and query the data from

RDF graphs. This procedure denotes counter-part to

select the project to join queries in the relational

model that depends on the powerful graph-matching

scheme by allowing the binding variables in the

RDF graph. Operators correspond to relational

projections, joins, selections, unions, and left outer

joins are hybridized for developing the more

expensive queries.

Each triple pattern comprises of subject,

predicate, and object, which are either literal or

variable. The query represents the known and

unknown literal variables in multiple patterns for

compounding the join operations. Additionally, a

query processor requires in order to analyse the

possible connections between the given patterns,

which provides bindings to the application.

Relational database management systems have

continuously shown the scalability, efficiency and

execution in hosting type data that previously not

been predicted in the relational databases. Further,

the powerful indexing tool use in the relational

database management systems in order to manage

the huge amount of data very effectively.

Instinctively, this process describes the sub-graphs,

which need to be extracted from the datasets. A few

major challenges faced by the researchers in

semantic web query join optimization is detailed in

the following section.

3.3 Challenges in semantic web query join

optimization

Detecting the order of optimal join in SPARQL

query is very critical, due to the nature of RDF data.

Secondly, query optimization complexity is

exponential in the number of joins. For instance,

LUBM 10000 dataset comprises of SPARQL

queries with more than twelve joins, so the

undertaken optimizer cannot analyse the full search

space, which potentially misses the best plan. The

SPARQL query plans have 𝐹 times more joins than

correspondent SQL plans, where 𝐹 is denoted as the

average size of a start pattern. In real-time

applications, SPARQL queries with joins involve a

hundred index scans. Secondly, the lack of schema

leaves the essential information, which is readily

available to any relational optimizer such as, set of

tables, foreign keys, etc. The relational optimizer

keeps the statistics on the attributes and foreign keys,

and uses it result for size estimation. All this

information implicitly present in RDF data, where

the attributes and foreign keys become structurally

correlates in the RDF graph.

The simplest correlation corresponds to the

attributes of similar entities, which are captured by

the characteristic sets. However, the dynamic

programming algorithm computes the characteristic

sets based estimation for every non-empty sub-graph

of the query. This process significantly increases the

performance of the dynamic programming algorithm,

and characteristic sets do not identify the relevance

between the different sub graphs in RDF. Besides,

the characteristics of RDF data creates the following

challenges in the query optimizer.

• The approximate size of search space for

more SPARQL queries does not allow the

standard dynamic programming algorithm

exploration, since it has to look at all the

valid plans for identifying the cheapest one.

• Secondly, even in the mid-sized query

graphs, the dynamic programming algorithm

ignores the structure of query and it

considers many a priori sub-optimal sub

plans during the plan construction.

• The optimizer under the independence

assumption fails to estimate the result sizes

Received: April 19, 2019 165

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

of most partial plans. The independence

assumption leads to a significant

underestimation of the cost function, since

the optimizer merely multiplies the

frequencies of two predicates to obtain the

join selectivity.

• The real cost of the partial plans is much

worse than the optimizer’s expectation.

Hence, the cost estimation of the query

should be evaluated for finding query

optimization.

3.4 Cost value computation

In this sub-section, bind join ∀𝑏 and symmetric

hash join ∀ℎ are applied for query planning between

the two cost estimations [17], which is

mathematically represented in the Eq. (1), (2), and

(3).

 𝐶𝑜𝑠𝑡 (𝐵1 ∀ℎ 𝐵2) =
(1+𝑇𝐶)

𝑇𝐶
× 𝐶𝑆𝑄 + 𝐶2ℎ + 𝐶3ℎ

(1)

Where,

 𝐶2ℎ = 𝐶(𝐵2) × 𝐶𝑅𝑇 (2)

 𝐶3ℎ = (𝐶(𝐵1) + 𝐶(𝐵2)) × 𝐶𝐻𝑇 (3)

Where, 𝐶2ℎ is denoted as cost of receiving the

largest tuple set, and 𝐶3ℎ is represented as the cost

of intersecting received sets. The query planning of

bind join ∀𝑏 is mathematically denoted in the Eq.

(4), (5), and (6).

 𝐶𝑜𝑠𝑡 (𝐵1 ∀𝑏 𝐵2) = 𝐶𝑆𝑄 + 𝐶2𝑏 + 𝐶3𝑏 (4)

Where,

 𝐶2𝑏 = 𝐶(𝐵1) × 𝐶𝑅𝑇 (5)

 𝐶3𝑏 = 𝐶𝑆𝑄 ×
(

𝑐(𝐵1)+𝐵𝑆𝑍−1

𝐵𝑆𝑍
)+𝐶𝑇𝐶−1

𝐶𝑇𝐶
 (6)

Where, 𝐶2𝑏 is denoted as cost of receiving 𝐵1

set, 𝐶3𝑏 is represented as cost of sending bound 𝐵2

requests, 𝐶𝑆𝑄 is stated as cost of sending a

SPARQL query, 𝐶𝑅𝑇 is denoted as cost of receiving

a single result tuple, 𝐶𝐻𝑇 is signified as cost of

handling a single result tuple, 𝐵𝑆𝑍 is represented as

binding block size, and 𝑇𝐶 is specified as number of

threads utilized to query SPARQL end-points. The

estimated cost function is given as the input for

modified GWO in order to find the optimized cost

value of the query. The explanation about modified

GWO is detailed in the below section.

3.1. Web query join optimization using modified

grey wolf optimization

Grey wolf optimization is a swarm intelligence

optimization method that mimics the leadership

hierarchy of wolves, which are known for group

hunting. Generally, the grey wolfs belongs to the

Canidae family, which mostly wish to live in group.

The grey wolves have a strict social dominant

hierarchy (leader may be a male or female) that is

theoretically named as alpha (𝛼). Mostly, the alpha

is accountable for decision making and the orders of

the dominant wolf follow the pack. Respectively,

beta (𝛽) represents the sub-ordinate wolves that help

alpha in decision making. Beta(𝛽) acts as an advisor

to alpha and discipliner for the pack. The low

ranking grey wolves are named as omega (𝜔) that

submits all other dominant wolves. If a wolf is

neither an omega or alpha nor beta, it is called delta

(𝛿). Delta wolves dominate the omega wolves and

report the status to alpha and beta wolves.

The hierarchy of wolves is theoretically

modelled for developing GWO and accomplish

optimization. The GWO approach is tested with the

test functions that represent the exploitation and

exploration characteristics compared to other swarm

intelligence algorithms. Further, the GWO algorithm

is successfully employed to solve several

engineering optimization issues. Due to the

multipurpose property, the modified GWO

algorithm attempts to solve the optimization issues.

3.5.1. Overview of modified grey wolf optimization

algorithm

The GWO approach mimics the social hierarchy

and hunting behaviour of grey wolves. In addition to

the hunting behaviour of grey wolves, group hunting

is another appealing societal action of grey wolves.

The GWO algorithm includes three main segments

such as, encircling, hunting and attacking of prey.

The step by step procedure of modified GWO is

described below.

Step 1: At first, initialize the GWO parameters like

design variable size 𝐺𝑑, search agents 𝐺𝑠, maximum

number of iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, and vectors 𝑎, 𝐴, 𝐶 that

is mathematically denoted in the Eq. (7) and (8).

The value �⃗� linearly decreases from two to zero over

the course of iterations.

 𝐴 = 2�⃗�. 𝑟𝑎𝑛𝑑1 − �⃗� (7)

Received: April 19, 2019 166

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

 𝐶 = 2. 𝑟𝑎𝑛𝑑2 (8)

 Where, 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 are denoted as random

vectors, which ranges between [0, 1].

Step 2: Then, randomly generate the wolves based

on pack that is represented in the Eq. (9).

 𝑊𝑜𝑙𝑣𝑒𝑠 =

[

𝐺1
1 𝐺2

1 𝐺3
1

𝐺1
2 𝐺2

2 𝐺3
2

.
𝐺1

𝐺𝑠
.

𝐺2
𝐺𝑠

.
𝐺3

𝐺𝑠

… . 𝐺𝐺𝑑−1
1 𝐺𝐺𝑑

1

… . 𝐺𝐺𝑑−1
2 𝐺𝐺𝑑

2

… .
… .

.
𝐺𝐺𝑑−1

𝐺𝑠
.

𝐺𝐺𝑑
𝐺𝑠

] (9)

Where, 𝐺𝑗
1 is denoted as initial value of the 𝑗𝑡ℎ

pack of the 𝑖𝑡ℎ wolves.

Step 3: Calculate the fitness value of each hunt

agent using the Eq. (10) and (11).

 �⃗⃗⃗� = |𝐶. �⃗�𝑝(𝑡) − �⃗�(𝑡)| (10)

 �⃗�(𝑡 + 1) = �⃗�𝑝(𝑡) − 𝐴. �⃗⃗⃗� (11)

 Where, 𝑡 is denoted as number of iteration, 𝐴

and 𝐶 are represented as coefficient vectors, �⃗�𝑝 is

stated as position vector of the prey, and �⃗� is stated

as position vector of a grey wolf.

Step 4: Determine the best hunt agent 𝐺𝛼 , second

and third best hunt agents 𝐺𝛽 and 𝐺𝛿 by using the

Eqs. (12)-(17).

 �⃗⃗⃗�𝛼 = |𝐶1. �⃗�𝛼 − �⃗�| (12)

 �⃗⃗⃗�𝛽 = |𝐶2. �⃗�𝛽 − �⃗�| (13)

 �⃗⃗⃗�𝛿 = |𝐶3. �⃗�𝛿 − �⃗�| (14)

 �⃗�1 = �⃗�𝛼 − 𝐴1. (�⃗⃗⃗�𝛼) (15)

 �⃗�2 = �⃗�𝛽 − 𝐴2. (�⃗⃗⃗�𝛽) (16)

 �⃗�3 = �⃗�𝛿 − 𝐴3. (�⃗⃗⃗�𝛿) (17)

Step 5: Update the location of the present hunt

agent by using the Eq. (18).

 �⃗� (𝑡 + 1) =
�⃗�1+�⃗�2+�⃗�3

3
 (18)

Step 6: Evaluate the fitness value of all hunts.

Step 7: Update the value of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿.

Step 8: By using the best values of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿 ,

alpha once again encircles the current solutions to

obtain a possible solution.

Step 9: Check the stopping criteria, whether the

𝑖𝑡𝑒𝑟 reaches 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 or not, if yes, print the current

best value, or else again go to step 5.

3.5.2. Pseudo-code of modified GWO optimization

algorithm

• Generate initial search agents 𝐺𝑖(𝑖 =
1,2, … , 𝑛)

• Initialize the vectors 𝑎, 𝐴 and 𝐶
• Evaluate the fitness value of each

hunt agent

𝐺𝛼 → Best hunt agent

𝐺𝛽 → Second best hunt agent

𝐺𝛿 → Third best hunt agent

𝐼𝑡𝑒𝑟 = 1

• Repeat

• For 𝑖 = 1: 𝐺𝑠 (grey wolf pack size)

• Update the location of current hunt

agent

• End for

• Evaluate the fitness value of all hunt

agents

• Update the value of 𝐺𝛼,𝐺𝛽 and 𝐺𝛿.

• 𝐺𝛼 = min(𝐺𝛼, 𝐺𝛽 and 𝐺𝛿)

• Update the vectors 𝑎, 𝐴 and 𝐶

• 𝐼𝑡𝑒𝑟 = 𝐼𝑡𝑒𝑟 + 1

• Unit 𝐼𝑡𝑒𝑟 ≥= maximum number of

iterations (stopping criteria)

• Output 𝐺𝛼

• End

4. Experimental result and discussion

In this research study, eclipse java 1.8 apache

Jena was used for experimental simulation with 3.2

GHz and i5 processor. In order to analyse the

effectiveness of proposed methodology (modified

GWO), the performance of proposed methodology

was compared with the existing methodologies:

PECA [11], PEDA [11], RDF-3X [11], gStore [15],

and Legato [16] on LUBM 10000 and DOREMUS

datasets. The performance of the proposed

methodology was evaluated in terms of execution

time and memory usage. The performance metric

determined as the regular measurement of outcome

that creates the reliable information about the

effectiveness of the proposed methodology. Here,

Received: April 19, 2019 167

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

the relationship between the input and output

variables of the proposed modified-GWO

methodology is understood by using the

performance measures like execution time, precision,

recall, and f-measure.

4.1 Performance measure

Performance measure is determined as the

measurement of experimental outcome that develops

reliable information about the effectiveness of

proposed system. The relationship between the input

values and output values of the proposed system was

understood by utilizing the performance measures

like execution time, precision, recall, and f-measure.

The formula to evaluate precision, recall, and f-

measure are given in the Eqs. (19), (20), and (21).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (19)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (20)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
100 (21)

Where, 𝐹𝑃 is specified as false positive, 𝑇𝑁 is

indicated as true negative, 𝑇𝑃 is stated as true

positive, and 𝐹𝑁 is represented as false negative.

4.2 Quantitative analysis on LUBM 10000 dataset

by means of execution time

In this section, LUBM 10000 dataset is used for

evaluating the performance of proposed and existing

methodologies. The LUBM 10000 dataset consists

of repeatable synthetic data, customizable data,

university domain ontology and a set of test quires

(fourteen). In Table 1, the proposed methodology

performance evaluated in light of execution time

and compared with the existing methodologies such

as PECA [11], PEDA [11], and RDF-3X [11]. Table

1 shows that the proposed methodology works faster

than the existing methodologies even when the

query graph is complex such as, query 1, query 2,

query 3, and query 7. Since, these queries do not

contain any selective triple patterns, query graph

structure is complex and the search space of these

queries is very large.

The modified GWO has the advantage of

parallel processing and reduce query response time

effectively related to a centralized system. If the

queries (4, 5 and 6) contains selective triple patterns,

the search space becomes small. The centralized

system of RDF-3X, PECA, and PEDA is faster than

the proposed methodology in a few queries, since

the proposed methodology spends more

communication cost between the dissimilar

machines. These queries only spend less than three

seconds in both the existing and proposed method.

However, for some challenging queries (1, 2, 3 and

7), the modified GWO outperformed the existing

methodologies significantly. The graphical

comparison of proposed and existing methodology

is denoted in Fig. 2.

Table 1. Comparative analysis of proposed and existing

system by means of execution time

Execution time (milliseconds)

Number of

queries

RDF-3X

[11]

PECA

[11]

PEDA

[11]

Proposed

method

(modified-

GWO)

1 10,840,47 3,26,167 3,09,361 45

2 81,373 23,685 23,685 60

3 72, 257 10,239 10,368 38

4 7 753 753 33

5 6 125 125 43

6 355 3388 1914 79

7 1,46,325 1,43,779 46123 82

Figure.2 Graphical comparison of proposed and existing methodology

Received: April 19, 2019 168

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

Figure.3 Graphical comparison of proposed and existing methodology

Table 2. Comparative analysis of proposed and existing

system by means of execution time

Execution time (milliseconds)

Number of

query joins

gStore

[15]

Proposed method

(modified-GWO)

1 43832 45

2 1563 60

3 1491 38

4 680 33

5 131 43

6 828 79

7 8301 82

Table 3. Performance comparison of proposed and

existing method in terms of precision, recall, and f-

measure
Methods Data Precision

(%)

Recall

(%)

F-measure

(%)

Legato [16] HT 98 87 90

FPT 90 78 83

Proposed

method

(modified-

GWO)

HT 100 95 90

FPT 90 85 90

Similarly, Table 2 depicts about the performance

of proposed methodology (modified GWO) and

existing methodology (gStore [15]) in terms of

execution time by using the number of query joins.

The execution time of proposed approach (modified

GWO) is very low compared to the existing

methodologies because the proposed method

quickly evaluates the join order and also optimizes

the join cost effectively that reduces the complexity

of the system. The graphical representation of the

execution time is denoted in Fig. 3. The

experimental result demonstrates that the modified

GWO achieved better execution time for a number

of queries. The execution time decreases for a small

number of queries, but after some certain optimal

point, the execution time increases when the number

of queries increases.

4.3 Quantitative analysis on DOREMUS 2017

dataset by means of precision, recall and f-

measure

In this sub-section, performance of the proposed

methodology (modified GWO) is compared with an

existing methodology (Legato [16]) in terms of

precision, recall, and f-measure. Table 3 states that

the proposed method achieved a better result by

means of precision, recall, and f-measure related to

an existing system. The DOREMUS 2017 dataset

contains two important sections: HT and FPT, where

the result is averagely calculated. In HT phase, the

proposed system achieved 100% precision, 95%

recall, and 90% f-measure, which is superior related

to the existing system. Similarly, in FPT phase, the

proposed system attained 90% of precision, 85% of

recall, and 90% of f-measure. Compared to existing

system (Legato [16]), the proposed system achieved

good performance. From Tables 1, 2, and 3, it is

clear that the proposed method achieved low

execution time, precision, recall, and f-measure than

the other existing methodologies in LUBM 10000

and DOREMUS 2017 datasets.

5. Conclusion

In this research study, a new query optimization

algorithm (modified GWO) was developed to

improve the performance of query evaluation and

start-up cost. In addition, this research paper also

detailed about the query optimization based on

reordering the triple pattern in the main memory of

RDF data. Compared to the existing methodologies,

the proposed method delivered an effective

performance by means of quantitative and

comparative analysis. From the experimental

investigation, the proposed methodology improved

Received: April 19, 2019 169

International Journal of Intelligent Engineering and Systems, Vol.12, No.5, 2019 DOI: 10.22266/ijies2019.1031.16

the execution time (2-5 minutes) related to the

existing methodologies on LUBM 10000 dataset.

Similarly, the proposed methodology improved

precision, recall, and f-measure around 2-7% related

to the existing system. In future work, a hybrid

optimization algorithm will be developed in order to

extend the current framework on dissimilar query

engines and triple patterns.

References

[1] M. Meier, M. Schmidt, F. Wei, and G. Lausen,

“Semantic query optimization in the presence

of types”, Journal of Computer and System

Sciences, Vol.79, No.6, pp.937-957, 2013.

[2] A. Letelier, J. Pérez, R. Pichler, and S. Skritek,

“Static analysis and optimization of semantic

web queries”, ACM Transactions on Database

Systems (TODS), Vol.38, No.4, pp.25, 2013.

[3] R. Taelman, J. Van Herwegen, M. Vander

Sande, and R. Verborgh, “Comunica: a

modular SPARQL query engine for the web”,

In International Semantic Web Conference,

pp.239-255, 2018.

[4] O. Hogenboom, F. Frasincar, and U. Kaymak,

“Ant colony optimization for RDF chain

queries for decision support”, Expert Systems

with Applications, Vol.40, No.5, pp.1555-1563,

2013.

[5] J.J. Jung, “Semantic Optimization of Query

Transformation in a large-scale peer-to-peer

network”, Neurocomputing, Vol.88, pp.36-41,

2012.

[6] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic,

and G. Lausen, “S2RDF: RDF querying with

SPARQL on spark”, In: Proc. of the VLDB

Endowment, Vol.9, No.10, pp.804-815, 2016.

[7] Z. Chouiref, A. Belkhir, K. Benouaret, and A.

Hadjali, “A fuzzy framework for efficient user-

centric Web service selection”, Applied Soft

Computing, Vol.41, pp.51-65, 2016.

[8] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song,

and D. Zhao, “Semantic SPARQL similarity

search over RDF knowledge graphs”, In: Proc.

of the VLDB Endowment, Vol.9, No.11,

pp.840-851, 2016.

[9] T. Zhao, C. Zhang, L. Anselin, W. Li, and K.

Chen, “A parallel approach for improving Geo-

SPARQL query performance”, International

Journal of Digital Earth, Vol.8, No.5, pp.383-

402, 2015.

[10] A. Boukorca, L. Bellatreche, S.A.B. Senouci,

and Z. Faget, “Coupling materialized view

selection to multi query optimization: hyper

graph approach”, International Journal of Data

Warehousing and Mining, Vol.11, No.2, pp.62-

84, 2015.

[11] P. Peng, L. Zou, M.T. Özsu, L. Chen, and D.

Zhao, “Processing SPARQL queries over

distributed RDF graphs”, The VLDB Journal-

The International Journal on Very Large Data

Bases, Vol.25, No.2, pp.243-268, 2016.

[12] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis,

Y. Ebrahim, and M. Sahli, “Accelerating

SPARQL queries by exploiting hash-based

locality and adaptive partitioning”, The VLDB

Journal-The International Journal on Very

Large Data Bases, Vol.25, No.3, pp.355-380,

2016.

[13] E.G. Kalayci, T.E. Kalayci, and D. Birant, “An

ant colony optimisation approach for

optimising SPARQL queries by reordering

triple patterns”, Information Systems, Vol.50,

pp.51-68, 2015.

[14] P. Peng, L. Zou, and Z. Qin, “Answering top-K

query combined keywords and structural

queries on RDF graphs”, Information Systems,

Vol.67, pp.19-35, 2017.

[15] L. Zou, M.T. Özsu, L. Chen, X. Shen, R.

Huang, and D. Zhao, “gStore: a graph-based

SPARQL query engine”, The VLDB Journal—

The International Journal on Very Large Data

Bases, Vol.23, No.4, pp.565-590, 2014.

[16] M. Achichi, Z. Bellahsene, M.B. Ellefi, and K.

Todorov, “Linking and disambiguating entities

across heterogeneous RDF graphs”, Journal of

Web Semantics, Vol.55, pp.108-121, 2019.

[17] M. Saleem, A. Potocki, T. Soru, O. Hartig, and

A.C.N. Ngomo, “Costfed: Cost-based query

optimization for sparql endpoint federation”,

Procedia Computer Science, Vol.137, pp.163-

174, 2018.

